Example of Induction inequality problem

Here is a different inequality that works out, that I did NOT do in lecture.

Define a recurrence relation g as follows:

g(0) = 2, g(1) = 4,

g(n) = 3g(n-1) + 4g(n-2), for all integers n>1.

Prove, using strong induction, that g(n) > 4n, for all n>1.

Base Case(s): 

n=2: g(2) = 3g(1)+4g(0) = 3(4) + 4(2) = 20  > 42 

n=3: g(3) = 3g(2)+4g(1) = 3(20) + 4(4) = 76 > 43
Assume, for some arbitrary n=k, with k>1, that g(k) > 4k.

We must prove under this assumption for n=k+1, 

g(k+1) > 4k+1,

g(k+1) = 3g(k) + 4g(k-1) 


   = 3g(k) + 4g(k-1)  

            ( 3(4k) + 4g(k-1), using the inductive hypothesis

            > 3(4k) + 4(4k-1), using the strong inductive hypothesis


   = 3(4k) +4k

   = (3+1)(4k)   

            = 4(4k)


   = 4k+1
This proves the inductive step, so we can conclude that 

g(n) > 4n, for all n>1.

Here is the problem I ended up working out in class:

Define a recurrence relation g as follows:

g(0) = 2, g(1) = 5,

g(n) = 5g(n-1) - 4g(n-2), for all integers n>1.

Prove, using strong induction, that g(n) = 4n + 1, for all n>1.

Base case(s): n=2: g(2) = 5g(1) – 4g(0) = 5(5) – 4(2) = 17 = 42 + 1



     n=3: g(3) = 5g(2) – 4g(1) =5(17) – 4(5)= 65 – 43 + 1

Inductive hypothesis: Assume for k ( n, k>1 that g(k) = 4k + 1.

Inductive Step: Now, under the assumption above, we must show that the formula holds for n=k+1, so g(k+1) = 4k+1 + 1.

g(k+1) = 5g(k) – 4g(k-1)


   = 5(4k + 1) – 4g(k-1), using inductive hypothesis


   = 5(4k) + 5 – 4g(k-1)


   = 5(4k) + 5 – 4(4k-1 + 1)


   = 5(4k) + 5 – 4(4k-1) – 4


   = 5(4k) – 4(4k-1) + 1


   = 5(4k) – 4k + 1


   = 4k(5 – 1) + 1


   = 4k(4) + 1


   = 4k+1 + 1

This proves the inductive step to be correct. Thus, we can conclude that g(n) = 4n + 1, for all integers n>1.

Here is an induction problem for you all to do:
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Pigeonhole Principle
If m pigeons occupy n pigeonholes and m > n, then at least one pigeonhole has two or more pigeons in it. (The book claims that the pigeons are roosting – first of all, I have no idea how one roosts, and next of all, I figure that roosting has little to no significance on discrete structures...)

I certainly will not dignify this with a proof. It seems fairly obvious to me. If you have more objects than containers for those objects, if you hope to place all the objects in those containers, you had better put at least two objects into one of the containers.

Actually, this principle can be used to prove some fairly interesting facts.

Here are some simple applications:

In any group of 13 people, at least two of them have a birthday in the same month, guaranteed. In this example, the 12 months are the pigeonholes and the pigeons are the 13 people. (Did you know that the probability is greater than ½ that 2 people out of any random group of 25 have the same exact birthday?)

Or how about this one: If Larry has 13 pairs of red socks and 12 pairs of blue socks is his dresser, how many socks does he have to pull from the dresser to ensure he has a pair? The answer is 3 – make the pigeonholes 2 boxes, one for blue socks and one for red socks, and the pigeons the first 3 socks you pull out of the dresser.

Here are a couple more difficult problems using the pigeonhole principle:

Consider the set {1, 2, 3, ..., 20}. Prove that any subset of this set of size 11 MUST contain two elements that have a difference of exactly 5.

Consider creating the pigeonholes as follows:

{1,6}, {2,7}, {3,8}, {4,9}, {5,10}, {11, 16}, {12,17}, {13, 18}, {14,19}, {15,20}

Now consider picking 11 numbers from these 10 pigeonholes. You are required to pick at least 2 numbers from one of the holes, but because of the way the holes were constructed, we know that those two numbers have a difference of 5.

Prove that there exists a positive integer n such that a positive odd integer m divides 2n – 1.

Consider the m+1 positive integers 21 – 1, 22 – 1, ..., 2m+1 – 1. Now consider dividing each of these by m. We know there are exactly m possible remainders when you divide each of these by m. But, we have m+1 numbers. This means by the pigeonhole principle that 2 of the numbers MUST leave the same remainder when divided by m. Let these be 2i – 1 and 2j – 1, with i > j. 

We know that m | (2i – 1) – (2j – 1). (Why? Because both values are equivalent to each other mod m.) So, now, we have:

 (2i – 1) – (2j – 1) = mx, for some integer x.

  2i – 2j = mx

  2j(2i-j – 1) = mx

But, we know that m is odd. Thus, no part of m divides 2j. This must mean that m | 2i-j – 1. But we know that 0 < j < i ( m+1.

Thus, 0 < i-j < m+1, so there does exist a number of the form 2n – 1 that is divisible by m.

Here’s a problem that involves the pigeonhole principle for you all:

Show that if any 14 integers are selected from the set S={1, 2, 3, ..., 25}, there are at least two whose sum is 26.
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