
Layered Range Multicast for Video On Demand

Duc A. Tran Kien A. Hua Tai T. Do
School of Electrical Engineering and Computer Science
University of Central Florida, Orlando, FL 32816, USA

Email:
�
dtran,kienhua,tdo � @cs.ucf.edu

Abstract— We focus on the problem of providing quality-of-
service guarantee, scalability, and on-demand property to video
streaming systems. We propose a solution called Layered Range
Multicast (LRM). LRM allows transmitting a range of data to a
multicast group’s members, which helps clients who request for
service at different times join a same multicast efficiently with-
out additional server bandwidth allocation. This is more advanced
than the conventional multicast in which a late client joining an ex-
isting multicast, without bandwidth support from the server, must
miss a certain portion of the video requested. Another advantage
of LRM is its capability to support clients requesting various levels
of service quality. In addition, LRM does not assume the existence
of IP Multicast and therefore it can be implemented on the current
Internet without degrading to the very inefficient centralized ap-
proach. Our performance study results confirm the above benefits.

I. INTRODUCTION

Providing video-on-demand (VOD) services to clients hav-
ing different resource constraints is challenging since no single
transmission rate could fully satisfy all those clients. Hetero-
geneity supporting solutions for multimedia communications
have been proposed [11], [19], [2], [12], however, they do not
scale well with the number of client requests. For instance, re-
quests arriving at different times are not easily coalesced into a
batch so that the server can serve them together using a multi-
cast address. They are most likely to be served using separate
video streams, which dramatically exhausts the server band-
width. On the other hand, a VOD system could reduce the de-
mand on the server bandwidth by employing techniques such
as client caching [8], [15], [14], proxy caching [18], [20], [17],
network caching [9], or server batching [1], [5]. However, it
is not clear how these techniques are extended to address the
heterogeneity in services requested by the clients.

Our target in this paper is to develop a unified communica-
tion paradigm designed to provide both QoS guarantees and
scalability to VOD systems. Specifically, we propose a scheme
called Layered Range Multicast (LRM). This name alludes to
two important points of our approach:
� Unlike the traditional video multicast, a “range multicast”

transmits a range of continuous frames to the participating
clients at any one time, each frame for a particular client.
Consequently, as long as the requested play point is in the
range, new clients can join a multicast group at their own
time and still receive the entire video without additional
server bandwidth. This feature offers at least two bene-
fits: (1) The service latency is shortened since clients may

This research is partially supported by the US National Science Foundation
grant ANI-0088026.

join an existing multicast late instead of waiting for the
next available server stream; (2) The demand on the server
bandwidth is alleviated because a multicast can expand dy-
namically to accommodate new service requests avoiding
the need for new server streams.� We propose to solve the heterogeneity problem by using
a layered video coding approach, as in [12], [11], [19],
however with a novel layered transmission and caching
scheme. Layered multicast provides a finer granularity of
control compared to using a single video stream since a
client is able to subscribe to one or more layers depending
on its capability.

LRM is realized by deploying an overlay of caching nodes
on the Internet. These nodes play as application-level routers to
implement the multicast paradigm. The idea of LRM is as fol-
lows. We start with a simple case where a client requests a video
having some level of QoS and receives it in a video stream from
the server through a number of caching nodes. This stream con-
sists of a base layer and one or more enhancement layers, which
corresponds to the requested QoS. As these layers are trans-
mitted toward the client, intermediate nodes cache them into a
fixed-size sliding buffer. Suppose at a time later another client
requests the same video but possibly with a different QoS re-
quirement. This new client looks for nodes currently holding in
their cache the first frames of constituent layers of the requested
QoS. If successful, the new client will join those nodes to get
the layers of data needed. As sent to the new client from each
of the joined nodes, the data are cached into intermediate nodes
on the delivery path similarly to the simple case above. These
cached data will be used later for providing necessary layers to
subsequent clients. The rationale for using a caching buffer at
each node LRM is to prolong the usefulness of a multicast, in
other words, to increase the range of data available on that mul-
ticast. The larger this range, the more successful new clients
join the multicast. We note that in IP multicast, the “range” of
data transferred on any multicast is a single packet. Obviously,
this conventional solution is limited in supporting requests ar-
riving at different times.

Besides having the advantages of better reducing server
bandwidth and accommodating client heterogeneity, LRM pro-
vides a feasible and efficient way of implementing the multi-
cast paradigm on the Internet. Indeed, most existing VOD or
layered multicast techniques assume the existence of IP Mul-
ticast [6]. However, IP Multicast deployment on the Internet
has been slow and even today remains severely limited in scope
and reach. LRM provides an efficient unicast-based multicast
implementation by employing overlay nodes as the application-

level routers.
In the following section, we describe the system model as-

sumed by LRM. Next in Section III, we provide LRM protocol
in detail. We then explore its performance through simulation
in Section IV. Finally, in Section V, we give concluding remarks
and pointers to our future work.

II. SYSTEM FRAMEWORK

In this section, we present the network and QoS models used
in the Layered Range Multicast (LRM) approach.

A. Network Model

In the LRM environment, LRM-enabled nodes are placed
across the Internet, such as where distributed content servers
are located, and interconnected using unicast paths to imple-
ment the range-multicast layer. For ease of exposition, we refer
to the LRM-enabled nodes simply as “nodes” unless otherwise
specified. They are classified into two types: root and non-root.
The root node is the front-end node for the video server to com-
municate with the rest of the network. A non-root node may
or may not be representative for a local community of clients.
When representing a community including a client � , a non-
root node is called the representative of � .

In the absence of widely available IP multicast services on
the Internet, using the overlay architecture is advantageous. In-
deed, the multicast paradigm can be efficiently implemented on
the Internet, based on IP Unicast only, to reduce the server bot-
tleneck. In this architecture, overlay nodes play as application-
level routers. On the other hand, the deployment of overlay
nodes incurs the cost of maintaining the nodes and overcom-
ing their failures. Sharing the same insight in [10], we believe
that one-time hardware costs do not drive the total cost of the
system. Maintenance costs are cut by simplifying node deploy-
ment. Overlay failures have two kinds of impact: on the overlay
topology and on the on-going services. Several efficient solu-
tions [7], [13], [10], [3] have been proposed for building fault-
tolerant overlays whose topology is re-configurable on failures.
Such a solution can be appropriately adopted to maintain the
Range Multicast overlay. For on-going services that may be in-
terrupted due to a node failure, all the adjacent nodes that have
been receiving data from this failed node are temporarily re-
connected to the root node to receive the remaining data. Even
though possibly sub-optimal, this solution gives a simple and
quick way to guarantee the continuity of the client playback.

The above issues are important and their solutions can be
employed in the LRM architecture. However, due to the lack of
space, we skip discussing them in this paper, thus for clarifica-
tion, we assume that the LRM overlay has a fixed and failure-
free topology.

B. QoS Model

We assume that each video stream � is hierarchically en-
coded into � layers: a basic layer ��� and �
	�� enhancement
layers ��
 , ��� , .., ��� . � is decoded using ��� and probably a
number of enhancement layers based on the quality required.
For example, decoding only the basic layer provides the mini-
mum quality of the video, while decoding all the layers provides

the best quality. Therefore the video � has � levels of quality;
level � (denoted by ��� =

� ��� , ��
 , .., �����) needs a decoding of
the first � layers.

At the server side, a video is transmitted in a stream of pack-
ets. Each packet includes a header field specifying what layer
it belongs to. The sequence of packets belonging to a layer � is
called a sub-stream corresponding to layer � . A client requests
a video having a certain level of QoS which best matches the
client’s constrained resource. This level may also depends on
the service pricing policy. As an example, a client might want
to watch a video in black and white colors because its budget is
not affordable for a higher quality, while a richer client might
want to see that video of the best quality. For simplicity, in its
request a client specifies ��� - the quality level � of the video
� it wants to have. If the service does not satisfy the required
QoS it is the client’s responsibility to explicitly make another
request (for a lower quality) or to quit the system. This QoS
model for client requests is similar to that employed in [16].

III. LAYERED RANGE MULTICAST

In this section, we present first the design of the overlay
nodes, and then the service procedure for client requests.

A. Overlay Cache Design

LRM does not request every node to cache. For instance,
the root node does not need to cache. For those non-root nodes
caching, an amount of the local storage is reserved for caching
purposes. The caching space per node is organized as an array
of equally sized chunks � � , �
 , .., ��� . Such a chunk ��� is
further divided into a number of sub-chunks ���� , ��
� , .., ���� ,
each ���� associated with a layer � and used to cache data from
a stream corresponding to that layer. For instance, if a node
decides to cache a video stream ��� (i.e., video � of quality
level �), the sub-stream corresponding to layer � (�! � � , " , ..,
���) will be cached into sub-chunk � �� for some #%$
& . If �('
� , this sub-stream will not be cached.

The reason of having a two-level (chunk/sub-schunk) cache
organization is to increase each node’s throughput, hence the
number of chunks & in a node is dependent on how many
streams that node can support simultaneously. Once this param-
eter has been determined, the available caching space is equally
divided among the chunks. The number of sub-chunks � in a
chunk must be no more than the maximum number of video
layers. The size of a sub-chunk does not affect the correctness
of the protocol, however a proper sizing results in a high uti-
lization of the node’s cache. We propose to size a sub-chunk
corresponding to a layer proportionally to the bandwidth re-
quirement for that layer. This is an intuitive way, but by no
means the optimal, to choose the sub-chunk size. Our rationale
is that if the first frame of a layer of a video stream exists in a
sub-chunk, by using the proposed sub-chunk sizing, it is most
likely that the first frames of the other layers also exist in the
corresponding sub-chunks. Effectively, this helps increase the
number of full layers that a node can provide to new clients.
Without loss of generality, we denote the size of a sub-chunk
corresponding to layer � by)+*-,/./01�12 .

FREE

HOTBUSY

Cache a
stream

full of data

Last served client
quits service

Cache another
stream

Service a
downstream client

Service a new
downstream client

initial

Fig. 1. State Transition in A Sub-chunk

The algorithm to cache a stream into sub-chunks is as fol-
lows. When a new stream ��� arrives at a node 3 at time 465 ,
for each sub-stream corresponding to layer � of �7� (�� � � ,
" , .., ���), 3 finds an empty sub-chunk corresponding to layer
� for caching ��� . If there is no such empty sub-chunk, 3 se-
lects the sub-chunk corresponding to layer � that has not been
used for servicing a downstream client for the longest time (we
will explain how a sub-chunk is used for serving a downstream
shortly), and allocates that sub-chunk for sub-stream ��� . If such
a sub-chunk does not exist either, the sub-stream ��� will not be
cached. Supposing that node 3 successfully finds out a sub-
chunk ���� , caching �/� into it follows the Interval Caching pol-
icy [4], [9]. Using interval caching is advantageous to subse-
quent client requests. Indeed, the data cached in sub-chunk � ��
can provide the entire sub-stream corresponding to layer � to all
clients who arrive before time 485 +)+*-,9.�01�12 requesting the same
video of at least level � . ���� would be used as a sliding window
to hold and forward the layer- � data to those new clients. If this
happens, the sub-chunk ���� is called “servicing a downstream
client” that we mention earlier. Furthermore, if a sub-chunk �:��
is currently caching a sub-stream �;� but not full yet ���� is said
“capable” of providing layer � of video � to any client who
needs that layer. For the rest of the paper, we say that a sub-
chunk ���� is in “free” state if it is empty, in “busy” state if it is
caching but neither full nor servicing any downstream client, in
“hot” state if it is servicing at least a downstream client. A sub-
chunk in hot state cannot be used for caching any new stream
until it becomes busy or empty. The transition between these
states is illustrated in Figure 1.

At time 4 5 +)+*-,9.�01�12 , sub-chunk ���� is full. If currently not in
the hot state, ���� is cleaned up and returned to the empty state.
Otherwise, it continues caching as usual and old data will be
replaced with newly arriving data in the FIFO fashion. An ex-
ample is given in Figure 2 where the node has three chunks,
each having four sub-chunks corresponding to four video lay-
ers. < , � , and = are existing streams and already occupy some
sub-chunks. Only three sub-streams of the new stream will be
cached but the one corresponding to layer 2 will not since all
sub-chunks of layer 2 are occupied and in the hot state.

B. Service Procedure

Servicing a request includes three phases: (1) Seeking phase,
(2) Data transmission phase, and (3) Leaving phase. First, we

v2 (hot)

Chunk 1 Chunk 2 Chunk 3

Layer 4

Layer 3

Layer 2

Layer 1 v1 (busy)
new sub-stream

layer 1
empty

new sub-stream
layer 3

t3 (busy) u3 (busy)

u2 (hot) t2 (hot)

u4 (busy) t4 (busy)
new sub-stream

layer 4

Fig. 2. A Node’s Cache

describe each phase, and then provide an example to illustrate
how LRM works.

1) Seeking Phase: A client node � requests a video � of
quality level > (i.e., �:?) to its representative 3�.A@B0C�D2 . This
node is responsible for finding those nodes that collectively are
capable of providing layers

� ��� , �/
 , .., �;?E� . For this purpose,
3�.A@F0C�G2 “broadcasts” the request in a find(� , � , >) packet to
the overlay nodes. By broadcast, we mean to apply on the over-
lay layer only. In other words, a node forwards the packet to all
adjacent-on-overlay nodes on the corresponding unicast paths.
A duplicated packet arriving at a node is ignored. A packet
reaching the root node is not forwarded. Since the number of
overlay nodes is not large, the network load incurred by this
broadcast should not affect the network traffic severely.

Upon the first arrival of the find packet, the root sends back
to 3�.A@B0H�G2 a found message whereas each receiving non-root
node 3 follows the steps below:
� Compute the list � =

� � �JI , � �LK , .., � �NM �%OP� ? such that
each layer �/�RQ� S� still has a prefix in the cache.� If � is empty: 3 forwards the find to its adjacent nodes on
the overlay except for the origin node.� If � is not empty: 3 stops forwarding and sends a found
message including list � on a direct unicast to 3�.A@B0C�D2 to
inform that client � can download the layers in this list
from node 3 .

As a result of the above process, the representative 3�.A@B0C�D2
may progressively receive a number of found messages: (3 � ,� �), (3
 , �
), .., (3�T , �UT) where (3�V , �WV) denotes the found
message from node 3 V which can provide layers in the list � V to
the client. The root is always capable to send every layer to any
client. This list of found augments as more nodes reply. We
employ a queue X7Y to store the found messages received by
3�.A@F0C�G2 . Initially, X7Y is empty. As soon as receiving at least a
found, 3�.A@B0H�G2 follows the selection steps below to receive all
the layers of �Z? :

1) Set � = EMPTY, * = 0
2) Put all the current found messages into XZY
3) WHILE (��[\ �Z?)

a) WHILE (X7Y \ EMPTY) Waiting
b) Dequeue (3 V , � V) from X�Y
c) Send node 3 V an ack message asking it to send the

layers specified in � V^] � to the client
d) � = �G_`� V , * = *ba 1
e) If there are more coming found messages to

3�.A@B0H�G2 , then put them into X:Y
4) Send each of the rest of nodes in X:Y a nack message to

deny its offer.
After the selection steps are finished, any more found mes-

sage sent to 3�.c@F0C�G2 will be ignored. This algorithm is greedy
in the sense that 3�.A@F0C�G2 attempts to receive as many layers
as possible from each node. This helps reduce the number of
connections used for delivering the required data to the client.

2) Transmission Phase: As a result of the seeking phase,
a number of nodes, possibly including the root, are selected to
provide required layers to client � . These nodes are called the
serving nodes of client � . Each serving node 37d6e6fcghe transmits
to the client a stream consisting of the layers specified in the
ack that 3�d6e-fAghe receives. These layers are sent from the cor-
responding sub-chunks (if the serving node is non-root) which
automatically transition to the hot state, or sent from the video
server (if the serving node is the root). The delivery path for
this transmission is the reversal of the path on which 3 d8e-fcghe
received the find from 3�.A@B0H�G2 . As the stream travels on this
delivery path, each intermediate node may cache data into cor-
responding sub-chunks in the way we discuss in Section III-A.

In order to receive > layers, the client needs no more than
> unicast connections to the upstream. This is possible since
the total bandwidth required for these connections equals the
bandwidth needed for ��? . The client is able to support this
bandwidth because the client makes a request based on its band-
width capacity (see Section II-B). The client must be able to
reassemble streams coming from multiple connections into a
single stream for rendering. This can be done by using a worka-
head buffer to store frames coming before their playback times,
or by using a technique such as [19], where its authors proposed
ways to reassemble “thin” streams into a single “thick” stream.

3) Leaving Phase: This phase can occur at any time client
� asks its representative 3�.A@B0H�G2 for service disconnection.
In response, 3�.A@B0C�D2 sends a quit message toward each serv-
ing node in the reverse direction of the corresponding delivery
path. This quit includes information about the layers no longer
needed. Upon receipt of this message, each intermediate node
3 removes the entry for � from the delivery schedule. After-
wards, suppose that 3 is currently caching the layers previously
destined for client � into i sub-chunks, among which are #j$
i sub-chunks in the hot state. Since hot sub-chunks cannot be
released, node 3 just needs to unsubscribe for the other i`	k#
sub-chunks. For this purpose, 3 releases these sub-chunks and
sends a lnmFoCp containing the information about the iq	G# layers
corresponding to them to the upstream. The same procedure
repeats in the upstream.

4) Example: We give an illustrative example in Figure 4
where the overlay topology is drawn in Figure 3. We assume
to have only one video � encoded into four layers �E� , �/
 , ��� ,
and �/r . Each node has only one chunk for caching, which is di-
vided into four sub-chunks corresponding to four different lay-
ers. Suppose a new client (represented by node 3) requests the
video of the best quality (i.e., �:r). At this time, 3�� and 3�s
are currently caching ��� and ��
 as a result of an earlier request
for �:� by a client represented by node 3�t . Similarly, 3�" and
3�u are currently caching �;
 , �/� and �/r as a result of an ear-
lier request for �:r by a client represented by node 3 �A� . The
representative 3 searches for all four layers inside the overlay
network. Suppose that 3�s is selected to provide both layers �E�
and �
 on path 3�s - 3�v - 3 , and 3�u is selected to provide both
layers ��� and �/r on path 3�u - 37w - 3��+x - 3 . The serving nodes 3�u

R7

R4

R2

R3

R1

R8
R11

R

R10R9

R6

R5

Root

Fig. 3. Example: Overlay topology

R7

R4

R2

R3

R1

R8
R11

R

R10R9

R6

R5

requesting
V4requesting

V3

requesting V4

v1, v2
v3, v4

v3, v4
v1, v2

v3, v4

v3

v4

v3

v4

v1

v2

v1

v2

v2

v2

Root

Fig. 4. Example: Late join without additional server bandwidth

and 3�s send those layers from their cache to the new client and
all the intermediate nodes on the corresponding delivery paths
do the caching if their sub-chunks are not hot. For example, 3�v
tries to cache

� ��� , ��
y� , 37w and 3��zx try to cache
� �;� , �/ry� , and

3 tries to cache all those layers.
This example (see Figure 4) shows that the new client can

join existing server streams late but is still able to get the full re-
quested service from some non-root nodes. This does not need
allocation of additional server bandwidth. Therefore, LRM is
very efficient in saving server bandwidth. In contrast, in the
conventional multicast, since the new client cannot join any ex-
isting multicast group due to its lateness, the server has to create
a new stream for this client, which is not a scalable solution.

IV. PERFORMANCE EVALUATION

The study on the potential performance of LRM focused on
the server scalability in providing heterogeneous VOD services
to clients and was done based on simulations. We adopted the
topology of the IBM Global Network map1 for the LRM over-
lay network. In this topology, a node is an LRM-enabled node
{
http://www.nthelp.com/images/ibm.jpg (reachable as of July 25, 2002.)

representing a subnet of subscriber clients. The root node is
located at the Chicago node in the map. We assume a discrete
time model where a time unit is called a “second”. The video
database stores, by default, 20 90-minute videos, each encoded
into � layers of sizes | , "%}~| , .., "9�^���Z}�| where | equals 1
data block. The default value of � is three. Suppose that a so-
called unit stream is needed for the least-quality layer, thus a
better layer needs more unit streams than a worse layer. The
bandwidth availability between any two adjacent overlay nodes
is represented as a number of unit streams they can support.
We call this bandwidth between two nodes “link bandwidth”
between them. Each simulation run lasts 24 hours. A request
is represented as a 4-tuple (�/���z*������C=�*���. , i����/.z�/� , �9*-�/.����9� ,
X��y�). �/���z*������C=�*���. is generated following a Poisson distri-
bution with rate � requests per second. i����/.��9� and X��y� val-
ues are generated randomly among the topology nodes and �
layers, respectively. �/*-�9.����/� is chosen based on a Zipf-like
distribution with a skew factor , .

The main purpose of LRM is to reduce the high demand
on server bandwidth by providing services from intermediate
nodes as much as possible. To measure how significantly the
server bandwidth is saved from that, we estimate the value of
bandwidth saving which is computed as the average ratio be-
tween the amount of data provided by intermediate nodes to the
total amount of data requested. This value only applies for those
requests satisfied, not for those failed. Another performance
metrics for study is system throughput, computed as the ratio
between the number of “served” requests to the total simulated
time. A higher throughput implies a more scalable system.

We study the performance of LRM under effects of various
factors: network link bandwidth, request rate, video access pat-
tern, number of chunks, subchunk size, and number of nodes
installing LRM software. The default values for them are 100
streams, � = 0.5 req/sec, , = 0.7, 10 chunks, 10 minutes, and
8 nodes, respectively. We compare LRM to the conventional
approach in which the conventional multicast is used to sup-
port client requests of various QoS levels. This conventional
approach is actually the same as the LRM approach without
employing caches. We note that the comparison between LRM
and the conventional multicast (CM) is done only in terms of
throughput, because the concept of server bandwidth saving in
this context is irrelevant to CM where no cache is used to off
load the server bandwidth.

The results for system throughput is plotted in Figure 5.
When the link bandwidth increases, throughput in both meth-
ods also increases; however, LRM always performs two to four
times better than CM. One interesting thing to note here is the
effect of arrival request rate. Besides outscoring CM in all pos-
sible choices of request rates, throughput in LRM is monoton-
ically increasing swhile in CM it actually starts decreasing at
a certain request rate, 0.3 in this case. Also, when the request
rate is small (less than 0.3), LRM achieves optimality in terms
of throughput. Skew factor does not play much of a role in im-
proving the throughput of LRM, until the skew factor reached
0.7 had we observed some small increases in the throughput.
Associated features of LRM such as number of LRM-enabled
nodes, subchunk size, and number of chunks can boost the
throughput significantly when we increase them. Increasing

each of these three factors to some reasonable extent can help
to achieve 3 times better throughput comparing to CM. This
study shows that although increasing more complexity, LRM
pays back a significantly improved throughput.

The results for bandwidth savings is plotted in Figure 6.
Though obvious, these are for the illustrative purpose only. The
lower the link bandwidth is, the higher the server bandwidth
savings can be obtained. It is reasonable since with more server
bandwidth, the server has a higher chance to service requests.
Therefore, a less saving is observed. Similarly, the lower the re-
quest rate is, the better server bandwidth saving (SBWS) we can
gain. The saving tends to be a constant when a certain request
rate is reached (�~� 0.3). Again, skew factor does not affect
SBWS much. Some small gain in SBWS is possible when the
skew factor is high. As in the case of throughput, increasing any
of the three factors, number of LRM-enabled nodes, subchunk
size and number of chunks, will improve the server bandwidth
saving. The results of this study do not lie beyond our anticipa-
tion.

V. CONCLUSIONS

LRM provides many desirable benefits as follows:
� Better service latency: In a VOD system, the server is

prone to become a bottleneck. Consequently, when a video
needs to be sent from the server, there might be a blocking
time until a stream is created. In LRM, since clients have
a high chance to join existing multicast instead of waiting
for the next available streams from the server, the average
service latency is improved.� Reduced server bandwidth demand: Many layers destined
for earlier clients are cached in the overlay. The cached
data can be used for new clients whose request includes
them. Therefore, only remaining layers not cached in the
overlay are transmitted from the root node. Consequently,
a few additional server streams are needed.� Efficient and feasible implementation on the Internet:
Many works on VOD and client heterogeneous services
assume the existence of IP Multicast which currently is
not widely available on the Internet due to fundamental
concerns. LRM deploys overlay nodes to implement the
multicast paradigm based on IP Unicast only, and proposes
a caching policy to efficiently provide services of various
qualities to the clients.

Although our simulations confirmed the above benefits, LRM
could introduce more complexity to the system in practice. We
are currently building a prototype to experience the potential
hurdles and to explore the advantages of the LRM approach.
We are also investigating a better model for the two-level cache
design at each overlay node, and how LRM works with different
overlay construction and maintenance techniques.

REFERENCES

[1] C. C. Aggarwal, J. L. Wolf, and P. S. Yu. On optimal batching policies
for video-on-demand storage servers. In Proc. of the IEEE Int’l Conf. on
Multimedia Systems’96, Hiroshima, Japan, June 1996.

[2] S. Chen, K. Nahrstedt, and Y. Shavitt. A qos-aware multicast routing
protocol. In Proc. IEEE INFOCOM, 2000.

[3] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end system multicast. In
ACM SIGMETRICS, pages 1–12, 2000.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 2 4 6 8 10 12 14 16 18

Number of LRM-enabled nodes

T
h

ro
u

g
h

p
u

t
(r

eq
/s

ec
)

LRM

Multicast

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 2 6 10 14 18

Subchunk size (minutes)

T
h

ro
u

g
h

p
u

t
(r

eq
/s

ec
)

LRM

Multicast
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0 2 4 6 8 10 12 14 16 18 20

Number of chunks

T
h

ro
u

g
h

p
u

t
(r

eq
/s

ec
) LRM

Multicast

0
0.05

0.1
0.15

0.2
0.25
0.3

0.35
0.4

0.45
0.5

20 40 60 80 100 120 140 160 180

Link bandwidth (full streams)

T
h

ro
u

g
h

p
u

t
(r

eq
/s

ec
)

LRM

Multicast
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Skew Factor

T
h

ro
u

h
g

p
u

t
(r

eq
/s

ec
)

LRM

Multicast
0

0.2

0.4

0.6

0.8

1

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Request rate (req/sec)

T
h

ro
u

g
h

p
u

t
(r

eq
/s

ec
)

LRM

Multicast

Optimal

(a) (b) (c)

(d) (e) (f)

Fig. 5. Study on system throughput

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 40 60 80 100 120 140 160 180

Link bandwidth (full streams)

S
er

ve
r

b
an

d
w

id
th

 s
av

in
g

(m

ax
 =

 1
.0

)

LRM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Request rate (req/sec)

S
er

ve
r

b
an

d
w

id
th

 s
av

in
g

(m

ax
 =

 1
.0

)

LRM
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Skew Factor

S
er

ve
r

b
an

d
w

id
th

sa

vi
n

g
s

(m
ax

 =
 1

.0
)

LRM

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16 18

Number of LRM-enabled nodes

S
er

ve
r

b
an

d
w

id
th

sa

vi
n

g
s

(m
ax

 =
 1

.0
)

LRM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 6 10 14 18

Subchunk size

S
er

ve
r

b
an

d
w

id
th

sa

vi
n

g
s

(m
ax

 =
 1

.0
)

LRM

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 2 4 6 8 10 12 14 16 18 20

Number of chunks

S
er

ve
r

b
an

d
w

id
th

sa

vi
n

g
s

(m
ax

 =
 1

.0
)

LRM

(a) (b) (c)

(d) (e) (f)

Fig. 6. Study on server bandwidth saving

[4] A. Dan, Y. Heights, and D. Sitaram. Generalized interval caching policy
for mixed interactive and long video workloads. In Proc. of SPIE/ACM
Conf. on Multimedia Computing and Networking, pages 344–351, San
Jose, California, January 1996.

[5] A. Dan and P. Shahabuddin. Scheduling policies for an on-demand video
server with batching. In ACM MULTIMEDIA’98, San Francisco, October
1998.

[6] S. Deering. Host extension for ip multicasting. RFC-1112, August 1989.
[7] P. Francis. Yallcast: Extending the internet multicast architecture. In

http://www.yallcast.com., September 1999.
[8] K. A. Hua, Y. Cai, and S. Sheu. Patching: A multicast technique for

true video-on-demand services. In Proc. of ACM MULTIMEDIA, pages
191–200, Bristol, U.K., September 1998.

[9] K. A. Hua, D. A. Tran, and R. Villafane. Caching multicast protocol
for on-demand video delivery. In Proc. of the ACM/SPIE Conference
on Multimedia Computing and Networking, pages 2–13, San Jose, USA,
January 2000.

[10] J. Jannotti, D. K. Gifford, and K. L. Johnson. Overcast: Reliable multi-
casting with an overlay network. In USENIX Symposium on Operating
System Design and Implementation, San Diego, CA, October 2000.

[11] X. Li, S. Paul, P. Pancha, and M. Ammar. Layered video multicast with
retransmission (lvmr). In Proc. IEEE INFOCOM, 1998.

[12] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven layered mul-
ticast. In Proceedings of the ACM SIGCOMM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Commu-

nications, volume 26,4, pages 117–130, New York, 26–30 1996. ACM
Press.

[13] D. Pendakaris and S. Shi. ALMI: An application level multicast infras-
tructure. In USENIX Symposium on Internet Technologies and Systems,
Sanfrancisco, CA, March 26-28 2001.

[14] S. Ramesh, I. Rhee, and K. Guo. Multicast with cache (mcache): An
adaptive zero-delay video-on-demand service. In Proc. of IEEE INFO-
COM, San Diego, USA, 2001.

[15] S. Sheu, K. A. Hua, and W. Tavanapong. Chaining: A generalized batch-
ing technique for video-on-demand. In Proc. of the IEEE Int’l Conf.
On Multimedia Computing and System, pages 110–117, Ottawa, Ontario,
Canada, June 1997.

[16] L. Vicisano, L. Rizzo, and J. Crowcroft. Tcp-like congestion control for
layered multicast data transfer. In Proc. IEEE INFOCOM, 1998.

[17] B. Wang, S. Sen, M. Adler, and D. Towsley. Optimal proxy cache alloca-
tion for efficient streaming media distribution. In IEEE Infocom, 2002.

[18] K.-L. Wu, P. S. Yu, and J. L. Wolf. Segment-based proxy caching of
multimedia streams. In Proc. of the 10th International WWW Conference,
Hong Kong, 2001.

[19] L. Wu, R. Sharma, and B. Smith. Thin streams: An architecture for mul-
ticasting layered video. In Proc. IEEE NOSSDAV, 1997.

[20] Z.-L. Zhang, Y. Wang, D. H. C. Du, and D. Su. Video staging: A proxy-
server-based approach to end-to-end video delivery over wide-area net-
works. IEEE/ACM Transactions on Networking, 8(4), August 2000.

