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Abstract

We present in this paper a fully automatic content-based

approach to organizing and indexing video data. Our

methodology involves three steps:

� Step 1: We segment each video into shots using a

Camera-Tracking technique. This process also extracts

the feature vector for each shot, which consists of two

statistical variances V ar
BA and V ar

OA. These values

capture how much things are changing in the background

and foreground areas of the video shot.

� Step 2: For each video, We apply a fully automatic

method to build a browsing hierarchy using the shots

identi�ed in Step 1.

� Step 3: Using the V ar
BA and V ar

OA values obtained

in Step 1, we build an index table to support a

variance-based video similarity model. That is, video

scenes/shots are retrieved based on given values of

V ar
BA and V ar

OA.

The above three inter-related techniques o�er an integrated

framework for modeling, browsing, and searching large video

databases. Our experimental results indicate that they have

many advantages over existing methods.

KEYWORDS: Shot detection, Video indexing, Video

browsing, Video similarity model, Video retrieval.

1 Introduction

With the rapid advances in data compression and

networking technology, video has become an inseparable

part of many important applications such as digital

libraries, distance learning, public information systems,

electronic commerce, movies on demand, just to name

a few. The proliferation of video data has led to a

� This research is partially supported by the National Science

Foundation grant ANI-9714591.

signi�cant body of research on techniques for video

database management systems (VDBMSs) [1]. In

general, organizing and managing video data is much

more complex than managing text and numbers due to

the enormous size of video �les and their semantically

rich contents. In particular, content-based browsing

and content-based indexing techniques are essential. It

should be possible for users to browse video materials in

a non-sequential manner and to retrieve relevant video

data e�ciently based on their contents.

In a conventional (i.e., relational) database manage-

ment system, the tuple is the basic structural element

for retrieval, as well as for data entry. This is not the

case for VDBMSs. For most video applications, video

clips are convenient units for data entry. However, since

an entire video stream is too coarse as a level of ab-

straction, it is generally more bene�cial to store video

as a sequence of shots to facilitate information retrieval.

This requirement calls for techniques to segment videos

into shots which are de�ned as a collection of frames

recorded from a single camera operation. This process

is referred to as shot boundary detection (SBD).

Existing SBD techniques require many input param-

eters which are hard to determine but have a signi�-

cant in
uence on the quality of the result. A recent

study [2] found that techniques using color histograms

[3, 4, 5, 6] need at least three threshold values, and their

accuracy varies from 20% to 80% depending on those

values. At least six di�erent threshold values are neces-

sary for another technique using edge change ratio [7].

Again, these values must be chosen properly to get sat-

isfactory results [2]. In general, picking the right values

for these thresholds is a di�cult task because they vary

greatly from video to video. These observations indi-

cate that today's automatic SBD techniques need to be

more reliable before they can be used in practice. From

the perspective of an end user, a DBMS is only as good

as the data it manages. A bad video shot, returned as

a query result, would contain incomplete and/or extra

irrelevant information. This is a problem facing today's

VDBMSs. To address this issue, we propose to detect

shot boundaries in a more direct way by tracking the
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camera motion through the background areas in the

video. We will discuss this idea in more detail later.

A major role of a DBMS is to allow the user to

deal with data in abstract terms, rather than the

form in which a computer stores data. Although shot

serves well as the basic unit for video abstraction, it

has been recognized in many applications that scene

is sometimes a better unit to convey the semantic

meaning of the video to the viewers. To support

this fact, several techniques have been proposed to

merge semantically related and temporally adjacent

shots into a scene [8, 9, 10, 11]. Similarly, it is

also highly desirable to have a complete hierarchy of

video content to allow the user to browse and retrieve

video information at various semantic levels. Such a

multi-layer abstraction makes it more convenient to

reference video information and easier to comprehend

its content. It also simpli�es video indexing and storage

organization. One such technique was presented in [12].

This scheme abstracts the video stream structure in a

compound unit, sequence, scene, shot hierarchy. The

authors de�ne a scene as a set of shots that are related

in time and space. Scenes that together give meaning

are grouped into a sequence. Related sequences are

assembled into a compound unit of arbitrary level.

Other multilevel structures were considered in [13,

14, 15, 16, 17]. All these studies, however, focus

on modeling issues. They attempt to design the

best hierarchical structure for video representation.

However, they do not provide techniques to automate

the construction of these structures.

Addressing the above limitation is essential to han-

dling large video databases. One attempt was presented

in [18]. This scheme divides a video stream into multiple

segments, each containing an equal number of consec-

utive shots. Each segment is then further divided into

sub-segments. This process is repeated several times

to construct a hierarchy of video content. A drawback

of this approach is that only time is considered; and

no visual content is used in constructing the browsing

hierarchy. In contrast, video content was considered

in [19, 20, 21]. These methods �rst construct a pri-

ori model of a particular application or domain. Such

a model speci�es the scene boundary characteristics,

based on which the video stream can be abstracted

into a structured representation. The theoretical frame-

work of this approach is proposed in [19], and has been

successfully implemented for applications such as news

videos [20] and TV soccer programs [21]. A disadvan-

tage of these techniques is that they rely on explicit

models. In a sense, they are application models, rather

than database models. Two techniques, that do not em-

ploy models, are presented in [11, 22]. These schemes,

however, focus on low-level scene construction. For

instance, given that shots, groups and scenes are the

structural units of a video, a 4-level video-scene-group-

shot hierarchy is used for all videos in [22].

In this paper, we do not �x the height of our browsing

hierarchy, called scene tree, in order to support a variety

of videos. The shape and size of a scene tree are

determined only by the semantic complexity of the

video. Our scheme is based on the content of the video.

Our experiments indicate that the proposed method can

produce very high quality browsing structures.

To make browsing more e�cient, we also introduce

in this paper a variance-based video similarity model.

Using this model, we build a content-based indexing

mechanism to serve as an assistant to advise users

on where in the appropriate scene trees to start the

browsing. In this environment, each video shot is

characterized as follows. We compute the average colors

of the foreground and background areas of the frames in

the shot, and calculate their statistical variance values.

These values capture how much things are changing

in the video shot. Such information can be used to

build an index. To search for video data, a user can

write a query to describe the impression of the degree of

changes in the primary video segment. Our experiments

indicate that this simple query model is very e�ective

in supporting browsing environment. We will discuss

this technique in more detail.

In summary, we present in this paper a fully auto-

matic content-based technique for organizing and in-

dexing video data. Our contributions are as follows:

1. We address the reliability problem facing today's

video data segmentation techniques by introducing

a camera-tracking method.

2. We fully automate the construction of browsing

hierarchies. Our method is general purpose, and

is suitable for all videos.

3. We provide a content-based indexing mechanism to

make browsing more e�cient.

The above three techniques are inter-related. They o�er

an integrated framework for modeling, browsing, and

searching large video databases.

The remainder of this paper is organized as follows.

We present our SBD technique [23], and discuss

the extensions required to support our browsing and

indexing mechanisms in Section 2. The procedure for

building scene trees is described in details in Section

3. In Section 4, we discuss the content-based indexing

technique for video browsing. The experimental results

are examined in Section 5. Finally, we give our

concluding remarks in Section 6.
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2 A Camera Tracking Technique for

SBD and Its Extension

To make the paper self-contained, we �rst describe our

SBD technique [23]. We then extend it to include

new features required by our browsing and indexing

techniques.

2.1 A Camera Tracking Approach to Shot

Boundary Detection

w

h
r

w w

c

: FBA

(a)

: Camera Motion

(b)

: FOA
b

Ii

Figure 1: Background Area

Since a shot is made from one camera operation,

tracking the camera motion is the most direct way

to identify shot boundaries. This can be achieved by

tracking the background areas in the video frames as

follows. We de�ne a �xed background area (FBA) for

all frames as illustrated by the lightly shaded areas in

Figure 1(a). The rationale for the u shape of the FBA

is as follows:

� The bottom part of a frame is usually part of some

object(s).

� The top bar cover any horizontal camera motion.

� The two columns cover any vertical camera motion.

� The combination of the top bar and the left column

can track any camera motion in one diagonal

direction. The other diagonal direction is covered by

the combination of the top bar and the right column.

These two properties are illustrated in Figure 1(b).

The above properties suggest that we can detect a

shot boundary by determining if two consecutive frames

share any part of their FBAs. This requires comparing

each part of one FBA against every part of the other

FBA. To make this comparison more e�cient, we

rotate the two vertical columns of each u shape FBA

outward to form a transformed background area (TBA)

as illustrated in Figure 2. From each TBA, which

is a two-dimensional array of pixels, we compute its

signature and sign by applying a modi�ed version of the

image reduction technique, called Gaussian Pyramid

[24]. The idea of 'Gaussian Pyramid' was originally

introduced for reducing an image to a smaller size.

We use this technique to reduce a two-dimensional

TBA into a single line of pixels (called signature) and

eventually a single pixel (called sign). The complexity

of this procedure is O(2log(m+1)
), which is actually

O(m), where m is the number of pixels involved. The

interested reader is referred to [23] for the details. We

illustrate this procedure in Figure 3. It shows a 13� 5

TBA being reduced in multiple steps. First, the �ve

pixels in each column are reduced to one pixel to give

one line of 13 pixels, which is used as the signature.

This signature is further reduced to the sign denoted

by signBA
i

. The superscript and subscript indicate that

this is the sign of the background area of some frame i.

We note that this rather small TBA is only illustrative.

We will discuss how to determine the TBA shortly.

TBAiw

L

Ii

Figure 2: Shape Transformation of FBA

Signature

Sample TBA (13 x 5)

Sign

TBAi

Figure 3: Computation of Signature and Sign
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We use the signs and signatures to detect shot

boundaries as illustrated in Figure 4. The �rst

two stages are quick-and-dirty tests used to quickly

eliminate the easy cases. Only when these two tests

fail, we need to track the background in Stage 3 by

shifting the two signatures, of the two frames under

test, toward each other one pixel at a time. For each

shift, we compare the overlapping pixels to determine

the longest run of matching pixels. A running maximum

is maintained for these matching scores. In the end, this

maximum value indicates how much the two images

share the common background. If the score is larger

than a certain threshold, the two video frames are

determined to be in the same shot.

Sign
Matching

Signi Signi+1

Pixel
Matching

Dp >= 10 %

Background
Tracking

Signature i

Signature i+1

Ds < 10 %

s >= w

Cut Not a cut

s < w

Stage (1)

Stage (2)

Stage (3)
Ds >= 10 %

Dp < 10 %

Figure 4: Shot Boundary Detection Procedure

2.2 Extension to the Camera Tracking

Technique

We de�ne the �xed object area (FOA) as the foreground

area of a video frame, where most primary objects

appear. This area is illustrated in Figure 1 as the

darkly shaded region of a video frame. To facilitate our

indexing scheme, we need to reduce the FOA of each

frame i to one pixel. That is, we want to compute its

sign, signOA
i

, where the superscript indicates that this

sign is for an FOA. This parameter can be obtained

using the Gaussian Pyramid as in signBA
i

. This

computation requires the dimensions of the FOA. Given

r and c as the dimensions of the video frame (see

Figure 1), we discuss the procedure for determining the

dimensions of TBA and FOA as follows.

Let the dimensions of FOA be h and b, and those

of TBA be w and L as illustrated in Figure 1. We

�rst estimate these parameters as h0, b0, w0
, and L0

,

respectively. We choose w0
to be 10% of the width of the

video frame, i.e., w0
=
�
c

10

�
. This value was determined

empirically using our video clips. They show that this

value of w0
results in TBAs and FOAs which cover

the background and foreground areas, respectively, very

well. Using these w0
, we can compute the other

estimates as follows: b0 = c � 2 � w0
, h0 = r � w0

, and

L0
= c+ 2 � h0.
In order to apply the Gaussian Pyramid technique,

the dimensions of TBA and FOA must be in the size

set f1, 5, 13, 29, 61, 125, ...g. This is due to the fact

that this technique reduces �ve pixels to one pixel, 13

pixels to �ve, 29 pixels to 13, and so on. In general, the

jth element (sj) in this size set is computed as follows:

sj = 1 +

jX
i=2

2
i for j = 1; 2; 3; ::: (1)

Using this size set, the proper value for w is the value

in the size set, which is nearest to w0
. This nearest

number can be determined as follows. We �rst compute

j = 2 +

j
log2(

w
0+3
6

)

k
. Substituting this value of j into

Equation (1) gives us the desired value for w. Similarly,

we can compute L; h, and b. This approximation

scheme is illustrated in Table 1. As an example, let

c = 160. We have w0
=
�
160
10

�
= 16. The corresponding

j value is 3. Substituting j into Equation (1) gives us

13 as the proper value for w.

h', b', w' or L' Nearest value

1, 2 1

9, 10, ..., 20

53, 4, ..., 8

21, 22, ..., 44

45, 46, ..., 92

13

29

61

... ...

h, b, w or L

1

5

13

29

61

...

Table 1: Approximate the dimensions using the nearest

value from the size set.

In this section, we have described the computation of

the two sign values signBA
i

and signOA
i

, and provided

the procedure to determine the video shots. In the

next two sections, we will discuss how these shots and

signs are used to build browsing hierarchies and index

structures for video databases.

3 Building Scene Trees for

Non-linear Browsing

Video data are often accessed in an exploring or brows-

ing mode. Browsing a video using VCR like functions

(i.e., fast-forward or fast-reverse) [25], however, is te-

dious and time consuming. A hierarchical abstraction
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allowing nonlinear browsing is desirable. Today's tech-

niques for automatic construction of such structures,

however, have many limitations. They rely on ex-

plicit models, focus only on the construction of low-level

scenes, or ignore the content of the video. We discuss

in this section our Scene Tree approach which addresses

all these drawbacks.

In order to automate the tree construction process,

we base our approach on the visual content of the

video instead of human perception. First, we obtain

the video shots using our camera-tracking SBD method

discussed in the last section. We then group adjacent

shots that are related (i.e., sharing similar backgrounds)

into a scene. Similarly, scenes with related shots are

considered related and can be assembled into a higher-

level scene of arbitrary level. We discuss the details

of this strategy and give an example in the following

subsections.

3.1 Scene Tree Construction Algorithm

Let A and B be two shots with jAj and jBj frames,
respectively. The algorithm to determine if they are

related is as follows.

1. Set i 1, j  1.

2. Compute the di�erence Ds of Sign
BA

i
of shot A and

SignBA
j

of shot B using the following equation. We

use the number 256 since in our RGB space red,

green and blue colors range from 0 to 255

Ds =

�
max: difference in SignBAs

256

�
� 100(%)

(2)

3. If Ds is less than 10%, then stop and return that

the two shots are related; otherwise, go to the next

step.

4. Set i i+ 1.

� If i > jAj, then stop and return that two shots are
not related; otherwise, set j  j + 1.

� If j > jBj, then set j  1.

5. Go to Step (2).

For convenience, We will refer to this algorithm as

RELATIONSHIP. It can be used in the following

procedure to construct a browsing hierarchy, called

scene tree, as follows.

1. A scene node SN0
i
in the lowest level (i.e., level 0) of

scene tree is created for each shot#i. The subscript

indicates the shot (or scene) from which the scene

node is derived; and the superscript denotes the level

of the scene node in the scene tree.

2. Set i 3.

3. Apply algorithmRELATIONSHIP to compare shot#i

with each of the shots shot#(i-2), � � �, shot#1 (in de-

scending order). This sequence of comparisons stops

when a related shot, say shot#j, is identi�ed. If no

related shot is found, we create a new empty node,

connect it as a parent node to SN0
i
, and proceed to

Step 5.

4. We consider SN0
i�1 and SN0

j
. Three scenarios can

happen:

� If SN0
i�1 and SN

0
j
do not currently have a parent

node, we connect all scene nodes, SN0
i
through

SN0
j
, to a new empty node as their parent node.

� If SN0
i�1 and SN0

j
share an ancestor node, we

connect SN0
i
to this ancestor node.

� If SN0
i�1 and SN0

j
do not currently share an

ancestor node, we connect SN0
i
to the current

oldest ancestor of SN0
i�1, and then connect the

current oldest ancestors of SN0
i�1 and SN0

j
to a

new empty node as their parent node.

5. If there are more shots, we set i  i + 1, and

go to step 3. Otherwise, we connect all the nodes

currently without a parent to a new empty node as

their parent.

6. For each scene node at the bottom of the scene

tree, we select from the corresponding shot the

most "repetitive" frame as its representative frame,

i.e., this frame shares the same sign with the most

number of frames in the shot. We then traverse all

the nodes in the scene tree, level by level, starting

from the bottom. For each empty node visited, we

identify the child node, say SNc

m
, which contains

shot#m which has the longest sequence of frames

with the same SignBA value. We rename this empty

node as SNc+1
m

, and assign the representative frame

of SN c

m
to SNc+1

m
.

We note that each scene node contains a representa-

tive frame or a pointer to that frame for future use such

as browsing or navigating. The criterion for selecting

a representative frame from a shot is to �nd the most

frequent image. If more than one such image is found,

we can choose the temporally earliest one. As an ex-

ample, let us assume that shot#5 has 20 frames and

the SignBA value of each frame is as shown in Table 2.

Since SignBA is actually a pixel, it has three numeri-

cal values for the three colors, red, green and blue. In

this case, we use frame 1 as the representative frame

for shot#5 because this frame corresponds to an im-

age with the longest sequence of frames with the same

SignBA values (i.e., 219, 152, 142). Although, the se-

quence corresponding to frames 15 to 20 also has the

same sequence length, frame 15 is not selected because
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it appears later in the shot. Instead of having only one

representative frame per scene, we can also use g(s)

most repetitive representative frames for scenes with s

shots to better convey their larger content, where g is

some function of s.

Frames
Sign

Red Green Blue

No. 1 219 152 142
No. 2 219 152 142
No. 3 219 152 142
No. 4 219 152 142
No. 5 219 152 142
No. 6 219 152 142
No. 7 226 164 172
No. 8 226 164 172
No. 9 213 149 134
No.10 213 149 134
No.11 213 149 134
No.12 213 149 134
No.13 200 137 123
No.14 200 137 123
No.15 228 160 149
No.16 228 160 149
No.17 228 160 149
No.18 228 160 149
No.19 228 160 149
No.20 228 160 149

Table 2: Frames in the shot#5

Now, let us evaluate the complexity of the two

algorithms above. The complexity of RELATIONSHIP

is O(jAj�jBj). The average computation cost, however,
is much less because the algorithm stops as soon as it

�nds the two related scenes. Furthermore, the similarity

computation is based on only one pixel (i.e., SignBA) of

each video frame making this algorithm very e�cient.

The cost of the tree construction algorithm can be

derived as follows. Step 3 can be done in O(f2 � n),

where f is the number of frames, and n is the number

of shots in a given video. This is because the algorithm

visits every shot; and whenever a shot is visited, it is

compared with every frame in the shots before it. In

Step 4 and Step 6, we need to traverse a tree. It can be

done in O(log(n)). Therefore, the whole algorithm can

be completed in O(f2 � n).

3.2 Example to explain Scene Tree

2 3 4 6 75 8 9 10shot  1

B A1 B1 A2 C1C D D1 D2A

Find Relation

B, B1 related

C, C1 related

A, A1, A2 related

D, D1,D2 related

(a)

(b)

Figure 5: A video clip with ten shots

The scene tree construction algorithm is best illus-

trated by an example. Let us consider a video clip with

ten scenes as shown in Figure 5. For convenience, we

label related shots with the same pre�x. For instance,

shot#1, shot#3 and shot#6 are related, and are labeled

as A;A1 and A2, respectively. An e�ective algorithm

should group these shots into a longer unit at a higher

level in the browsing hierarchy. Using this video clip,

we illustrate our tree construction algorithm in Figure 6.

The details are discussed below.

B A1 B1

A2C1

C

D

D1 D2

Shot A

SN1
0 SN2

0 SN3
0

EN1

B A1

SN1
0

EN1

B1B A1

EN2

CB1B A1

EN2

EN3

A2CB1B A1

EN2

EN3

A2CB1B A1

EN3

C1

EN4

DA2CB1B A1 C1

SNi
k : Scene Node

(a) (b) (c)

(d)(e)

(f)

(g)

SN2
0 SN3

0 SN4
0 SN1

0 SN2
0 SN3

0 SN4
0 SN5

0

SN1
0 SN2

0 SN3
0 SN4

0 SN5
0 SN6

0SN1
0 SN2

0 SN3
0 SN4

0 SN5
0 SN6

0 SN7
0

SN1
0 SN2

0 SN3
0 SN4

0 SN5
0 SN6

0 SN7
0 SN8

0

SN1
2

SN1
1 SN7

1

SN1
0 SN2

0 SN3
0 SN4

0 SN5
0 SN6

0 SN7
0 SN8

0 SN9
0 SN10

0

ENi : Empty Node

SN8
3

SN8
1

Shot A Shot A

Shot AShot A

Shot A

Shot A

EN1

EN1EN1

EN1 EN2

Figure 6: Scene Tree Building

� Figure 6(a): We �rst create three scene nodes

SN0
1 , SN

0
2 and SN

0
3 for shot#1, shot#2 and shot#3,

respectively. Applying algorithm RELATIONSHIP

to shot#3 and shot#1, we determine that the two

shots are related. Since they are related but neither

currently has a parent node, we connect them to

a new empty node called EN1. According to

our algorithm, we do not need to compare shot#2

and shot#3. However, shot#2 is connected to

EN1 because shot#2 is between two related nodes,

shot#3 and shot#1.

� Figure 6(b): Applying the algorithm RELATION-

SHIP to shot#4 and shot#2, we determine that they

are related. This allows us to skip the comparison

between shot#4 and shot#1. In this case, since SN0
2

and SN0
3 share the same ancestor (i.e., EN1), we

also connect shot#4 to EN1.

� Figure 6(c): Comparing shot#5 with shot#3,

shot#2, and shot#1 using RELATIONSHIP, we

determine that shot#5 is not related to these three
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shots. We, thus create SN0
5 for shot#5, and connect

it to a new empty node EN2.

� Figure 6(d): In this case, shot#6 is determined to

be related to shot#3. Since SN0
5 and SN0

3 currently

do not have the same ancestor, we �rst connect SN0
6

to EN2; and then connect EN1 and EN2 to a new

empty node EN3 as their parent node.

� Figure 6(e): In this case, shot#7 is determined to

be related to shot#5. Since SN0
7 and SN0

5 share the

same ancestor node EN2, we simply create SN0
7 for

shot#7 and connect this scene node to EN2.

� Figure 6(f): This case is similar to the case of

Figure 6(c). shot#8 is not related to any previous

shots. We create a new scene node SN0
8 for shot#8,

and connect this scene node to a new empty node

EN4.

� Figure 6(g): shot#9 and shot#10 are found to

be related to the immediate previous node, shot#8

and shot#9, respectively. In this case, according

to the algorithm, both shot#9 and shot#10 are

connected to EN4. Since shot#10 is the last shot

of the video clip, we create a root node, and connect

all nodes which do not currently have a parent

node to this root node. Now, we need to name

all the empty nodes. EN1 is named SN1
1 because

shot#1 contains an image which is "repeated" most

frequently among all the images in the �rst four

level-0 scenes. The superscript of "1" indicates that

SN1
1 is a scene node at level 1. As another example,

EN3 is named SN2
1 because shot#1 contains an

image which is "repeated" most frequently among

all the images in the �rst seven level-0 scenes. The

superscript of "2" indicates that SN2
1 is a scene

node at level 2. Similarly, we can determine the

names for the other scene nodes. We note that the

naming process is important because it determines

the proper representative frame for each scene node,

e.g., SN1
7 indicates that this scene node should use

the representative frame from shot#7.

In Section 5, we will show an example of a scene tree

built from a real video clip.

4 Cost-e�ective Indexing

In this section, we �rst discuss how SignBA and

SignOA, generated from our SBD technique, can be

used to characterize video data. We then present a

video similarity model based on these two parameters.

4.1 A Simple Feature Vector for Video Data

To illustrate the concept of our techniques, we use the

same example video clip in Figure 5, which has 10

shots. From this video clip, let us assume that our

SBD technique generates the values of SignBAs and

SignOAs for all the frames as shown in the 4th and

5th columns of Table 3, respectively. The 6th and

Shots

# 2 (B)

# 3 (A1)

# 4 (B1)

# 5 (C)

# 1 (A)

No. of start
frame

Sign BA

75

100

140

170

290

415

350

495

625

550

# 7 (C1)

# 8 (D)

# 9 (D1)

#10 (D2)

# 6 (A2)

No. of end
frame

Sign OA Var BA Var OA

1

76

101

141

171

351

291

416

551

496

Sign 1
BA, ..., Sign 75

BA Sign 1
OA, ..., Sign 75

OA VarA BA VarA OA

Sign 75
BA, ..., Sign 100

BA Sign 75
OA, ..., Sign 100

OA

Sign 101
BA, ..., Sign 140

BA Sign 101
OA, ..., Sign 140

OA

Sign 141
BA, ..., Sign 170

BA Sign 141
OA, ..., Sign 170

OA

Sign 171
BA, ..., Sign 290

BA Sign 171
OA, ..., Sign 290

OA

Sign 191
BA, ..., Sign 350

BA Sign 191
OA, ..., Sign 350

OA

Sign 351
BA, ..., Sign 415

BA Sign 351
OA, ..., Sign 415

OA

Sign 416
BA, ..., Sign 495

BA Sign 416
OA, ..., Sign 495

OA

Sign 496
BA, ..., Sign 550

BA Sign 496
BA, ..., Sign 550

BA

Sign 551
BA, ..., Sign 625

BA Sign 551
OA, ..., Sign 625

OA

VarB BA VarB OA

VarA1 
BA VarA1 

OA

VarB1 
BA VarB1 

OA

VarC BA VarC OA

VarA2 
BA VarA2 

OA

VarC1 
BA VarC1 

OA

VarD BA VarD OA

VarD1 
BA VarD1 

OA

VarD2 
BA VarD2 

OA

Table 3: Results from Shot Boundary detection

7th columns of Table 3, which are called V arBA and

V arOA, respectively, are computed using the following

equations:

V arBA
i

=

P
l

j=k (Sign
BA

j
� SignBA

i
)
2

l � k
(3)

where k and l are the �rst and last frames of the ith

shot, respectively. SignBA
i

is the mean value for all the

signs, and is computed as follows:

SignBA
i

=

P
l

j=k Sign
BA

j

l � k + 1
(4)

Similarly, we can compute V arOA
i

as follows:

V arOA
i

=

P
l

j=k (Sign
OA

j
� SignOA

i
)
2

l � k
(5)

SignOA
i

=

P
l

j=k Sign
OA

j

l � k + 1
(6)

We note that V arBA and V arOA are the statistical

variances of SignBAs and SignOAs, respectively, within

a shot. These variance values measure the degree of

changes in the content of the background or object area

of a shot. They have the following properties:

� If V arBA is zero, it obviously means that there

is no change in SignBAs. In other words, the

background is �xed in this shot.

� If V arOA is zero, it means that there is no change

in SignOAs. In other words, there is no change in

the object area.

� If either value is not zero, there are changes in
the background or object area. A larger variance

indicates a higher degree of changes in the respective

area.
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Thus, V arBA and V arOA capture the spatio-temporal

semantics of the video shot. We can use them to

characterize a video shot, much like average color, color

distribution, etc. are used to characterize images.

Based on the above discussions, we may be asked if

just two values, V arBA and V arOA, are enough to cap-

ture the various contents of diverse kinds of videos. To

answer this concern, we note that videos in a digital

library are typically classi�ed by their genre and form.

133 genres and 35 forms are listed in [26]. These genres

include 'adaptation', 'adventure', 'biographical', 'com-

edy', 'historical', 'medical', 'musical', 'romance', 'west-

ern', etc. Some examples of the 35 forms are 'anima-

tion', 'feature', 'television mini-series', and 'television

series'. To classify a video, all appropriate genres and

forms are selected from this list. For examples, the

movie 'Brave Heart' is classi�ed as 'adventure and bi-

ographical feature'; and 'Dr. Zhivago' is classi�ed as

'adaptation, historical, and romance feature'. In total,

there are at least 4,655 (133� 35) possible categories of
videos. If we assume that video retrieval is performed

within one of these 4,655 classes, our indexing scheme

using V arBA and V arOA should be enough to charac-

terize contents of a shot. We will show experimental

results in the next section to substantiate this claim.

Unlike methods which extract keywords or key-

frame(s) from videos, our method extracts (V arBA and

V arOA) for indexing and retrieval. The advantage of

this approach is that it can be fully automated. Fur-

thermore, it is not reliance on any domain knowledge.

4.2 A Video Similarity Model

To facilitate video retrieval, we build an index table

as shown in Table 4. It shows the index information

relevant to two video clips, 'Simon Birch' and 'Wag the

Dog.' For convenience, we denote the last column as

Dv
. That is Dv

=

p
V arBA �

p
V arOA.

A

B

C

: Shot No.

: Start Frame No.

: End Frame No.

D

E

F

:      var BA

    1          1         19      20.49     18.05      2.45
    2        20         50      24.03     11.59    12.44
    3        51         59      30.11     16.07    14.04
    4        60         98      22.90     25.73     -2.82
    5        99       116      16.59     21.78     -5.19
    6      117       153      34.23     17.81    16.42
    7      154       172      18.67     19.37     -0.70
    8      173       199      25.59     38.01   -12.41
    9      200       205      13.10     13.97     -0.88
  10      206       237        8.88     13.31     -4.43

A B C D E F

     1           1          8        4.40       0.89      3.52
     2           9        14        2.65     21.73   -19.09
     3         15        22        5.30       6.54     -1.24
     4         23        33      11.42       5.84      5.58
     5         34        73        7.57     20.89   -13.32
     6         74        89      11.24       8.31      2.93
     7         90        96        2.81     35.07   -32.26
     8         97       103     11.24       7.54      3.69
     9       104       116       1.88     17.23   -15.35
    10      117       118       8.01       7.16      0.84

A B C D E F

(a)  Simon Birch (b)  Wag the Dog

.

.

.

.

.

.

:      var OA

:      var BA    -       var OA

Table 4: Index Information for the two Clips

To search for relevant shots, the user expresses the

impression of how much things are changing in the

background and object areas by specifying the V arBA
q

and V arOA
q

values, respectively. In response, the

system computes Dv

q
=

q
V arBA

q
�
q
V arOA

q
, and

return the ID of any shot i that satis�es the following

conditions:

(Dv

q
� �) � Dv

i
� (Dv

q
+ �) (7)

(

q
V arBA

q
� �) �

q
V arBA

i
� (

q
V arBA

q
+ �) (8)

Since the impression expressed in a query is very

approximate, � and � are used in the similarity

computation to allow some degree of tolerance in

matching video data. In our system, we set � = � =

1:0. We note that another common way to handle in-

exact queries is to do matching on quantized data.

In general, the answer to a query does not have to be

shots. Instead, the system can return the largest scenes

that share the same representative frame with one of

the matching shots. Using this information, the user

can browse the appropriate scene trees, starting from

the suggested scene nodes, to search for more speci�c

scenes in the lower levels of the hierarchies. In a sense,

this indexing mechanism makes browsing more e�cient.

5 Experimental Results

Our experiments were designed to assess the following

performance issues:

� Our camera tracking technique is e�ective for SBD.

� The algorithm, presented in Section 3, builds reli-

able scene trees.

� The variance values V arBA and V arOA make a good

feature vector for video data.

We discuss our performance results in the following

subsections.

5.1 Performance of Shot Boundary

Detection Technique

Two parameters 'recall' and 'precision' are commonly

used to evaluate the e�ectiveness of IR (Information

Retrieval) techniques [27]. We also use these metrics in

our study as follows:

� Recall is the ratio of the number of shot changes

detected correctly over the actual number of shot

changes in a given video clip.

� Precision is the ratio of the number of shot changes

detected correctly over the total number of shot

changes detected (correctly or incorrectly).

In a previous study [23], we have demonstrated

that our Camera Tracking technique is signi�cantly

more accurate then traditional methods based on color

histograms and edge change ratios. In the current

study, we re-evaluate our technique using many more

video clips. Our video clips were originally digitized

in AVI format at 30 frames/second. Their resolution

8



Type

News

TV Commercials

Name
Duration
(min:sec)

Shot
Changes

10 : 24

11 : 38

10 : 22

  9 : 47

12 : 27

  95

106

116

156

Scooby Dog Show (Cartoon)

Friends (Sitcom)

Movies

Chicago Hope (Drama)

Sports
Events

Star Trek(Deep Space Nine)
TV

Programs

Silk Stalkings (Drama)

Documentaries

Music Videos

All My Children (Soap Opera)

Kobe Bryant

  5 : 44

  3 : 53

111

  50

  53

Total 278 : 44 3629

Flinstone (Cartoon)

Jerry Springer (Talk Show)

National (NBC)

Local (ABC)

Brave Heart

ATF

Simon Birch

Tennis (1999 U.S. Open)

Mountain Bike Race

Football

Today's Vietnam

For all mankind

Alabama Song

  6 : 09   48

  4 : 58 107

  4 : 24   65

10 : 29   93

16 : 50 127

10 : 03 246

11 : 52 224

11 : 08 164

14 : 20 114

15 : 12 143

21 : 26 163

31 : 25 967

14 : 45 202

30 : 27 176

Wag the dog 11 : 01 103

Recall
(Hr)

Precisi-
on (Hp)

0.97

0.87

0.88

0.96

0.78

0.89

0.89

0.90

0.87

0.85

0.75

0.75

0.84

0.81

0.81

0.84

0.840.89

0.77 0.82

0.89 0.84

0.86 0.78

0.90 0.81

0.90 0.81

0.94 0.90

0.95 0.83

0.95 0.93

0.94 0.91

0.95 0.93

0.91 0.90

0.96 0.95

0.94 0.88

0.98 0.81

Table 5: Test Video Clips and Detection Results for

Shot Changes

is 160 � 120 pixels. To reduce computation time, we

made our test video clips by extracting frames from

these originals at the rate of 3 frames/second. To

design our test video set, we studied the videos used

in [28, 7, 9, 10, 29, 30, 2]. From theirs, we created

our set of 22 video clips. They represent six di�erent

categories as shown in Table 5. In total, this test set

lasts about 4 hours and 30 minutes. It is more complete

than any other test sets used in [28, 7, 9, 10, 29, 30, 2].

The details of our test video set and shot boundary

detection results are given in Table 5. We observe that

the recalls and the precisions are consistent with those

obtained in our previous study [23].

5.2 E�ectiveness of Scene Tree

In this study, we run the algorithms in Section 3 to

build the scene tree for various videos. To assess the

e�ectiveness of these algorithms, we inspected each

video and evaluated the structure of the corresponding

tree and its representative frames. Since it is di�cult

to quantify the quality of these scene trees, we show

one representative tree in Figure 7. This scene tree was

built from a one-minute segment of our test video clip

"Friends." The story is as follows. Two women and one

man are having a conversation in a restaurant, and two

men come and join them. If we travel the scene tree

from level 3 to level 1, and therefore browsing the video

non-linearly, we can get the above story. We note that

the representative frames serve well as a summary of

important events in the underlying video.

5.3 E�ectiveness of V arBA and V arQA

To demonstrate that V arBA and V arQA indeed capture

the semantics of video data, we select arbitrary shots

from our data set. For each of these shots, we compute

its V arBA and V arQA, and use them to retrieve similar

shots in the data set. If these two parameters are indeed

good feature values, the shots returned should resemble

some characteristics of the shot used to do the retrieval.

We show some of the experimental results in Figure 8,

Figure 9 and Figure 10. In each of these �gures, the

upper, leftmost picture is the representative frame of

the video short selected arbitrarily for the retrieval

experiment. The remaining pictures are representative

frames of the matching shots. The label under each

picture indicates the shot and the video clip the

representative frame belongs to. For instance, #12W

represents the representative frame of the 12th shot of

'Wag the dog'. Due to space limitation, we show only

the three most similar shots in each case. They are

discussed below.

� Figure 8 The shot (#12W) is from 'Wag the dog'.

This shot is a close-up of a person who is talking.

TheDv

12 and V ar
BA

12 for this shot are 5.86 and 17.37,

respectively, as seen in Table 4(b). The shot #102

from 'Wag the dog', and the shots #64 and #154

from 'Simon Birch' were retrieved and presented in

Figure 8. The results are quite impressive in that all

four shots show a close-up view of a talking person.

� Figure 9 The shot (#33W) is from 'Wag the dog',

and the content shows two people talking from some

distance. The Dv

33 and V ar
BA

33 for this shot are 1.46

and 9.37, respectively, as seen in Table 4(b). The

shot #11 from 'Wag the dog', and the shots #93,

and #108 from 'Simon Birch' were retrieved and

presented in Figure 9. Again, the four shots are

very similar in content. All show two people talking

from some distance.

� Figure 10 The shot (#76S) is from 'Simon Birch.'

The content is a person running from the kitchen to

the window. The Dv

76 and V arBA76 for this shot are

-0.78 and 23.55, respectively, as seen in Table 4(a).

The shot #87 from 'Wag the dog', and the shots

#1 and #4 from 'Simon Birch' were retrieved and

presented in Figure 9. Two people are riding a bike

in shot #1S. In shot #4W, one person is running

in the woods. In shot #87, one person is picking

a book from a book shelf and walking to the living

room. These shots are similar in that all show a

single moving object with a changing background.
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Figure 7: Scene Tree of 'Friends'

#12W #102W

#64S #154S

Figure 8: Shots with similar index values - Set 1.

#33W #11W

#93S #108S

Figure 9: Shots with similar index values - Set 2.

#76S #1S

#4S #87W

Figure 10: Shots with similar index values - Set 3.
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6 Concluding Remarks

We have presented in this paper a fully automatic

content-based approach to organizing and indexing

video data. There are three steps in our methodology:

� Step 1: A Camera-Tracking Shot Boundary Detec-

tion technique is used to segment each video into

basic units called shots. This step also computes

the feature vector for each shot, which consists of

two variances V arBA and V arOA. These two val-

ues capture how much things are changing in the

background and foreground areas of the shot.

� Step 2: For each video, a fully automatic method is

applied to the shots, identi�ed in Step 1, to build a

browsing hierarchy, called Scene Tree.

� Step 3: Using the V arBA and V arOA values ob-

tained in Step 1, an index table is built to support

a variance-based video similarity model. That is,

video scenes/shots are retrieved based on given val-

ues of V arBA and V arOA.

Actually, the variance-based similarity model is not

used to directly retrieve the video scenes/shots. Rather,

it is used to determine the relevant scene nodes. With

this information, the user can start the browsing from

these nodes to look for more speci�c scenes/shots in the

lower level of the hierarchy.

Comparing the proposed techniques with existing

methods, we can draw the following conclusions:

� Our Camera-Tracking technique is fundamentally

di�erent from traditional methods based on pixel

comparison. Since our scheme is designed around

the very de�nition of shots, it o�ers unprecedented

accuracy.

� Unlike existing schemes for building browsing hier-

archies, which are limited to low-level entities (i.e.,

scenes), rely on explicit models, or do not consider

the video content, our technique builds a scene tree

automatically from the visual content of the video.

The size and shape of our browsing structure re
ect

the semantic complexity of the video clip.

� Video retrieval techniques based on keywords are ex-

pensive, usually application dependent, and biased.

These problems remain even if the dialog can be

extracted from the video using speech recognition

methods [31]. Indexing techniques based on spatio-

temporal contents are available. They, however, rely

on complex image processing techniques, and there-

fore very expensive. Our variance-based similarity

model o�ers a simple and inexpensive approach to

achieve comparable performance. It is uniquely suit-

able for large video databases.

We are currently investigating extensions to our

variance-based similarity model to make the comparison

more discriminating. We are also studying techniques

to speed up the video data segmentation process.
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