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Abstract

We explore a communication paradigm for video on demand, called Range Multicast. This
scheme is a shift from the conventional thinking about multicast where every receiver must
obtain the same data packet at any time. A range multicast allows new members to join at
their specified time and still receive the entire video stream without consuming additional server
bandwidth. Clients enjoy better service latency since they can join an existing multicast instead
of waiting for the next available server stream. We also present techniques to support video-
cassette-recorder-like interactivity in this environment. Unlike existing methods which require
clients to cache data in a private buffer, the Range Multicast solution utilizes the shared network
storage to make more efficient and cost-effective use of the caching space. Furthermore, since a
range multicast can accommodate clients with different play points in the video, a client has a
better chance to join an on-going multicast for normal playback after finishing a VCR operation.
This strategy avoids the need for a new server stream, and thus further alleviates the server
load. Our simulation results confirm the aforementioned benefits.

Keywords: Multimedia Communications, Video on Demand, VCR-like Interactivity, Overlay
Multicast, Caching.



1 Introduction

The ability to interact with video using VCR-like operations such as fast-forward and rewind is
highly desirable for video-on-demand (VOD) applications. Currently, this feature is implemented
in two ways: server-controlled or client-controlled. The server-controlled approach [16] relies on the
server to selectively send the video frames at possibly higher, or lower, transmission rates. These
solutions usually focus on data placement strategies to minimize the costs of retrieving video frames
from the storage subsystem [42, 9, 38]. In the client-controlled approach [8, 10], each client station
is equipped with a buffer for caching recently displayed video frames'. When a rewind is invoked,
the video player renders the video frames in the buffer in reverse order at a higher frame rate.

Other VCR operations are also supported, though, limitedly.

The advantages of the server-controlled approach are the simplicity of the client software and
the ability to provide unrestricted VCR services such as fast-forwarding the entire video. This
approach, however, is not scalable since the server must handle VCR requests for all the clients.
With rapid drop in the costs of disk drives, the client-controlled approach has become the preferred
technique to achieve better scalability. This method also allows the VOD system to leverage
multicast technologies to reduce the demand on server bandwidth [13, 3, 28, 1, 17]. When a client
wishes to resume the normal play after a VCR action, it attempts to join an existing multicast
group whose play point is near the resumption point. Only if this join fails, the server needs to
allocate a new stream to provide the service, or a patching stream as in the Patching technique
[20, 7, 36] to help the client catch up with an on-going multicast. An efficient implementation of
such an environment requires addressing two issues: (1) The Internet is based on IP Unicast. We
need to extend it to provide multicast services; and (2) The server has to allocate many patching
streams for those clients who resume their normal play after VCR operations. We need a new

mechanism to significantly reduce the number of these server streams.

The second issue has not been addressed to date. To address the first issue, one can install
software routers at strategic locations on the Internet to create an overlay structure [18, 33, 25, 11,
4]. These routers can realize various multicast trees, at the application level, by relaying data from
the server toward multicast members. In this paper, we extend this approach by introducing a new
multicast concept called Range Multicast (RM). RM provides the following new features to better

support video-on-demand applications:

e RM enables clients to join a multicast at their specified time and still see the entire video
without consuming any server bandwidth. The motivation is twofold. First, since clients do
not have to wait for the next multicast, truly on-demand services can be achieved. Second,

since the server does not need to multicast frequently to keep the service latency low, the

'TiVo (www.tivo.com), a VCR-enabled commercial product for live TV, could be considered falling in this
approach.



demand on server bandwidth is less.

e Unlike the conventional multicast which requires all members to share a common play point
at all time, RM can support a range of different play points simultaneously. Since it is much
easier for a client to find a multicast range (as opposed to a multicast point) to resume
a normal playback, RM significantly increases the chance for a client to join an existing

multicast after a VCR-like operation.

e RM directly supports VCR-like operations. Client buffers are not necessary. This feature is

particularly important to wireless mobile applications.

We note that Patching [20, 7, 36] also allows a new client to join an on-going multicast and still
receive the entire video stream. This solution however requires the server to send a new patching
stream for each new client. As this client displays the first part of the video arriving on the patching
stream, it caches the multicast stream in a buffer. When the patching stream terminates, the client
switches to playback the data prefetched in this local buffer while the multicast stream continues
to arrive. It has been recognized that standard multicast is inadequate for VOD applications.
Patching addresses this drawback by supplementing each multicast stream with many patching
streams. In this paper, we address the same issue by changing the multicast concept itself, namely
introducing Range Multicast. It is clear that Patching is significantly more demanding on server
bandwidth than Range Multicast is.

Periodic Broadcast (e.g., [21, 31, 26]) is another efficient solution for video applications. This
scheme fragments each video into data segments, each broadcast repeatedly by the server. To receive
a video, a client tunes to the appropriate broadcasts to download the data. The communication
protocol ensures that the broadcast of the next video segment is available to the client before
the playback of the current segment runs out. To provide VCR-like services, the client-controlled
approach can be used as in [17, 31]. Alternatively, periodic broadcast can also be applied to a
compressed version of the same video to support VCR-like interactions [39]. Although periodic
broadcast is highly efficient, it is only suitable for very popular videos. In this paper, we address

general applications with video data of diverse popularity.

The remainder of this paper is organized as follows. Section 2 describes the basic concepts
of Range Multicast. Section 3 presents the algorithms for satisfying VCR interaction requests.
Section 4 reports the performance results from our simulation study. Finally, Section 5 concludes

this paper with our remarks.

2 The Range Multicast Approach

The Range Multicast (RM) concept can be implemented at the network layer. We presented the
RM router and the network-layer protocol in [22]. To adapt this communication paradigm for the
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Figure 1: Range Multicast Overlay

Internet, we propose in this section an application-level implementation of RM. We also extend it

to support VCR-like operations.

2.1 Network Architecture

In a Range Multicast environment, RM-enabled nodes are placed on the Internet, and intercon-
nected using unicast paths to implement the range-multicast layer. In other words, these RM-
enabled nodes act as software routers for the overlay structure. For ease of exposition, we refer to
these RM-enabled nodes simply as “nodes” unless otherwise specified. They are classified into two
types: root and non-root. The root node is the front-end node for the video server to communicate
with the rest of the overlay network. A non-root node may or may not be representative for a
local community of clients. When representing a community, a non-root node is referred to as the
representative for each of the community members. To illustrate this RM architecture, Fig. 1 shows
an overlay topology with a root node and nine non-roots, three being representative nodes. The
links are logical and represent how data will be forwarded on the overlay network. The path for a
video stream will be a path on this topology.

The motivation for using the overlay architecture is twofold. First, it has been shown to be
an efficient solution to enabling multicast services on the Internet [25]. Second, extensions can
easily be made to the overlay to support new needs. In this paper, we exploit it to support VOD
services with VCR-like functionality. A problem arising is how to determine the overlay topology
and how to reduce the costs of maintaining it under network dynamics such as node failures. For
failures, we consider two kinds of impact: on the overlay topology and on the on-going services.
Several solutions including [18, 33, 25, 11] were proposed for constructing fault-tolerant overlays,

whose topology is re-configurable on failures, either statically or dynamically. Such a solution can



be appropriately adopted to build and maintain our RM overlay topology. For on-going services
interrupted due to a node failure, all the adjacent nodes that have been receiving data from this
failed node temporarily reconnect to the root node to receive the remaining data. Even though
possibly sub-optimal, this solution offers a simple and quick way to guarantee the continuity in
the client playback. Since techniques addressing the above issues can be employed in our scheme,
without loss of generality, we assume that the RM overlay has a predefined topology and is failure-

free.

2.2 Range Multicast

We assume that a video is transmitted as a sequence of equal-sized blocks. The transmission time
for each block is one time unit. A block may contain many video frames (e.g., I, P, or B frames
in MPEG format). On receipt of these blocks, the client is responsible for decoding and rendering
them onto the screen.

Range Multicast is realized by caching data in the overlay nodes. As a video stream passes
through a sequence of nodes on the delivery path, each caches the video data into a fixed-size
FIFO buffer. As long as the buffer is not full, it can be used to provide the entire video stream
to subsequent clients requesting the same video. A nice property of this strategy is that all the
buffers fed by a single server stream form a continuous video segment, which gets larger as more
clients join. This video segment including past and future frames enables existing members to do
VCR interactions. The wide range of available data also improves the chance for clients to join
the multicast if their resumption or starting point is within the range. Unlike the client-controlled
approach, clients share buffers in Range Multicast allowing a more efficient use of the caching space.

We discuss the Range Multicast technique in more detail in the following subsections.

2.2.1 Overlay Cache Design

RM does not require every node to cache. For example, the root does not need to cache. For each
non-root node caching, an amount of the local storage is reserved for caching purposes, which is
organized as an array of equally sized chunks. Each of these chunks is used to cache a particular
video stream currently passing through the node. The number of chunks is dependent on the number
of streams the node can support simultaneously. Once this parameter has been determined, the

available caching space is equally divided among the chunks.

Consider a node R having a number of chunks, each of size A(R) > 0. When a new stream S
arrives at node R at time ¢y, this node finds a chunk, say chunk n, that will be used for caching
S. The video-block replacement within this chunk follows the Interval Caching approach [12, 22].
Every time a new data block of S arrives, it is copied into chunk n. This chunk can be used to serve

all clients requesting the same video, whose requests arrive at node R before time ¢ty + A(R). In
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this case, chunk n would be used as a sliding window to hold and forward the data to those clients.
At time tg + A(R), chunk n is full of data blocks. If currently not used to serve any client, it is
cleaned up and returned to the free pool. Otherwise, it continues caching as usual and old frames
will be replaced with newly arriving frames according to the FIFO policy. To see how this caching
strategy helps reduce the server load, we consider an example where there is an overlay node R
with a single chunk. Suppose that the request rate is A requests per time unit and the probability
of requesting a video V is py. Caching the video stream V for a request into that chunk will enable

serving AXA(R)xpy-1 other requests, on the average, without any server bandwidth.

Given that a node may have more than a chunk, the chunk replacement works as follows. We
note that chunk replacement is different from block replacement done within a chunk. A chunk
replacement is invoked when a new video stream arrives at a node and needs a chunk to be cached
into. If all the chunks are currently serving, no caching is performed at the node, i.e., the node just
forwards the data to the next node on the delivery path. Otherwise, to find a victim chunk to feed
data in, we select the chunk that has not been used to service any downstream client for the longest
time; the current caching age of this chunk is oldest among all non-serving chunks (a free chunk has
an infinite age). By replacing an old caching chunk with a younger one, we widen the interval of
arriving requests that can be served by the newly cached data. We can also employ another chunk
replacement policy based on the popularity of video titles if that is known. In this case, the victim
chunk would be currently caching the least popular video but not serving any client. The decision
on which of the two chunk-replacement policies above is employed depends on the application in

operation, hence left as a parameter of the overlay nodes.

2.2.2 Service Procedure

A client C requests a video V' to its representative Rep(C). This representative “broadcasts” the
request in a find packet to the overlay nodes. By broadcast, we mean to apply on the overlay
layer only. In other words, a node forwards the packet to all adjacent-on-overlay nodes on the
corresponding unicast paths. A duplicated packet arriving at a node is ignored. Since the number
of overlay nodes is not large, the network load incurred by this broadcast should not affect the

network traffic severely.

Upon the first arrival of the find packet, each receiving non-root node R checks if the first block
of V is being cached in any of its chunks. If this condition holds, R stops forwarding and sends a
found message on a direct unicast to Rep(C). This found informs that client C' can download the
video from R, which requires no server bandwidth as mentioned in Section 2.2.1. If no non-root
node caches the first block, the find will eventually go to the root which also stops forwarding and

sends a found to Rep(C) to notify.

There may be more than one node sending a found to Rep(C). Rep(C) selects the earliest



informing node, say Rsery, by sending an ack message to it and sending negative- ACK messages
(nack) to the other informing nodes. We pick up the “earliest” node to reduce the service start-up
delay. The video data will be sent from Rge. e On a delivery path down to the client. This delivery
path is the reversal of the path on which the find request is sent from the client to Rge.,, which is
also called the “serving node” of the client. As video blocks are sent to the client, each intermediate
node on the delivery path caches them into a victim chunk if there is any available. These cached

data can be used to service subsequent requests (see Section 2.2.1).

In summary, to start a service for a new client essentially requires the following steps: (1) Upon
receipt of a request from a client C, its representative Rep(C) broadcasts a find to the overlay; (2)
C will get the video stream from the node Ry, that keeps any prefix of the video in its cache and
that informs Rep(C) first; and (3) The delivery path for this stream is reverse with the path of the
find when traveling from Rep(C) to Rgery-

It is optional but we can employ an admission control policy to prevent bottleneck at overlay
nodes and congestion on overlay links. For this purpose, a threshold for each overlay link is set to
control the number of streams that link can support concurrently. Any find will be rejected by an
overlay link if its threshold is already reached. The threshold for a link can be a predefined number
or dynamically computed based on the traffic status of that link. This dynamic adjustment is a
popular issue mentioned extensively in overlay multicast works [18, 33, 25, 11, 23]; therefore, we

omit describing it in our paper.

We note that there might be a delay between the time Rgerye sends the found message to
Rep(C) to declare itself as a potential server and the time it receives the ack message from Rep(C).
Therefore, if Rgery is a non-root node, it might have dropped the first video block from the cache
by the time it receives the permission. Hence, Rger, could not fully service client C. A way to
avoid this is to take into consideration the end-to-end delay (based on the timestamp in the find

message) when a non-root node assesses its ability to satisfy a request.

To disconnect service, client C' sends a quit message in the reverse direction of the delivery path
to its serving node. Upon receipt of this quit, each intermediate node is pruned off the delivery
path if not currently using the data destined for C to serve any other client; then this node forwards
quit to the next node on the reverse path. If an intermediate node uses the data destined for C to
serve at least a client, this node just removes client C from its delivery schedule and does not need

to forward quit to the upstream.

2.2.3 Example

To illustrate how the proposed mechanism works, we give an example in Fig. 2. We assume that
each non-root node has only a chunk that can cache up to 100 video blocks. The overlay has a

topology drawn in Fig. 2(a). All videos are assumed longer than 100 time units. The label on



(a) Overlay Topology (b) Broadcast paths of find for client C2 (c) A Range Multicast Group

Figure 2: Example of how a range multicast group is built

each link indicates the starting time of the service of a particular client. For instance, label ”0”
indicates that at time 0, the server starts delivering the video to client Cy over the nodes Root,
R1, Rs. For simplicity, we assume that there is no service delay. That is, C; can make a request
at time 0 and receive the first block of the data stream instantaneously. Fig. 2(b) illustrates the
following scenario. At time 0, a node C} requests a video V. Since no node caches the data, the
root has to allocate a new stream to serve C7. As the data go toward Cy, all the non-root nodes
along the way, R; and Rs, cache the data in their chunk. At time 70, client Co requests the same
video V. As a result, its representative Rg broadcast a find to the overlay. Suppose that the paths
for this broadcast follow directions in Fig. 2(b) and the find will stop at Root, R;, and R since,
at time 70, R; and Ry have not dropped the first video block from their chunk. These three nodes
can serve (. Suppose that R; informs Rg first and therefore is selected to serve Cy. The delivery
path for this client will be Ry — Ry — R; — Rg — Cy as shown in Fig. 2(c). All the nodes
along this path are asked to cache the video. The subsequent events for client Cs and client Cy are
handled similarly as illustrated in Fig. 2(c). At time 80, client C3 also requests video V' and gets
the service from node R which still holds the first video block. At time 100, Ry and Rs remove
the first video block from their cache. At time 110, C, asks for video V and can receive the service
from node R4 which still holds the first block. In this example, we have a multicast tree including
four clients C1, Cs, C3, and Cy which join at different times: 0, 70, 80, and 110, respectively. Only

a server stream is needed to provide data to all of them.

2.2.4 Remarks

In general, by properly utilizing network caches in RM, clients have a significant chance to join an
existing server stream at different times almost instantaneously and get the entire video. Several
other VOD techniques [20, 35, 5, 2, 19, 27, 41, 40] have this feature however significant additional

server bandwidth must be allocated in order to achieve that. In contrast, RM does not require any



server bandwidth for late clients to join an existing server stream. In the case a client requests
the same video very late, a new multicast has to be created as in other multicast-based VOD
schemes. However, creating a new multicast in RM richens the content cached inside the network,

thus increasing the chance for subsequent requests to be served by a caching node.

One might argue that forcing all intermediate nodes on a delivery path to cache a video stream
is superfluous and prefer caching at several selected nodes. However, our caching policy has its

advantages:

e A caching chunk is emptied when it is full and not used to serve any downstream client,
thus the lifetime of the data cached in a chunk is short. As a result, caching a stream at
all intermediate nodes of a delivery path does not significantly reduce the caching space for

other streams. Furthermore, this does not introduce notable complexity.

e Caching a stream at all nodes of a delivery path significantly increases the chance for subse-

quent clients to hit the caches and decreases the cache seeking time.

We define a multicast group to include all the clients fed by a single server stream. This is
different from the multicast group concept in IP multicast since in IP Multicast group members
must join a multicast at the same time so that they do not miss any data. Consequently, they
always have the same playback point. On the contrary, data delivered in our multicast group at
any point of time are different and collectively form a range of consecutive frames. This multicast

range is useful for VCR interactions as presented in the following section.

3 VCR Functionality using Range Multicast

In this section, we present the potential of the Range Multicast scheme in providing VCR function-

ality to the clients.

3.1 Preliminaries

In the system, at any point of time there are a number of on-going (range) multicast groups. Data
provided to each group are delivered on a set of delivery paths, each destined for a client and
emanating from its serving node. For example, in Fig. 2(c), the deliver paths for the four clients
are Root -+ Ry - Ry, —» C1, Ri > R4y —» Ry - Rg —» Cy, Ry —+ R5 — Rg — C3, and Ry — R3 —
Cy, respectively. The delivery paths for clients of a group form a delivery graph of that group. The
property of this graph is that it is directed, single-rooted at the root node, and contains a unique
path to each client from its serving node. Without loss of generality, we consider only one multicast

group and focus on the VCR interactivity of a participating client. Although our technique can



easily be extended for working with multiple chunks, we assume for clarity that every non-root

node on the delivery graph has a single caching chunk. We use the following notations:

e Serv(C): The serving node of client C. E.g., in Fig. 2(b), Serv(C1) = Root, Serv(Cs) = Ry.

e If a node R is currently caching data originally requested by a client C’, the serving node
of R is Serv(R) = Serv(C"). E.g., in Fig. 2(b), Serv(R4) = Ry = Serv(C2). We use the
same notation “Serv” for both overlay nodes and clients, but the meaning depends on the
parameter. That is, Serv(X) alludes to the serving node of a node if X is a node, and the

serving node of a client if X is a client.
e Rep(C): The representative node of client C.

e o(R) = [a, b]: The content currently cached at a non-root node R where a is the identifier
of the first block cached and b is that of the last block cached. If R currently is not caching,
o(R) = NULL. We note that this content changes over time due to the sliding nature of the
caching buffer. For instance, in Fig. 2(b) of Example 2.2.3, the content cached at node R; at
time 20 is [0, 19], at time 30 is [0, 29], at time 120 is [20, 119], at time 121 is [21, 120], etc.

The VCR functionality is enabled in the Range Multicast scheme by capitalizing a useful prop-
erty stated below:

“If a node R is currently caching data arriving from its serving node Serv(R), then
o(Serv(R)) holds next future blocks of o(R) which in turn holds recent past blocks of
o(Serv(R)).”

Please refer to Fig. 3 as an example. Indeed, at time 200, §(R;) = [100, 199], §(R4) = [30, 129],
d(R3) = [0, 89]. We know that Ry = Serv(R4) and Ry = Serv(R3), and clearly, the above property

applies for these three nodes.

Let X(T) = Unogerer 0(R), the aggregate content cached in all nodes of a delivery graph T
When a new client gets served by a node belonging to T, 3(7") will be augmented to the left. The

meaning of this is interpreted as follows:

e For the latest client Cjgpest participating in graph 7', 3(7') holds future blocks needed for
next display by Cjutest- These cached blocks can be used for VCR forward actions. For
VCR backward actions, Cjuest can play the blocks in its local buffer if this buffer is available
to cache recently displayed blocks, or request a new stream from the server if there is no
such buffer. However, for this client, forward actions are much more likely than backward
actions since the play point of Cjges: is more likely to be close to the beginning of the video.
Therefore, the number of server streams required by the interactivity of Cjgses; 18 significantly

alleviated.
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Figure 3: Aggregate Buffer of VCR Operations

e For the earliest client Cegpiest participating in graph 7', ¥(7) holds past blocks recently
displayed by Cegrisest- These blocks can be used for VCR backward actions. For VCR forward
actions, C,urjiest Tequests a new stream from the server. However, for this client, backward
actions are more likely than forward actions since the play point of Cegrjiest is more likely to
be close to the end of the video. Therefore, similar to the case of Cjytest, the number of server

streams required by the interactivity of Cegrjest is also alleviated.

e For any client C4pdom that joins in between, ¥(7') holds both recent past and future blocks

of client Cjqndom, Which can be used for both forward and backward actions.

Let us follow Example 2.2.3 where each node has a chunk capable of caching 100 video blocks
and four clients C1, C2. C3, and C4 join the same multicast group at time 0, 70, 80, 110, respectively.
Fig. 3(a) demonstrates the cached content for every node at time 200 while Cy, Co. C3, and Cjy are
playing at positions 200, 130, 120, 90, respectively. Even though the chunk size is only 100 video
blocks, the aggregate cache in this multicast group is [0, 199]. Similarly, Fig. 3(b) demonstrates
the cached content for every node at time 320 while C1, Cy. C3, and C}4 are playing at positions
320, 250, 240, 210, respectively. The aggregate cache in this multicast group is changed to [110,
319]. This aggregate buffer can be used to fulfill VCR backward operations of C;, both forward
and backward operations of Cy, C3, C4, and fast-forward operations of any new member C who
just joins the multicast. In this example, with only four clients, the aggregate buffer available for
VCR operations is twice as large as the buffer at each node. In the general case, the number of

clients should be large and we can expect that the aggregate buffer will be larger.

Prior to explaining VCR actions and strategies to fulfill them, we note that it is possible for
a node to recognize a frame in its cache. This is because when a video file is divided into blocks

for transmission at the server sites, we add control information into each block to tell what frames
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belong to it and what their position in the block is. Therefore, for simplicity, we view the cache

content at a node as an interval of frames (which actually are cached as blocks).

3.2 Pause (PS) and Jump Backward (JB)

By invoking a PS operation, the client pauses the playback until invoking a Normal Play (NP)
operation. By invoking JB with a skip distance ¢, the client would like to immediately play
normally from a frame which is § frames offset from the current play point. A common feature of

PS and JB is that the new play point is always a position in the past of the normal playback.

As soon as a client C invokes a PS or JB action, the client immediately quits its current
multicast group. When C' wants to resume its normal playback at position A (i.e., the h? frame),
it sends a past-play(h, C) (meaning “play at past position h”) request to node Ry = Rep(C). If
this node does not currently hold h, the past-play(h, C) request travels up to node Serv(C) on
the reversed delivery path. There are two cases:

1. past-play(.) reaches an intermediate node R; that is currently serving another client, say
C1, by using the cached content §(R;): Since there is a high chance that a node along the path
from R; to Cj is currently caching earlier frames, the past-play(.) request is forwarded to
nodes on this path to find one still holding frame h. If this request then reaches an intermediate
node Ry that is serving another client, say client C5, the request again is forwarded to the
path from Rs toward Cs. This process of finding frame h repeats and eventually, the past-
play(.) request will reach a node R* that is currently caching frame h, or the root of graph T'
has to intervene to provide the needed frames to client C. In the former case, C' will join R*
by using a direct unicast to connect and download data cached there as usual as we discussed

in Section 2.2.

2. past-play(.) reaches Serve(C) which is not currently serving any client by using the cached
content ¢(Serve(C)): The root of graph T has to intervene to provide the needed frames to
client C.

We note that the traveling of the past-play(h, C) request is not a broadcast to the entire
graph, but only searches on a subset of those paths leading to the clients that are admitted to the

system after C' is. Hence, the seeking time should be short.

3.3 Jump Forward (JF)

A client currently playing normally at position Acyprrent would like to jump to position h = heyprrent
+ ¢ if the client invokes a JF action with skip distance 6. We present how to fulfill a JF action as
follows.
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As soon as a client C invokes a JF action, the client immediately quits its current multicast
group. If C wants normal playback at position h, it sends a future-play(h, C) (meaning “play at
future position h”) request to node Rep(C). Since Serv(C) is caching the future frames of C, the
representative node forwards the future-play(h, C) request to Serv(C). If frame h is still in the
caching chunk of Serv(C), C will join this node and download data from its caching chunk as in
Section 2.2. Otherwise, Serv(C) will forward the future-play(h, C) message to its serving node
Serv(Serv(C)) since Serv(Serv(C)) is caching frames that are future of that cached in Serv(C).
This process continues repeatedly until the future-play(h, C) request reaches a node R* that is
currently caching frame h. C will join R* and download data cached there. We note that the
traveling of the future-play(h, C) request is not a simple broadcast to the entire graph, but only
searches on a subset of those paths leading to the clients that are admitted to the system before C

is. If such a node R* is not found, the root node of graph T' will serve C.

3.4 Fast Forward (FF)

A client currently playing frame hy,rent by invoking a FF action at rate r (a positive integer greater
than 1) would like to play normally frames hcyrrent, Peurrent + 75 Peurrent +2 X 7y oy heyrrent +1 X T,

.., until the client requests a resumption to normal playback.

Since the client wants to play future frames that have yet to arrive at the client, we should
capitalize those nodes currently caching data that are originally requested by earlier clients. The
normal servicing of a client C' can be modeled as a chain Root - Ry — Ry — ... = R, — C where
R, = Serv(C), R,—1 = Serv(Ry,), .., R1 = Serv(Rz), and Root = Serv(R;) is the root node. Ry is
always caching frames that follow the frames cached by Ry, if they are played in normal playback.
As a result, o(R,,) Uo(Rp—1) U...Uo(R;) forms a large buffer containing the next frames needed
by C. By tracing this chain from R,, back to R;, we will actually go to the next future frames of
client C. For instance, following Example 2.2.3, client Cy fast-forwards by tracing the chain Root
— Ry — R4 — Rj3 in reverse direction, i.e., R3 first (please see Fig. 2).

Client C invokes an FF action by first quitting the normal service and then sending a ff(r, h,
C) (meaning “fast-forward at rate r starting from frame h”) request backward to the chain starting
from R,,. Without loss of generality, suppose that we are at node Ry. Upon receipt of fi(r, h, C)
request, Ry, will transmit every r** frames starting from position A in its caching chunk to client
C at the normal rate?. If the next r** frame needed, say frame h + i x r, lies beyond the chunk,
Ry sends a ff(r, h + i x r, C) request to the preceding node on the chain, i.e., to node Ry 1. Ry 1

will follow the same steps as Ry does and this process repeats until one the following possibilities

%If a video consists of dependably-coded frames of various sizes, such as in MPEG format, transmitting every
rt* frames would slightly affect the client’s playback quality because some rt" frames might not be decodable at the
client side. One way to avoid this is counting only independently decodable frames, such as I-frames, when seeking

the next r'* frame.
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happens:

1. The root node Root receives the ff(.) request: Since at this moment the client has moved to a
play position that no non-root node has reached, the root has to transmit the needed frames
to C at the normal playback rate. The root will create a new stream and send every next

frame to client C until client C' submits a resume(C') request.

2. Client C sends a resume(C) request: This request is sent to the node R* that is about to
transmit a frame h* to C for FF purposes. R* then decides not to skip frames anymore and
transmits a frame at a time sequentially from the caching chunk to C. C resumes normal

playback by displaying these frames as usual.

3.5 Play Backward (PB) and Rewind (RW)

A client currently playing frame heyrrent by invoking a RW at rate r (a positive integer greater than
1) or a PB (where 7 = 1) would like to play normally frames hcyrrent, Peurrent — 7' Reurrent — 2 X T,

«ss Peurrent — 1 X 1, .., until the client requests a resumption to normal playback.

In these cases, client C wants to play past frames which have already arrived. Therefore, we
should take advantage of those nodes currently caching data originally requested by clients who
are admitted to the system after C' is. The idea is as follows. If there exists a node R; on the
path from Serv(C) to Rep(C), that is currently serving another client, say client C; (i.e., Ry =
Serv(Ch)), the data sent from R; to C; must be the past frames of client C. On the path from
Ry to Rep(Cy), if there exists a node Ry that is currently serving another client, say client Cs, the
data sent from Ry to Cs must be the past frames of C;. Based on this strategy, we may be able to
play past frames without server intervention by making use of data in the chunks of Ry, Ro, .., etc.

Let us consider a chain Ry — Ry — ... —» R, where:

e R; is the first node on the path from Rep(C) to Serv(C), that is serving some client Cy. If

such a node does not exist, this chain consists of the root node only.

e Ri1 (1 <k <n—1)is the first node on the path from Ry to the client C) served by Ry,

that is serving some other client Ry 1.

e No node on the path from R, to C, is currently serving any client.

Clearly, R, 1 = Serv(Ry), .., R = Serv(R2) and o(R;) Uo(Rg) U...Uo(R,) always holds the
recent frames for client C. To have a large size of this aggregate buffer, given node Ry, we should
first find a latest client C'x served by Ry, then select Ry; to be the first node on the path from
Ry, to Rep(C'x), that is serving at least another client. By tracing the chain from R; to R,, we will
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actually go to the recent frames needed by client C. For instance, following Example 2.2.3, client
C} rewinds by tracing the chain Ry — Ry — R3 (Fig. 2).

To invoke a PB action, C' quits its normal service and then sends a pb(h, C) (meaning “play
backward starting from position h”) request to each node on the path from Rep(C) towards Serv(C)
until the request reaches node R;. R; then forwards this request to Rs because Ry is caching the
most recently displayed frames of C. Suppose that at this time, o(Rz) = [a, b]. To support PB at
client C', Ry will send each frame at a time to client C, starting at frame b and advancing to the
left of the chunk (i.e., frames b, b — 1, b — 2, etc. will be sent). Since o(R2) also shifts its content
to the left as time advances, at most half of the chunk’s content will be transmitted to client C.
As the next frame needed to send to C, say frame b — ¢ lies beyond the chunk of Ry, Ry sends a

pb(b — i, C) request to R3. The same process mimics at Rs, then at R4 and so on.

To invoke a RW action, C' submits a rw(r, h, C') (meaning “rewind at rate r starting from
position h”) request. To satisfy this request is similar to the above case except that instead of
transmitting consecutive frames in the chunk, each node R}, only transmits every r** frame to C,
starting from the right-most position of the chunk. If C' continues to be in PB or RW state, C' will
eventually need to play a frame beyond the chunk of R,. In this case, the root node will provide
C with the rest of data needed.

To resume normal playback, client C sends a resume(C) request to the node R* that is about
to transmit a frame h* to C' for PB or RW purposes. R* then decides to transmit a frame at a time
starting from h*, sequentially and forward, to C. By joining this node, C' will return to normal
playback by displaying the frames arrived from R*.

3.6 Slow Forward (SF) and Slow Rewind (SR)

Suppose client C is playing frame h when C decides to play SF at rate 1/r (7 is an integer greater
than 1). C is supposed to display frame h for r time units, then frame h + 1 for r time units,
then frame h + 2 for r time units, and so on. After r time units, frame A + 1 would be the past
frame of normal playback because if C' continued playing normally, C' would be playing frame h+ 7.
Therefore, in order to get frame h 4 1, we should look for nodes serving clients that are admitted
to the system after C is. The case for slow rewind (SR) is also similar. After r time units, C' needs
to play frame h — 1 for r time units. This frame should also be cached at those nodes that are

serving younger clients. For this reason, we use the same strategy for handling both SF and SR.

Let us consider a chain By —+ Ry — ... =& R, that is built as in the cases of RW and PB. For
SF (or SR) at rate 1/R, C first plays the current frame A for r times. After that it sends a slow(r,
h+1, C) (or slow(r, h — 1, C)) request to the chain starting from R;. This request will reach the
first node Ry, that has frame h+1 (or h— 1) in its cache chunk. Ry will send frame h+1 (or h—1)
to C' (which in turn will play frame h + 1 (or A — 1) for r times). If Ry will not drop out frame

15



h + 2 (or h — 2) from its chunk in r time units, Ry waits until 7 time units later and then sends
frame h + 2 (or h —2) to client C. In the case where Ry will drop out frame h + 2 (or A — 2) from
its chunk in r time units, Ry sends a slow(r, h +2, C) (or slow(r, h — 2, C)) to the next nodes in
the chain until reaching R; (I > k) that has frame h + 2 (or A — 2), and the same process repeats
at this node. If the slow(.) request reaches the root node, the root will provide needed data to

client C' using a server stream.

To resume to normal playback, client C' sends a resume(C) request to the node R* that is
about to transmit a frame h* to C for SF or SR purposes. R* then decides to transmit a frame at
a time starting from frame h*, sequentially and forward, to C. As a result, C' will return to normal

playback by displaying the frames arrived from R* as usual.

3.7 Discussion

As presented in Sections 3.4, 3.5, and 3.6, there may be more than one node involving in delivering
frames needed by a client VCR request of type FF, PB, RW, SF, or SR. When such a node R does
not have the needed frames, it will notify the next node Ry to find them. A problem questionable
is when R should notify. If R notifies only after encountering the situation where the next needed
frame lies beyond the cache, it might introduce a delay to the requesting client since it might take
some time for R,e.;: to start sending the next needed frame. To avoid this, on receipt of a VCR
request and if R detects that it is not able to provide all needed frames, R should notify R,..; at

some appropriate time before the missing frame is actually needed for display by the client.

If the video consists of individually-encoded frames of equal size3, we follow the policy illustrated
in Fig. 4. In this figure, f and [ are the ID’s of the first and last frames currently in the cache of
node R, and p the current frame needed by a client VCR request. Suppose the current time is ¢
and tg + 7 is the latest time that frame p + r X ¢ needs to be transmitted to the client and still
available in R’s cache. To avoid delay at the client side, node R will signal Ry, as soon as it starts
sending frame p to the client to inform that R, needs to send frame p+r x (i + 1) to the client
at time tg + 1 + 1.

4 Performance Study

We study the performance of Range Multicast in providing interactive and non-interactive VOD
services in this section. Specifically, we focus on two systems, both operating on an overlay network

having a topology borrowed from the IBM’s Global Network backbone*. The topology is illustrated

3If the video consists of dependently-encoded frames of various sizes, such as in MPEG format, the policy will be
different, however with a minor change.

“http:/ /www.nthelp.com /images/ibm.jpg (reachable as of January 21, 2003)
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Figure 4: Determination of when to signal the next node

in Fig. 5. In the first system (which we call VCR-RM), each node runs the Range Multicast software
and the Chicago node represents the root node. In the other system (which we call PCP - Prefix
Caching Proxy) [19, 37, 43], each node represents a proxy server running a prefix caching algorithm.
Each proxy reserves a storage space for caching purposes. This space is divided into equal-sized
chunks as in a RM node. When delivered from the server to a client, a prefix of the requested
video is cached at a free chunk of the corresponding proxy. If all the chunks are filled with data,
the chunk replacement is based on LFU (Least Frequently Used) policy. In other words, a chunk
currently storing the prefix of a less frequently requested video is more preferable to be overwritten.
A client can play the data cached at the proxy instantly and download the remaining data from
the server. Co-operation is also enabled; if not possible to get data from the local proxy server, the

client can be satisfied by a remote proxy server if the data is available there.

The performance study would have been more informative had we compared RM with the
client-controlled approach (CCA) [3, 28, 1, 17], however the intention behind our design is not to
replace CCA. In fact, RM could be integrated with CCA to provide significantly better performance
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Figure 5: IBM’s Global Network Topology.

than CCA alone does. Therefore, we opted to compare RM with PCP. This is due to three
reasons: (1) PCP is efficient to stream video with low startup latency and reduced server bandwidth
consumption; (2) Neither PCP nor RM requires a private buffer at the client; and (3) Both PCP
and RM use a caching buffer at each dedicated server which is a proxy in PCP or an overlay node
in RM.

Our simulation setup favored the PCP system because VCR functionality was not embedded

in PCP. In spite of that, we aimed to achieve two goals:

1. When VCR functionality is disabled in RM, we aim to show that this system performs sig-
nificantly better than the system running PCP.

2. When VCR functionality is enabled in RM, we aim to show that this system still outperforms
the system running PCP.

Meeting these two goals substantiates that RM is really an efficient approach for developing a
VCR-enabled VOD system because RM provides more features but still performs better than PCP,

a well-known and efficient scheme for video streaming.

Each system consists of a video server storing N = 50 90-minute videos {1, 2, .., N}. These
videos are requested with frequencies following a Zipf-like distribution with skew factor z. Specifi-

cally, the probability that video ¢ is requested is ﬁ A high value of z implies that there are
¥ 2157

few popular videos. Zipf-like distribution is a special case of the Pareto distribution [30] and has
been shown strongly applicable to Web page and video accesses [6, 14]. Our choosing 0.7 as the
default value for z results in a distribution which has been used in most VOD systems [14, 3, 1, 32].

It is typically true that most users are interested in only a small number of popular videos.

For simplicity, we assume each video is a sequence of independently encoded frames of equal
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size, each forming a block for transmission. We assume a discrete time model where a time unit is
called a “second”. In such a second, the network can transmit an amount equivalent to a second of
video data, which is a frame as we define above. Each node has by default five chunks of memory

for caching purposes. Such a chunk can store by default 10 minutes of video (i.e., 600 blocks).

A client appeals a service by sending a request to any node (chosen in random) of the overlay.
Client requests are generated in our simulation according to a Poisson process with an arrival
request rate A having the default value of 1.0 request per second. A client starts the service in
normal mode (i.e., NP mode), and during its playback can be in any of the nine states presented in
Section 3 with probabilities pyp, PPB, PSF, PSR, PFF, PRW, PJF, PJB, and ppg, respectively. The
duration of staying in any VCR mode follows a uniform distribution. This allows us to study any
VCR invoking behavior of clients. For simplicity, we assume that the client quits its session only
when the end of the video is reached and that pyp = 1 —p, and ppp = psr = PSR = PFF = PRW
= pjr = psjB = pps = p/8 (p € [0, 1)). Furthermore, the skip rate for FF and RW is twice the
normal playback, and the repeat rate for SF and SR is two (i.e., each frame in the SF/SR mode is
displayed twice).

4.1 Performance Metrics

An interaction is considered “cache-served” if the data currently in the aggregate buffer are sufficient
to accommodate the interaction. Otherwise, the server may have to transmit the needed interactive
frames to the requesting client and the interaction is called “server-served”. For example, a jump to
a destination point outside the aggregate buffer is server-served; a long lasting fast-forward pushing
the play point off the aggregate buffer is also server-served. To measure the cache-served cases, we
use percentage of cache-served interactions (PCSI) as the first performance metrics. PCSI
is computed as the ratio of the number of VCR requests served by cache to the total number of
VCR requests. For the “server-served” cases, we would like to estimate, for a VCR interaction, how
much requested interactive data is provided by the aggregate cache. Therefore, we use average
server-load saving (ASLS) as the second performance metrics. As an example, if a client wishes
to rewind for 20 seconds, but forces the play point off the aggregate cache after only 15 seconds,
the server load saved for this interaction is 15/20 or 75%. A caching scheme to support VCR
interactions should have high values of PCSI and ASLS in order to be efficient.

When a client returns to normal playback from a VCR interaction, the client tries to join an
existing multicast. If the joining fails, server bandwidth must be allocated. Additional server must
also be needed when a VCR interaction needs data beyond the multicast range. If a technique
results in frequent server intervention, the server bandwidth will be highly demanded and hence
worsen the chance of servicing subsequent requests. To evaluate the scalability of the proposed
system, we would like to estimate the minimum server bandwidth requirement (MinBW)
needed to satisfy every request. We also take into consideration the system throughput (ST)
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for normal requests (i.e., requests to start up service) in the case where the server bandwidth is

limited.

Since Range Multicast resolves the server bottleneck by capitalizing caches at intermediate
overlay nodes, the bandwidth at the server is less demanded but the traffic inside the network
might increase. This problem exists not only in Range Multicast but also in every overlay multicast
work and it would be interesting to study the tradeoff between “link stress” (i.e. how severe links
are overused) and server bandwidth consumption. We believe that using an efficient technique for
building the overlay topology can reduce link stress. Range Multicast can employ such a technique,
and, by having an efficient caching and delivery strategy atop the overlay topology, significantly
save the server bandwidth. Since link stress was already studied in many overlay works such as
[25, 11, 24, 29], we opted to report the results on server bandwidth only. It is our conviction that
despite recent advances in network bandwidth technologies, that can handle increases in network
traffic incurred by our scheme, server bottleneck remains a severe problem in most large-scale VOD

systems nowadays.

4.2 Numerical Results

We run simulations, each lasting 24 hours, based on four values for VCR intensity: p = 0.0 (pure
Range Multicast without VCR functionality), p = 0.2 (rarely frequent VCR actions), p = 0.5 (fairly
frequent VCR actions), and p = 0.8 (highly frequent VCR actions). We report the simulation results

in the following subsections.

4.2.1 Minimum Server Bandwidth Requirement (MinBW)

We would like to estimate MinBW in the number of streams the system creates to satisfy ev-
ery request. By estimating the values for average server-load saving (ASLS) and percentage of
cache-served interactions (PCSI), we would also want to estimate how VCR interactivity can take
advantage of the range multicast protocol. Specifically, we ran simulations under the changes of
request rate, caching space per node, and skew factor of video access pattern. Under all scenarios,
as shown in Fig. 6, increasing the VCR intensity (or p value) needs the server to spend more band-
width in order to serve all the requests, however the server bandwidth required by the RM-based
systems are always less than that required by PCP. In this study, we do not only show that our
proposed multicast scheme itself (VCR-RM/p=0 system) works better than the traditional proxy-
based scheme, but also when integrated with VCR functionality the system is still more scalable
than PCP. The gap in server bandwidth requirement is even exponentially larger as the request
rate increases, as exhibited in Fig. 6(a). Moreover, according to Fig. 6(b) and Fig. 6(c), VCR-RM
benefits more from enlarging caching space per node than PCP does, even though it is intuitive

that more cache in the intermediate nodes will reduce the server bandwidth. An exception is when
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Figure 6: Required Server Bandwidth.

the number of chunks equals one, the VCR-RM/p=0.8 system requires more bandwidth than PCP.
It is because the cache window for VCR interactions is too small to support too intensive VCR
activity (when the client invokes VCR 80% of the play time); as a result, a lot of server bandwidth
has to be allocated to satisfy those interactions not fully-servable by the aggregate cache. Another
realization worth consideration is that, given the same total caching space and small chunk size,
by increasing the chunk size the system gains better performance than by increasing the number
of chunks. This is explained as follows. More requests will be benefited from increasing chunk
size, therefore reducing server intervention. Having more caching chunks helps cache more streams
into a node, however if the chunk size is small, those cached data will be obsolete for subsequent
requests that come a bit late.

Even though changes in VCR intensity do affect the amount of server bandwidth needed, they
do not affect much on the values of ASLS and PCSI (Fig. 7(a-h)). Having more VCR requests
does not change much the percentage of those requests served by the aggregate cache. It only
worsens the server bottleneck since more server-served requests lead to more server bandwidth
being allocated. Fig. 7(a) and Fig. 7(b) experience improvements of ASLS and PCSI under the
increase of request rate until some point. Afterwards, ASLS and PCSI are getting smaller. This
is because when more requests arrive, but not too frequently, there will be more caches at the
overlay nodes and thus there will be a higher chance to serve new requests. However, if requests
arrive too frequently, the caches will be refreshed very often and therefore usually contain a short
prefix of video. Consequently, the cumulative buffer window for doing VCR actions is very small

and reduces the chance to support VCR activity. Nonetheless, under most simulation runs, the
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Figure 7: ASLS and PCSI: Every request is served

cache-served requests account for 30-40% among all VCR requests and server-served requests can
capitalize about 30-50% of the caches.

4.2.2 Effect of Various Server Bandwidths

We carried out a study on how server bandwidth affects the performance of the VCR-RM and PCP
systems. We varied this bandwidth from 400 concurrent streams to 2000 concurrent streams and
plotted the results for system throughput in Fig. 8(a). We wanted to investigate how the system
after embedding VCR. functionality would affect the serving of requests for normal playback. The
results came out promising. By using the proposed video multicast scheme, the RM-based systems
outperform PCP by a factor of at least four times (Fig. 8(a)) even in the case of intense VCR
interactivity (p=0.8). This demonstrates an important point that our proposed VCR supporting
scheme is a lot more scalable than PCP. If we allowed PCP to embed VCR functionality, its
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Figure 8: ST, ASLS, and PCSI: Server bandwidth is limited

performance would be even worse and consequently could not be comparable to VCR-RM.

Fig. 8(b, c) illustrates another important point. VCR-RM is quite stable under various in-
tensity levels of VCR interactivity. This feature is not provided by existing client-controlled or
server-controlled VCR supporting techniques. Indeed, the gap (ST, ASLS, or PCSI) between the
performances of VCR-RM system under the cases p = 0.2, 0.5, and 0.8 is very narrow. There is a
reason for this realization. In VCR-RM, the cache window for VCR interactivity is cumulatively
formed by node caches and shared by every client in the network. Changing the client VCR invo-
cation behavior does not change this content since when a client invokes a VCR action, it will get
data cached somewhere if available, otherwise will go to the server, and this process does not force
any change on the node caches. In the client-controlled approach, intense VCR. interactivity would
result in frequent times the play point goes beyond the client VCR buffer. On the other hand, in
the server-controlled approach, intense VCR, interactivity would lead to severe shortage of server
bandwidth. Most of these problems are avoided in VCR-RM.

5 Conclusions

In this paper, we presented a new communication paradigm for video-on-demand applications,
called Range Multicast. This scheme is a shift from conventional thinking about multicast where
every receiver must obtain the same data packet at all time. In contrast, the data available from
a range multicast at any time is a contiguous segment of the video. This characteristic is very

important to video-on-demand applications as follows:

e Better service latency: Since clients can join a multicast at their specified time instead of the
multicast time, they do not need to wait for the availability of the next server stream. This

fact results in better service latency.

o Less demanding on server bandwidth: Range Multicast is less demanding on server bandwidth
because many new service requests can be satisfied by having the clients to join an on-going

multicast instead of demanding a new video stream from the server. Furthermore, since
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clients typically have a good chance to join an existing multicast after performing a VCR
operation, a new video stream is not necessary to support the resume operations. This

feature is particularly critical to applications with a high degree of video browsing activity.

o Improved VCR-like interaction: Since shared buffer space can be used more efficiently and
cost-effectively than private buffers as in client-controlled techniques, each client effectively

sees a larger caching space and therefore can perform longer-duration VCR actions.

e More versatile: Since Range Multicast does not require the clients to maintain a local buffer
for VCR interactivity, this scheme is suitable for clients with limited resources such as PDA’s

(personal digital assistants).

o Feasible implementation on the Internet: Many works on VOD assume the existence of IP
Multicast [15, 34]. However, IP Multicast currently is not widely available. Range Multicast
is an overlay approach which implements the multicast paradigm based on IP Unicast only,

and therefore easily deployable on the current Internet.

We carried out a performance study to investigate the potential of the Range Multicast ap-
proach. In this study, Range Multicast can provide a throughput 400% higher than the conventional
prefix caching proxy scheme. Under most scenarios studies, about 30-40% of the VCR requests
are fully served by the aggregate cache and among those not fully served by the cache, the server
load is saved by 30-50%. Range Multicast is also stable under unpredictable client interactivity
behaviors. For better performance, it can be integrated with a VCR client-controlled technique
taking advantage of the local buffer at the client and the properties provided by Range Multicast

as listed above.
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