Last lecture we ended with the problem of showing the following:

(((((A ( B) ( C) ( (B) = (B ( C)

One way is to use a membership table:
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Next, we could use Set Laws to show the two expressions to be equivalent:

    (((((A ( B) ( C) ( (B) 

= (((( A ( B) ( C) ( ((B  
(De Morgan’s)

= (( A ( B) ( C) ( B


(Double Negation)

= (( A ( B) ( B) ( C


(Associate & Commutative)

= B ( C




(Absorption)

For this particular problem, we could show that each set is a subset of the other. However, for this particular problem, that is rather tedious. I will give other examples of this nature to illustrate this proof method later in the lecture.

Example of a Set Proof

A ( B iff A ( (B = (
First, we will show that A ( B ( A ( (B = (.

If A ( B, then we have for each x (A, x (B.

Consider the set A ( (B. By definition, each element of this set must be an element of A. Let x(A, then by assumption, we have x (B. But, this also means that x((B. 

Thus, we have shown for each x (A, that x((B, meaning that there exists no x such that x(A ( x ( (B. Thus, the set A ( (B must be empty.

Now, we must show that A ( (B = ( ( A ( B.

We can prove the contrapositive of this statement:

 ( (A ( B) ( ( (A ( (B = () (Notice that the two “outside”







(s are the logic ones, not the







set bar.)

A ( B ( A ( (B ( (
if A ( B, then there exists an element x such that 

x(A ( x ( (B. 

By definition, this element MUST BE in the set A ( (B.

Hence, the set A ( (B is not empty.

Couple More Examples

Prove that (B ( C) ( (B – A) ( (C – A).

To prove an if-then statement, we assume the premise is true. With that given information, we must show that the conclusion always follows.

Since B ( C, we know for an arbitrary x(B, that x(C.

Now, we must prove (B – A) ( (C – A) holds under this assumption.

To prove (B – A) ( (C – A), we must prove for an arbitrary x, that if x(B – A, then  x(C – A.

To prove this statement, we assume that for an arbitrary x, x(B – A. By definition, this means that x(B ( x((A. Since we know that B ( C, we can deduce that x(C. So now we know that x(C( x((A, thus x(C – A, proving the assertion.

---------------------------------------------------------------------------------

Prove A ( B ( (A ( B) ( (A ( B)

if A ( B then we know 

(x | (x(A ( x(B) ( (x(B ( x(A), since the definition of equality of sets is 

(x [(x(A ( x(B) ( (x(B ( x(A)].

Without loss of generality, let x(A ( x(B.

If this is the case, then we know that x((A ( B), since x(A.

However, we also know that x((A ( B), since x(B.

Since there exists an element x contained in the set (A ( B), but that is NOT contained in the set (A ( B), we can conclude that the two sets can not be equal, since the definition for equality says for each element contained in one set must be contained in the other.

Some Counting...

First of all, probably the easiest rule is the summation rule. If you have two sets A and B with A ( B = (, then we have:

|A ( B| = |A| + |B|

So, the size of the union of two disjoint sets is the sum of the size of the two sets. (For example, given a set of 8 girls and 9 boys, there is a total of 17 kids in the union of the two sets.)

Before I get to the next rule, let me define a Cartesian product.

This is defined as follows:

A X B = { (a,b) | a ( A ( b ( B }

This is a set of ordered pairs, hence the order here matters.

The next rule is the product rule. If we want the size of the Cartesian Product of two sets, we can get it as follows:

|A X B| = |A|x|B|

This can generalize into answering questions such as how many possible binary strings of length 7 are there?
Combinations

Now, using the tools that we have we can figure out the answer to the particular problem: How many subsets of a particular size(say, k) does a set of size n have. (0 ( k ( n)

Luckily, there is a special mathematical symbol to denote the number of ways of choosing k distinct objects out of n distinct objects. This is called a combination or a binomial coefficient. In particular, you can do this in exactly nCk ways. Now, the next question is, what number does that equal? Here it is:

nCk = n!/(k!(n-k)!), where n! = 1x2x3x4...xn

This certainly does not look like an obvious result. And it is not. So, let me go ahead and prove it to you.

Consider you have a set of numbers {1,2,3,...,n} and you want to find the number of subsets of size k, where 0 ( k ( n.

In essence, you have n choices for the first number. Then, for the second number, you have n-1 choices. For the third, n-2, etc. All the way down to the kth number picked for which you have n-k+1 choices. Thus, it seems like the number of subsets should be

nx(n-1)x(n-2)x...x(n-k+1) = n!/(n-k)! 

if you do the algebra...

But, we’ve done something wrong. In particular, we have counted each subset multiple times. In fact, consider the subset {1,2,3,...,k}. We counted this once for picking the numbers in the order 1,2,3,...,k then another time for picking them in the order 2,1,3,4,5,...,k, etc. In fact, we counted it the number of different ways we can order the numbers in the set {1,2,3,...,k}.

So, consider this problem: If you are given k objects, how many different ways can you order them?

Well, for the first object, it can be any of k different objects.

For the second object, it can be any of k-1 different objects.

.

.

For the k-1 object, it can be any of 2 different objects.

For the kth object, it has to be that last object left.

Thus, this can be done in kx(k-1)x(k-2)x...x2x1 = k! ways.

So, in essence, we counted every possible subset k! times.

So, our final answer for the number of subsets of size k of a set of size n equal to (n!/(n-k)!)/k! which IS equal to nCk.

Now, we might want to count the total number of subsets that a set of size n can have. Actually, this is an easier problem than the first one. Consider creating a subset of the set {1,2,3,...,n}. 

First you would have to decide whether 1 was in the subset or not. That is two possible choices.

Next you would have to decide whether 2 was in the subset or not. That is also two possible choices.

In essence, we have 2 possible choices for each element in the set, as to whether they belong in the subset or not.

Thus, using the product rule, we have

2x2x2...x2 = 2n total subsets of a set of size n.

One more way of counting this is to sum up the number of subsets of size 0, 1, 2, ... and n. This gives the summation:

( nCk for k=0 to k=n.

Don’t worry about this if you’ve never seen summation notation. But, for those of you familiar with this, and the binomial theorem for expanding out binomials:

(x+y)n = ( (nCk)xn-kyk

We can plug in x=1 and y=1 yielding:

2n = (1+1)n = ( (nCk)1n-k1k =  ( (nCk)

Thus, we have the total number of subsets of a set of size n is 2n.

More counting...

Finally, there is one more common principle that will help you count, the subtraction principle. Here it is:

Given two sets A and B such that B ( A, we have the following:

|A - B| = |A| - |A ( B| = |A| - |B|

In essence, this says that if you want to count all the objects in a set except for a few of those objects, you can do so by subtracting those few from the total. For example, if you drop a deck of cards except for the 3 cards in your hand, assuming the deck and no jokers or other cards, you could be fairly certain there were 49 cards on the floor without counting each one of them.

Power Sets

A power set of a set A is defined as the set of all possible subsets of that set. So, for example, if a set A = {2,3,5}, then the power set of A, which we will denote as power(A) (in the book they use some fancy letter in italics) will be the following set:

power(A) = { (, {2}, {3}, {5}, {2,3}, {2,5}, {3,5}, {2,3,5} }

Thus it is a set of sets. Now, using the result we derived earlier, we find that

|power(A)| = 2|A|.

Here is an example of an identity and proof dealing with power sets:

Prove that Power(A) ( Power(B) ( Power(A ( B).

Let the set A’ be an arbitrarily chosen subset of Power(A) and let the set B’ be an arbitrarily chosen subset of Power(B). We must now show that 

A’ ( Power(A ( B) and that B’ ( Power(A ( B)

Any arbitrarily chosen subset of Power(A) only contains elements from the set A. But we know that Power(A ( B) contains all subsets comprised of elements from the set A ( B. In particular, it contains every subset comprised of elements from the set A. But, A’ must be one of these subsets. Hence, we have shown that A’ ( Power(A ( B). The proof that B’ ( Power(A ( B) is analogous to the proof above.

From the intuition used in this problem, we can essentially claim a more general result:

If A ( B, then we have Power(A) ( Power(B).

