An Adaptive Query Management Technique for Real-Time

Monitoring of Spatial Regions in Mobile Database Systems

Ying Cai

*

Kien A. Hua

School of Electrical Engineering and Computer Science
University of Central Florida
Orlando, FL 32816-2362, U.S.A.
E-mail: {cai, kienhua}@cs.ucf.edu

Abstract

This paper presents a technique for real-time moni-
toring of mobile objects in user-defined spatial regions.
We refer to such regions as range-monitoring queries.
Unlike conventional queries, which are based on an in-
stant of the database at some moment in time, range-
monitoring queries are continuous for monitoring pur-
poses. Such queries can last for an extended period
of time; and many can be active simultaneously. We
present an efficient technique for managing such con-
tinuous queries. This capability is not available in
conventional database management systems which are
designed to manage data, not queries. In our envi-
ronment, each mobile object is associated with o res-
ident domain and is made aware of the monitoring
areas inside it. When an object moves, it monitors its
spatial relationship with its known monitoring areas.
If it crosses any quary boundaries, it reports server
and the server updates the affected query results ac-
cordingly. When an objet moves out of its resident
domain, the server will determine a new one for the
object. This process is supported efficiently with our
new index structure called Domain tree. Our simula-
tion results indicate that our technique is many times
better than a recent method in terms of communication
cost and server processing cost.

1 Introduction

Many believe that the wireless revolution will bring
even a more significant impact on society than to-
day’s commercial Internet. This emergent technology
and the rapid advances in positioning systems have
spurred a great research interest on database systems
for location-based services. A major challenge of de-
signing such a database system is to support range

*This research is partially supported by the National Science
Foundation grant ANI-0088026.

queries over the continuously moving objects. That is,
given a rectangular area as a query, we want to retrieve
objects that are currently inside the query window. A
straightforward solution is to index the locations of
mobile objects using some spatial access method [1],
and update the index tree each time a mobile object
moves. This simple strategy, however, requires ex-
cessive location updates and can quickly exhaust the
battery power of the mobile units. In addition, when
the number of mobile objects is large, the server also
likely becomes a bottleneck since it has to process ev-
ery move of the mobile objects. We note that each
update consists of two expenses - the communication
cost associated with reporting the new location to the
server, and the cost of updating the index at the server
side to reflect the new location.

To reduce the update costs, we can model the ve-
locity of the object as a linear function of time f(t),
and use it to estimate the position of the object at
different times. This scheme avoids excessive loca-
tion updates because no explicit update is required
unless the parameters of f(t) change [2]. To support
range queries efficiently, many techniques can be used
to index the trajectory lines of each object. For ex-
amples, we can transform line trajectories into points
in a higher-dimensional space, and then index these
points using regular spatial indices [3]. The trajec-
tories can also be indexed through their bounding
rectangles that are time-parameterized. This indexing
method was called TPR-tree in [4]. Another indexing
scheme using external range trees [5] was presented in
[6]. The techniques in [7] and [8] allow range queries
performed over historical data. Other recent works
on supporting spatio-temporal data can be found in
[9, 10, 11].

It seems that with all these techniques, the prob-



lem of processing range queries over moving objects
has been solved. However, in addition to retrieving
objects currently inside a query window, many appli-
cations also need to monitor the window population
over a time period. For instances, we might want to
notify tourists of the updated information about their
nearby hotels and restaurants as they traverse differ-
ent regions. It is also desirable if we can provide an
alert in case anyone enters into some dangerous zone.
Similarly, we might want to continuously monitor the
traffic condition and provide alert in case the number
of vehicles within some area exceeds a certain thresh-
old. In these applications, the system must be able to
provide the accurate query results and update them
in real time whenever some mobile object enters or
exits the region defined by the query. We refer to
this class of queries as range-monitoring queries in
this paper. Unlike the conventional range query, a
range-monitoring query is removed from the system
only when the user explicitly ends the query. Clearly,
the aforementioned techniques for indexing mobile ob-
jects are not suited to processing such queries:

e First, these schemes compute query results that
are valid only for a certain point in time and
quickly become obsolete as the objects continue
to move. To keep the query result current over
a period of time, the same query would have to
be issued repeatedly at a very high rate. This
brute-force approach would exhaust the server re-
sources, and still cannot provide information in
real time.

e Second, the location updates of these techniques
are based on velocity models and therefore, can
provide only approximated query results. In
other words, a given query result does not guar-
antee that all objects within the query range are
reported; nor all the objects reported are indeed
in the query region.

In this paper, we focus on efficient techniques for
real-time processing of range-monitoring queries. In
particular, we consider a location-based service capa-
ble of supporting a large number of mobile objects and
monitoring queries. We want to be able to monitor
each query region, and continuously update the query
results in real time. To achieve this goal, we propose
an efficient SQM (Spatial Query Management) tech-
nique. It gets its name from the fact that conventional
database management systems are designed to man-
age data, not queries. Since range-monitoring queries
are continuous queries, many can be active simultane-
ously. Existing database management systems need to

be extended with the real-time query management ca-
pability in order to support range-monitoring queries.
Under SQM, the database map is partitioned into
many disjoint subdomains and each mobile object is
assigned a subdomain as its resident domain. As an
object moves, it monitors its position against the mon-
itoring areas inside its resident domain. If it crosses
any query boundaries, it reports server to update the
affected query results. When an object moves out of
its current resident domain, the server will determine
a new resident domain for this object. This opera-
tion is supported efficiently by organizing the domain
decomposition hierarchy using D-Tree (Domain Tree).
Our simulation study shows that this technique can be
used to provide accurate query results and real-time
monitoring updates in a large scale mobile database
system.

The remainder of this paper proceeds as follows.
We discuss more related techniques in Section 2. Our
technique, SQM, for real-time monitoring queries is
presented in Section 3. In Section 4, we introduce the
D-tree indexing technique. The performance results
are examined in Section 5. Finally we give our con-
cluding remarks in Section 6.

2 Related Works

The work most related to our research is the Q-
index technique presented in [12]. This method in-
dexes the rectangular-shaped queries, at the server
side, using an R-tree [13] or some other spatial index-
ing technique. When an object moves, its new location
is used to search this access structure to find the af-
fected queries, and revise their results accordingly. To
avoid excessive location updates, the authors proposed
to assign a safe region for each mobile object. A safe
region is either a circular or rectangular region that
does not overlap with any query boundaries. Figure 1
shows mobile object A with its rectangular and circu-
lar safe regions. The latter is centered at the current
location of object A. This approach allows an object
not to report server its location as long as it moves
inside its safe region. Unfortunately, determining a
safe region requires intensive computation. For exam-
ple, computing a rectangular safe region takes from
O(n) to O(nlog®n), where n is the number of queries
[12]. We note that a new safe region has to be com-
puted when a mobile object moves out of its current
safe region. This problem is aggravated considering
that adding a new monitoring query could affect all
existing safe regions and as a result, the safe regions
for all objects have to be re-computed. Therefore, it
is unlikely that this approach can be used in a large



scale real-time mobile system.

Rectangular

Safe Reg\i:)n. ’Q—l‘
. Q

Qs U . |
P — o |
Circular
Safe Region, Q

Figure 1: Examples of Safe Regions
3 Proposed Technique: SQM

In this section, we present the Spatial Query Man-
agement (SQM) technique for scalable processing of
range-monitoring queries. In SQM, the entire domain
space is partitioned into a set of disjoint subdomains.
Figure 2 shows an example of such partitioning. When
a query overlaps with a subdomain, the overlapping
area is called a monitoring region inside the subdo-
main and the query is a relevant query to the monitor-
ing region. Since a query makes one monitoring region
for each subdomain it overlaps, a spanning query has
more than one monitoring region. For example, @,
makes only one monitoring region, Ry, while Q2 has
two monitoring regions, Ry; and Ras. On the other
hand, a monitoring region can have multiple relevant
queries if these queries overlap the same area in a sub-
domain. For example, both Q3 and ()4 are relevant to
the monitoring region R32. At any one time, a mobile
object is in some subdomain known as its resident do-
main. When an object exits its resident domain, the
object reports its new location to the server. In re-
sponse, the server informs the mobile object of its new
resident domain and the monitoring regions inside it.
As an object moves about its resident domain, it mon-
itors its spatial relationships with its cached monitor-
ing regions and updates server its location when the
object enters or exits these regions. The server will
then updates the affected query results accordingly.

3.1 Server Design

At the server side, the subdomains and the moni-
toring regions are maintained using an index structure
called D-tree (Domain tree), which will be presented
later. We designed this spatial index structure to sup-
port continuous range queries. In addition, a binary
relation, called relevance table, is used to track mon-
itoring regions and their relevant queries. Each tuple
of the table stores one monitoring region and one rel-
evant query. Many access structures can be used to
retrieve the relevant queries efficiently given a mon-

itoring region. For instances, we can hash or build
a BT-tree index on the monitoring-region field. Al-
ternatively, we can also store them in an adjacency
matrix instead of a relational table. Thus, we will re-
fer to this structure as a table and will not concern
ourselves with the implementation details.

When a new range query ¢ is submitted, the server
searches the D-tree for the subdomains it overlaps.
For each such subdomain, it determines their overlap-
ping area, i.e., the monitoring region of this query in
this subdomain. The server then inserts a new tuple,
(r,q), to the relevance table, where r is the monitoring
region. If this is a new distinct monitoring region, it is
also inserted to the D-tree and the server broadcasts a
message AddM onitoringRegion(r) to inform the mo-
bile units that a new monitoring region is created. We
will discuss how mobile units respond to server mes-
sages shortly. Since a typical mobile device has very
limited computing resources, the number of the mon-
itoring regions in a subdomain should be kept small.
When this size exceeds a predetermined split threshold,
the corresponding subdomain, say d, is further parti-
tioned into two subdomains d; and ds. When this hap-
pens, the server broadcasts a SplitDomain(d,d;,ds)
message to update the affected mobile objects.

When a query ¢ is terminated, the server searches
the relevance table and deletes all tuples containing
g as the relevant query. If a tuple, say (r,q), is
deleted, and no other tuples in the table contain mon-
itoring region r, then r is also deleted from the D-
tree. In this case, the server broadcasts a message
Delete M onitoringRegion(r). Deleting a monitoring
region might cause a subdomain to underflow. To pre-
vent sparse subdomains, we merge a subdomain with
its split counterpart if the aggregate size of their mon-
itoring regions drops below a predetermined merge
threshold. In this case, the server broadcasts the mes-
sage MergeDomain(dy,ds,l), where d; and dy are the
two merging subdomains, and [ is the list of monitor-
ing regions in the merged domain.

We assume that each mobile object is identified by
a unique identifier. The server expects two types of
messages from the mobile units, and processes them
accordingly as follows:

e When an object oid enters or exits a monitor-
ing region r, the mobile device sends a mes-
sage UpdateQueryResult(r, oid, p) to the server,
where p is the current position of the object.
In response, the server searches the table for all
queries that are relevant to this monitoring re-



Q

Q

Q

Q,

|:“>

domain and query
decomposition

subdomainl subdomain2 subdomain3

R

1

31

21 22 41

subdomain4 i subdomain5 i subdomain6

Figure 2: An Example of Domain Decomposition

gion. If a relevant query contains position p, then
the object should be in its query result. Other-
wise, delete oid from its query results.

e When a mobile object oid initializes itself or exits

its current resident domain, the mobile unit sends
the message RequestResidentDomain(oid,p),
where p is the current position of the mobile ob-
ject. In response, the server searches the D-tree
to look up the subdomain that contains loca-
tion p. The server then broadcasts the message
SetResidentDomain(oid, d,l), where d and [ de-
note the new resident domain of object oid and
its new list of monitoring regions, respectively.

3.2 Mobile Unit Design

The following notations are used in the discussion

of the mobile object:

myID : the unique identifier of this object.
myPos : the current position of this object.

myDomain : the current resident domain of this
object.

myMRs : the list of monitoring regions inside
myDomain.

The design of a mobile device consists of three main

components: Initialization, MessageListener, and Re-
gionMonitor. They are described as follows.

Initialization: This procedure is called when the

mobile unit is powered on:

1.
2.

Set both myDomain and myM Rs to null.
Spawn thread MessageListener.

Send RequestResidentDomain(mylD,myPos)
message to the server.

Spawn thread RegionM onitor.

MessageListener:

The mobile unit listens to

these messages and processes accordingly:

e SetResidentDomain(oid,d,l): If oid == mylID,

then do the following;:

— Set OldDomain = myDomain.

— Set myDomain = d.

— Set myMRs = 1.

— If OldDomain null (i.e., the ob-
ject is in the initialization stage), check
each monitoring region r in myM Rs and
send UpdateQueryResult(r,myl D, myPos)
message to server if myPos is inside 7.

e AddMonitoringRegion(r): If monitoring region

r is inside myDomain, then do the following:

— Add r to myM Rs.
— Send UpdateQueryResult(r,myID,myPos)
message to server if r contains myPos.

e DeleteMonitoringRegion(r): Delete monitoring

region r from myM Rs if r is inside myDomain.

e SplitDomain(d,dy,ds): If myDomain == d,
then do the following steps:

— If subdomain d; contains myPos,

set myDomain = di; otherwise, set

myDomain = do.

— For each monitoring region r in myM Rs,
delete 7 if it does not overlap with the
new myDomain. Otherwise, replace r with
the portion of the rectangle that is inside
myDomain.

e MergeDomain(dy,ds,l): If myDomain overlaps

with d; or ds, do the following steps:

— Set myDomain to be the merge of d; and
ds.
— Set myMRs = 1.

RegionMonitor : The mobile unit constantly per-

forms the following steps when it moves:



e If the object enters or exits any monitor-
ing region r in myMRs, then send message
UpdateQueryResult (r,myID,myPos) to up-
date the server.

e If the object exits myDomain, then send
RequestResidentDomain(mylID,myPos) mes-
sage to the server.

4 D-Tree: Domain Tree

A D-tree consists of two types of node: domain
node and data node. All internal nodes are domain
nodes while all external nodes are data nodes. The
data structure for a domain node is an array of en-
tries, each has the form (R, P). R holds the upper-
left and lower-right coordinates of a rectangular sub-
domain; and P links to either another domain node
or a data node. Each domain node represents a de-
composition of a parent subdomain. As illustrated in
Figure 3, the decomposition of the parent subdomain
dy consists of the subdomains dy1, di21, and dy22. A
data node stores the monitoring regions that are in-
side its parent subdomain. A data node also contains
an array of entry (R, null), where R holds a monitor-
ing region. As an example, the data node pointed at
by the subdomain d;;, as shown in Figure 3, is used
to record all monitoring regions within dy1. Thus, the
domain decomposition hierarchy is captured in the in-
ternal nodes while each external node represents the
monitoring regions inside a subdomain.

The size of the domain nodes can be determined
based on the paging system of the host computer to
optimize its performance. However, the size of the
data nodes should depend on the computing capabil-
ity of the mobile devices, i.e., a mobile device can han-
dle only limited number of monitoring regions at one
time. We can set this parameter by specifying the
desired split threshold, i.e., the maximum number of
monitoring regions allowed in any subdomain.

In the following subsections, we present the D-tree
operations in detail and discuss how they are used with
the relevance table to support range-monitoring query.
The following notations are used in the discussion:

e Given an entry (R,P) in a D-tree node,
R.child_node denotes the child node pointed at
by P.

e Given a D-tree node D, D.parent refers to the
parent node who has an entry pointing to D.

e Given a D-tree node D, D.domain is the decom-
posed domain represented by the node.

e Given two rectangles, Ry and Ry, Ry N Ry repre-
sents their overlapping area.

4.1 Search

Upon receiving RequestResident Domain(oid, p)
message, the server needs to search the D-tree for
the resident domain and its contained monitoring re-
gions for the mobile object oid. This is done by calling
Search(root, p), where root is the root of the D-tree
and p is the current position of the mobile object. The
search algorithm is given below:

Search(D_tree_node, p): Search for the subdo-
main that contains position p, and the monitoring re-
gions inside the subdomain

1. Search for the entry, say (R, P), in D_tree_node
such that rectangle R contains position p.

2. If R.child_node is a data node, then return R and
the monitoring regions stored in R.child_-node.

3. Otherwise, call Search(R.child_node,p).

4.2 Insert

A D-tree is initialized as a root node with one empty
data node. That is, the first entry of the root is set to
(R, P), where R is the entire domain and P points at
an empty data node. When a new query arrives, the
server descends the D-tree to look for the data nodes
whose subdomains overlap with the query area. For
each monitoring region, say r, created by the query, a
new tuple (r,q) is added to the relevance table. The
monitoring region is also inserted to the D-tree if it is
a new distinct one.

An insert might cause a data node to overflow
and its domain is then split. The monitoring regions
spanning over the new subdomains are decomposed
so that each new monitoring region is contained en-
tirely by only one subdomain. When this happens,
the relevance table is updated accordingly. We note
that a split of a D-tree node may cause its parent
node to overflow and split. This effect can perco-
lates up and causes the root node to split. Each
time a data node is split, the server broadcasts the
message Split Domain(d,d1, dz2) to notify mobile units
that some domain d has been decomposed into d; and
d>. We have discussed how a mobile unit reacts to
such a message.

A number of decomposition schemes can be used
to split a domain. A simple approach is center split,



Domain D

di1 : d21

d1 ¢ di2 d22

D issplitinto d1 and d2
dlissplitinto d11 and d12
d2issplitinto d21 and d22
d12is split into d121 and d122

domain node

data node

Figure 3: A D-tree Example

i.e., split the domain vertically or horizontally into two
equal-sized subdomains. The direction of the split can
be determined by comparing the dimensions of the do-
main. For instance, we can split on the longer dimen-
sion to avoid having long and narrow subdomains.

When a new query q arrives, we call Insert(root, q),
where root is the root of the D-tree. We present the
algorithm for this operation as follows.

Insert(D, q): Insert a query ¢ into a D-tree rooted
at node D

1. If D is a data node, then do the following:

e Insert a new tuple, (¢N D.domain, q), to the
relevance table.
e If no monitoring region in D is equal to ¢ N
D.domain, then do the following:
— Allocate a new entry in D and set it
equal to (¢ N D.domain,null).
— If D is full, call SplitNode(D).
2. Otherwise, for each entry (R, P) in D, if R over-
laps with ¢, then call Insert(R.child-node, q).

SplitNode(D): Split D-tree node D

1. If D is the root, create a new root and make D
its only child.

2. Look for the entry in D.parent, say (R, P), such
that P points to D.

3. Split domain R into two subdomains, R; and R,
then do the following;:

e Broadcast message SplitDomain(R, R, R,)
if D is a data node.

e Create two new D-tree nodes, left and
right.

e Replace the entry (R,P) in D.parent by
(R, B), and direct P, to point to left.

e Allocate a new entry (R, P.) in D.parent,
and direct P, to point to right.

4. For each valid entry (R;, P;) in D, do the follow-
ing:

o If R; spatially overlaps with R; and rectangle
R; N R; does not exist in le ft, then allocate
a new entry in le ft and set it equal to (R; N
Rl; Pz) .

o If R, spatially overlaps with R, and rect-
angle R; N R, does not exist in right, then
allocate a new entry in right and set it equal
to (R; N R,, P;).

e If D is a data node and R; spans over both
R; and R,, then for each tuple (R, Q) in the
relevance table, do the following if R == R;:

— Replace tuple (R;, Q) with (R; N Ry, Q).
— Add a new tuple, (R; N R,,Q), to the
table.
5. If D.parent is full, call SplitNode(D.parent).

6. Discard D.

4.3 Delete

The Delete operation is used when a range-
monitoring query is terminated. A delete may cause
some data nodes to underflow; and the corresponding
subdomains and their split counterparts need to be
merged. This is a reverse function of splitting a node
in the insert operation. When two data nodes are
merged, the mobile objects are notified by a broad-
cast message MergeDomain(dy,ds,l), where di and
ds are the subdomains to be merged, and [ is the new
list of monitoring queries inside the merged domain.
Deleting a ¢ is done by calling Delete(root, q), where
root is the root of the D-tree. Due to the space limita-
tion, we omit the detail algorithms for this operation.
5 Performance Study

To evaluate the performance of the proposed SQM
approach, we implemented simulators to compare it
with the Q-index technique. The performance metrics
selected for this study are as follows:



Server Processing Cost: This cost is measured as the
total number of index-tree nodes accessed in order
to process requests from the mobile objects. The
cost of searching the Relevance Table is ignored
because it can be implemented as a hash file, and
takes only O(1) to retrieve the relevant quries for
a given monitoring region.

Server Communication Cost: This cost is measured
as the total number of messages transmitted from
the server (to the mobile units).

Mobile Communication Cost: This cost is measured
as the total number of messages sent by the mo-
bile objects to the server.

5.1 Simulation Model

We implemented the D-tree using a center-split
strategy as discussed in Section 4 - splitting at the
middle of the longer dimension. The maximum num-
ber of entries in both data node and domain node is
set to be 50. D-tree is used in both SQM and Q-
index to index the monitoring regions. This allows us
to compare the server computation costs of the two
techniques fairly. Under Q-index scheme, we compute
the largest circular region within the resident domain
of each mobile object as its safe region, such that the
safe region does not overlap with the boundaries of
any query. We choose not to use rectangular safe re-
gion because its algorithm is much more complicated
while the resulted performance is similar to that of us-
ing circular safe region, as indicated in [12]. We note
that we actually compare SQM with an improved ver-
sion of Q-index in this study. Although the safe re-
gion determined by this approach is suboptimal, the
D-tree approach limits the consideration to only the
monitoring regions inside a subdomain. It would have
required the original Q-index technique to examine all
the queries for the safe region of each mobile object.
Obviously, this is not feasible for a real-time system.
In fact, the technique discussed in [12] determined the
safe region only once at system startup due to the
high cost. The algorithm has a complexity of O(n?),
where n is the total number of queries. It is not clear
how they handle the situation when an object exits
its current safe region. With the new strategy, we can
compute a new safe region easily.

Other simulation parameters are as follows. We
generate 1,000 mobile objects and place them in a
uniform distribution over a rectangular domain of
[0...10K, 0...10K]. The velocities of these mobile ob-
jects follow a zipf distribution with a deviation of 0.7,

and fall in between 0 and 20 per time unit. The ve-
locity of each object is constant through out each sim-
ulation run. Their initial moving directions are set
randomly. Each object moves linearly until it reaches
the boundary of a subdomain, it then changes its di-
rection and continues to move at the same speed. This
process is repeated until the simulation is ended.

For each simulation run, we generate a certain num-
ber of square range-monitoring queries, from 10,000 to
100,000. The sizes of these monitoring squares range
from 1 x 1 to 100 x 100 and they are placed in the
domain space following a uniform distribution. Each
simulation run consists of two phases. During the first
phase, a new query is inserted every time unit until
we have inserted the desired number of queries. Dur-
ing the second phase, the objects continue to move
around, but we do not add any more query. This
phase lasts 10,000 time units. The reason for separat-
ing these two phases is due to the fact that Q-index
performs poorly whenever the system experiences new
queries because it has to re-compute the safe regions
for all mobile objects. It is not interesting to compare
SQM with Q-index under such circumstances.

5.2 Simulation Results

The performance data collected in the second phase
are plotted in Figure 4(a), (b), and (c). All three
figures indicate that SQM outperforms Q-index by a
very wide margin. We explain them briefly as fol-
lows. First, when a mobile object exits its safe re-
gion, Q-index needs to search the D-tree to determine
if it enters or exits any monitoring region for poten-
tial update of query results. In contrast, a mobile
object under SQM provides the affected monitoring
region directly, allowing the server to update query
results without looking up the D-tree. Second, since
a safe region cannot overlap with any query bound-
aries, it is generally many times smaller than the con-
taining subdomain. Therefore, a mobile object under
Q-index needs to communicate with the server much
more frequently for its new safe region. This presents
a signifant more workload to the server. We observe
that both the communication costs and server process-
ing cost increase with the increases in the number of
queries. This is due to the fact that increasing the
number of queries reduces the average size of the safe
regions, and therefore the chance of requesting a new
safe region becomes higher.

6 Concluding Remarks
Technologies such as Global Positioning Systems,

as well as technologies embedded in the wireless con-
nectivity infrastructures, will enable the positioning of



1000 T T T T T T T T 100

T —

--------

-----

jes sent by server (milions)

Number of index nodes accessed (millions)

\ %
Number of messag

o1 L L L L L L L L 01

,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

jes sent by mabile objects (milions)
8

Number of messag:
.
L *, 4
8 \\ \ ]
st ' 4

10 20 30 40 50 60 70 80 9 100 10 20 30
Number of monitoring queries (thousands)

(a) Server processing cost

40 50 60
Number of monitoring queries (thousands)

(b) Server communication cost

0

70 80 % 100 10 20 30 70 80 %

40 5 6
Number of monitoring queries (thousands)

(c) Mobile communication cost

Figure 4: Effect of monitoring query number

a substantial portion of the appliances and their users.
In this paper, we address the challenges of providing
region-based monitoring services that require contin-
uous real-time updates of the query results. Our tech-
nique, called SQM (Spatial Query Management), has
the following advantages:

Power Conservation : Since a mobile device does
not need to constantly report its position, the
power conservation is excellent.

Scalability : Since the server does not need to mon-
itor the mobile objects and track the query re-
sults, SQM is highly scalable to support a very
large user community.

Reliability : SQM is more reliable than techniques
based on position estimation because it is not af-
fected by estimation errors.

In addition to the above benefits, SQM is simple
to implement. To assess the performance of SQM,
we implemented simulators to compare it with an im-
proved version of Q-index. Our simulation results,
under various workloads, indicate that SQM is sub-
stantially more scalable and incurs significantly less
communication cost and server processing cost.

References

[1] V. Gaede and O. Gunther. Multidimensional access
methods. Computing Surveys, 30:170-231, 1998.

[2] O. Wolfson, B. Xu, S. Chamberlain, and L. Jiang.
Moving objects databases: issues and solutions.
In Proc. of the 10th Int’l Conference on Scientific
and Statistical Database Management, pages 111-122,
July 1998.

(3]

[4]

[5]

[10]

[11]

[12]

[13]

G. Kollios, D. Gunopulos, and V. J. Tsotras. On
indexing mobile objects. In Proc. of ACM PODS’99,
pages 261-272, 1999.

S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A.
Lopez. Indexing the positions of continuously moving
objects. In ACM Proc. of SIGMOD’00, pages 331—
342, 2000.

L. Arge, V. Samoladas, and J.S. Vitter. On two-
dimensional indexability and optimal range searching
indexing. In Proc. of ACM PODS’99, pages 346-357,
1999.

P. K. Argarwal, L. Arge, and J. Erickson. Indexing
moving points. In Proc. of ACM PODS’00, pages
175-186, 2000.

D. Pfoser, Y. Theodoidis, and C. S. Jensen. Indexing
trajectories of moving point objects. In Chorochronos
Technical Report, CH-99-3, 1999.

D. Pfoser, C. S. Jensen, and Y. Theodoidis. Novel
approaches in query processing for moving objects.
In Proc. of VLDB’00, 2000.

J. Tayeb, O. Ulusoy, and O. Wolfson. A quadtree-
based dynamic attribute indexing method. The Com-
puter Journal, 41(3):185-200, 1998.

A. Kumar, V. J. Tsotras, and C. Faloutsos. Design-
ing access methods for bitemporal databases. IEEE
TKDE, 10(1):1-20, 1998.

L. Forlizzi, R. H. Guting, E. Nardelli, and M. Schei-
der. A data model and data structures for moving ob-
jects databases. In Proc. of ACM SIGMOD’00, pages
319-330, 2000.

S. Prabhakar, Y. Xia, D. Kalashnikov, W. G. Aref,
and S. hambrusch. Queries as data and expanding
indexes: techniques for continuous queries on moving
objects. In TR., Dept. of Computer Science, Purdue
University, 2000.

A. Guttman. R-tree: A dynamic index structure
for spatial searching. In Proc. of ACM SIGMOD’84,
pages 47-57, 1984.

100



