Some Algebra Rules ...

Laws of exponent and Logarithm:

If a > 0, 
ax • ay = ax+y 


(ax)y = axy  

ax / ay = ax–y


a–x = 1/(ax)

If b > 0 and b ( 1, 

logb(xy) = logb x + logb y 
logb(x/y) = logb x – logb y 
logb(xp) = p logb x.

Rules of inequalities:

a > b ( a + c > b + c 

if c > 0, then a > b ( a • c > b • c
if a > b and b > c ( a > c; 

if a > b and c > d ( a + c > b + d.

Useful algebra rules:

ab = 0 ( a = 0 or b = 0

if bd ( 0, then a/b = c/d ( ad = bc; 

(a + b)2 = a2 + 2ab + b2; (a + b)(a – b) = a2 – b2.

A couple of summation rules
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Couple More Examples:

1) Prove 
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= (n+1)Hn – n, using induction. Note that Hn = 
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Use induction on n>0.

         Base case: n=1.
LHS = 1/1 = 1





RHS = (1+1)(1/1) – 1 = 1

         Assume for some n=k,
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Under this assumption, we must prove the formula for


n = k+1:
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= (k+1)Hk – k + Hk+1, using inductive hypothesis.


= (k+1)(Hk+1 – 1/(k+1)) – k + Hk+1


= (k+1)Hk+1 – 1 – k + Hk+1


= (k+2) Hk+1 – (1+k), which completes the induction.

Thus, we have shown 

2) Prove that 
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=  n(2n+1) for all positive integers n.


Use induction on n>0.


Base case: n=1. LHS = 1 + 2 = 3





RHS = 1(2(1)+1) = 3


Assume for some n=k,
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Under this assumption, we must show for n=k+1, that
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=  (k+1)(2(k+1)+1)
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 + (2k+1) + (2k+2)



       = k(2k+1) + 4k + 3, using inductive hypothesis



       = 2k2 + k + 4k + 3



       = 2k2 + 5k + 3



       = (2k + 3)(k + 1)


       = (k+1)(2(k+1)+1), 

which completes the inductive proof. 

Thus, we have 

Strong Induction

This works almost the exact same as normal induction, except for your inductive hypothesis changes. In standard induction, the bulk of our proof is establishing the following:

s(k) ( s(k+1), for our open statement s(n).

However, there are some inductive proofs where it is difficult to prove s(k+1) simply by assuming s(k). Perhaps you must assume that both s(k) and s(k-1) are true.

In strong induction, rather than assuming that our open statement is only true for n=k, we will assume that our open statement is true for all values of n ( k. So, in essence, we want to know prove the following:

s(m) ( s(k+1), where m is a positive integer such that m ( k.

So, a natural question is, do we have to change our base case to use strong induction? The answer is sometimes, but not always.

In our inductive step, if we always have to assume that s(k) and s(k-1) are true, we must have two base cases. Can you see why?

If we have to assume that s(k), s(k-1), and s(k-2) are true, then we must have three base cases.

Sometimes, and I’ll show you when those cases arise, only one base case is necessary.

Proof of the Fundamental Thm. of Algebra using Strong Induction
Theorem (Fundamental Theorem of Arithmetic, Part I).  Let n ( 2 denote an integer.  Then there exists prime numbers p1, p2, …, pk, not necessarily distinct, such that n =  p1p2 … pk; that is, any integer n ( 2 can be factored as a product of prime numbers.

We use strong induction on n ( 2.

(Base Case) Consider n = 2.  In this case, since 2 is a prime, n = 2 is a prime factorization.

(Induction Hypothesis) Assume the theorem is true for all values of n = 2, 3, …, k, i.e., assume each number n in the range 2 ( n ( k, for some k ( 2, has a prime factorization.

(Induction Step) Consider n = k + 1.  There are two cases, either k+1 is itself a prime, in which case the theorem is immediately proven, or  k+1 is not a prime.  In the latter case, k+1 = ab, where 1 < a, b < k+1, by the definition of non-prime.  By the Induction Hypothesis, both a and b have their prime factorizations,


a = p1p2 … pc  and b = q1q2 … qd , where c, d ( 1, and all pi  and  qj are primes.

Thus, n = ab = p1p2 … pc q1q2 … qd , which is a prime factorization for n.  Thus, we proved the Induction Step.

By strong induction, the theorem is true (i.e., n has a prime factorization) for all n ( 2.

Example of using induction on an inequality

Prove by induction that n! > 2n for all n ( 4.  (Note: n! = n(n – 1)···2·1, for n ( 1; 0! = 1 by convention.) 

We use induction on n ( 4.

(Base Case) Consider n = 4.  In this case, 


n! = 4! = 4·3·2·1 = 24, and 


2n = 24 = 16 < 24.  

So the Basis Step is proved.

(Induction Hypothesis) Consider the statement for some n=k. We will assume that k! > 2k.
(Induction Step) Consider the statement for n=k+1.  We need to prove (k + 1)! > 2k+1 

(k + 1)! =  (k + 1) ·n!,  



    > (k + 1) ·2k , by the Induction Hypothesis



    > 2 ·2k , because k + 1 ( 5 > 2



    = 2k+1 .

By induction, we have proved the inequality n! > 2n for all n ( 4. 
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