The Inclusion-Exclusion Principle

 Let A and B denote two finite sets.  Then, we have:

|A ( B| = |A| + |B| – |A ( B|.

This can easily be seen by a Venn Diagram:

Logically, we can argue that since each element of A ( B belongs to either A or B, the sum |A| + |B| includes a count for each of the elements of A ( B, but those elements of A ( B are counted twice.  

Thus, |A| + |B| – | A ( B | counts each element of A ( B exactly once, that is, it is equal to |A ( B|.  

Here is a more rigorous proof of the inclusion-exclusion principle:

We first claim that the following is a disjoint union, meaning that the two sets on the right of the equal sign have no elements in common.

A = (A – B) ( (A ( B)                           
Thus, by the definition of set equality, we want to prove that

1. A ( (A – B) ( (A ( B)                           

2. (A – B) ( (A ( B) ( A                           
3. (A – B) ( (A ( B) = (                          

To prove 1, let x ( A.  Either x ( B or x ( B. In the first case, x ( A ( B by definition, and in the second case, we have x ( A and x ( B, which means x ( A – B by definition.  

To prove 2, note that A – B ( A because each x ( A – B must also have x ( A by the definition of set difference.  Also, A ( B ( A because each x ( A ( B must also have x ( A by the definition of intersection. Thus, (A – B) ( (A ( B) ( A by the definition of set union and the subset relationship.

To prove 3, note that each x ( A – B must satisfy x ( B by the definition of set difference.  Also, each x ( A ( B must satisfy x ( B, by the definition of set intersection.  Thus, it is impossible to have x ( (A – B) ( (A ( B), meaning that the set is empty.

If we swap A and B in the formula A = (A – B) ( (A ( B), we find the following:

B = (B – A) ( (B ( A)

Applying the Sum Principle  we have the following:


 |A| = |A – B| + |A ( B|                               

and 
 |B| = |B – A| + |B ( A|                                

Now, we can find another disjoint union. We have already shown that (B ( A) is disjoint from the other two sets, and A – B and B – A can not share any elements at all since the first only has elements from A and the second only elements from B.

A ( B = (A – B) ( (B – A) ( (B ( A)            

which implies the following equation using the Sum Principle:

|A ( B| = |A – B| + |B – A| + |B ( A|              

Adding the equations from the top of the page we get:

|A| + |B| = |A – B| + |A ( B| + |B – A| + |B ( A|, so

|A| + |B| - |B ( A| = |A – B| + |A ( B| + |B – A| 

But, we know that

|A ( B| = |A – B| + |B – A| + |B ( A|

Thus, we have:

|A ( B| = |A| + |B| – |A ( B|.

Inclusion-Exclusion Principle for 3 Sets

Let A, B, and C denote three finite sets.  Then, we have:

|A ( B ( C| = |A| + |B| + |C| 

                        – |A ( B| – |B ( C| – |A ( C| 

                        + |A ( B ( C|.

Applying the previous theorem to sets A and (B ( C), we have


 |A ( B ( C| = |A ( (B ( C)| 



             = |A | + |B ( C| – |A ( (B ( C)|

Note that |B ( C| = |B| + |C| – |B ( C|                    

And note that |A ( (B ( C)| = | (A ( B) ( (A ( C) |, by the distributive law, so 

       |A ( (B ( C)| = | (A ( B) ( (A ( C) |


             = |A ( B| + |A ( C|  – |(A ( B) ( (A ( C)|


             = |A ( B| + |A ( C |  – |A ( B ( C|

Thus, substituting into the above equation we find:

|A ( B ( C| = |A | + |B ( C| – |A ( (B ( C)|



   = |A | + |B ( C| – (|A ( B| + |A ( C |  – |A ( B (C|)



   = |A | + |B ( C| – |A ( B| – |A ( C |  + |A ( B ( C|



   = |A| + |B| + |C| – |B ( C| – |A ( B| – |A ( C |  + 
                         |A ( B ( C|

Variations of counting combinations

Combining our result for counting combinations, some logic, the sum rule and the product rule, we can handle more sophisticated counting questions. Take the following, for example:

Let S= {1, 2, 3, ..., 30}.

How many subsets A of S contain 5 elements, with 5 being the least?

In essence, we know that 5 must be one of our elements, so we are really free to choose only 4 elements. But, we have a restriction here too. We must choose those four elements from the set {6, 7, ..., 30}. The number of ways to do this are 25C4.

How many subsets A of S contain 5 elements with the smallest element not being equal to 5?

We know the total number of subsets of S that are of size 5 is are 30C5. And we also know that of these, exactly are 25C4 have 5 as the smallest element. Thus, our answer should be the difference of these two, or 30C5 - 25C4.

How many subsets of S contain 5 elements with the smallest element less than 5?

This is actually quite a difficult question. The problem is that we don’t know how many of the elements are less than 5. In fact we have 4 (disjoint) possibilities:

1 element is less than 5: Thus we choose 1 element from the set {1,2,3,4} and 4 elements from the set {5,6,...,30}. Since these choices are independent, we can invoke the product rule to find the total number of ways to do this as 4C1*26C4.

2 elements are less than 5: Thus we choose 2 elements from the set {1,2,3,4} and 3 elements from the set {5,6,...,30}. Since these choices are independent, we can invoke the product rule to find the total number of ways to do this as 4C2*26C3.

3 elements are less than 5: Thus we choose 3 elements from the set {1,2,3,4} and 2 elements from the set {5,6,...,30}. Since these choices are independent, we can invoke the product rule to find the total number of ways to do this as 4C3*26C2.

4 elements are less than 5: Thus we choose 4 elements from the set {1,2,3,4} and 1 element from the set {5,6,...,30}. Since these choices are independent, we can invoke the product rule to find the total number of ways to do this as 4C4*26C1.

Now, using the sum rule, we can add these values up to get the following answer:

4C1*26C4 + 4C2*26C3 + 4C3*26C2 + 4C4*26C1 = 76726

In most combinatorics questions, there are multiple approaches. Here is another approach to the given problem:

We have four cases:

Case 1: 1 is the smallest number. Then we must pick 4 numbers from the remaining 29. This can be done in 29C4 ways.

Case 2: 2 is the smallest number. Then we must pick 4 numbers from the remaining 28. This can be done in 28C4 ways.

Case 3: 3 is the smallest number. Then we must pick 4 numbers from the remaining 27. This can be done in 27C4 ways.

Case 4: 4 is the smallest number. Then we must pick 4 numbers from the remaining 26. This can be done in 26C4 ways.

So our answer is also

29C4 + 28C4 + 27C4 + 26C4 = 76726.

Some of your homework questions will require you to combine the different counting techniques we have looked at, like these past couple questions have illustrated.

