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Abstract

Some misbehavior detection and reputation systems in mobile ad-hoc networks
rely on the dissemination of information of observed behavior, which makes them
vulnerable to false accusations. This vulnerability could be removed by forbidding
the dissemination of information on observed behavior in the first place, but, as
we show here, this has more drawbacks than a solution that allows dissemination
and copes with false accusations. We propose a method for reducing the impact
of false accusations. In our approach, nodes collect first-hand information about
the behavior of other nodes by direct observation. In addition, nodes maintain a
rating about every other node that they care about, in the form of a continuous
variable per node. From time to time nodes exchange their first-hand information
with others, but, using the Bayesian approach we designed and present in this paper,
only second-hand information that is not incompatible with the current rating is
accepted. Ratings are slightly modified by accepted information. The reputation of
a given node is the collection of ratings maintained by others about this node. By
means of simulation we evaluated the robustness of our approach against several
types of adversaries that spread false information, and its efficiency at detecting
malicious nodes. The simulation results indicate that our system largely reduces
the impact of false accusations, while still benefiting from the accelerated detection
of malicious nodes provided by second-hand information. We also found that when
information dissemination is not used, the time until malicious nodes are detected
can be unacceptable.
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1 Introduction

The fast detection of malicious nodes is vital in mobile ad-hoc networks, since
they rely on the cooperation of nodes for routing and forwarding, and misbe-
havior can seriously degrade the performance and jeopardize the functionality
of network [11, 13, 4]. Misbehavior detection and reputation systems provide
an incentive to cooperate in such infrastructure-less networks. In addition,
they mitigate the effect of misbehavior by isolating malicious nodes.

In previous work we introduced such a distributed misbehavior detection and
reputation system, called CONFIDANT [4], where nodes warn each other
about malicious nodes. Although it enables the isolation of malicious nodes, it
is vulnerable to false accusations, if trusted nodes lie or if several liars collude.

There are several simple ways to deal with this vulnerability. One could rely
exclusively on first-hand information and not allow the dissemination of in-
formation at all. This solution can be prohibitively slow, as the nodes have to
wait until they have a bad experience until they can conclude that another
node misbehaves. Another approach would be to allow only the dissemination
of positive reputation information. False accusations are not an issue in posi-
tive reputation systems, since no negative information is kept [10, 7], however,
the disseminated information could still be false praise and result in a good
reputation for malicious nodes. Moreover, even if the disseminated informa-
tion is correct, one cannot distinguish between a malicious node and a new
node that just joined the network. Many reputation systems build on positive
reputation only [18], some couple privileges to accumulated good reputation,
e.g. for exchange of gaming items or auctioning [17]. Positive reputation sys-
tems are thus used for where one has a choice of transaction partners and
wishes to find the best one. In mobile ad-hoc networks, the requirements are
different, the focus is on the isolation of malicious nodes.

We deem the combined use of both positive and negative reputation adequate
for the context of mobile ad-hoc networks, as we are interested in the coop-
eration factor calculated as the frequency of misbehavior relative to the total
activity of a node in a network. Moreover, the nature of the disseminated in-
formation should match the nature of first-hand information or experiences. If
a node keeps track of both positive and negative behavior of other nodes, the
disseminated information considered should reflect the same kind of knowledge
in order not to introduce a bias in either direction.

Email addresses: sonja.buchegger@epfl.ch (Sonja Buchegger),
jean-yves.leboudec@epfl.ch (Jean-Yves Le Boudec).

URLs: http://www.icapeople.epfl.ch/sbuchegg (Sonja Buchegger),
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The main properties of a reputation system are the representation of repu-
tation, how the reputation is built and updated, and for the latter, how the
ratings of others are considered and integrated. The reputation of a given node
is the collection of ratings maintained by others about this node. In our ap-
proach, nodes maintain a rating about every other node that they care about,
in the form of a continuous variable per node. We represent the rating that
nodei has about nodej as a function Ri,j of α and β, which are the number
of malicious and regular behavior instances, respectively. At each direct ob-
servation of behavior, the rating is updated accordingly. To take advantage of
disseminated information, i.e., to learn from observations made by others be-
fore having to learn by own experience, we need a means of incorporating the
reputation ratings into the view of an individual node. To this end, from time
to time nodes exchange their first-hand information with others, but, using the
Bayesian approach we designed and present in this paper, only second-hand
information that is not incompatible with the current rating is accepted. By
incompatible we mean that Rk,j, the rating of nodek about nodej, deviates too
much from Ri,j for nodei to consider it. If, however, the second-hand infor-
mation received is compatible, it is accepted and slightly modifies Ri,j . In the
particular case of misbehavior detection in mobile ad-hoc networks we want
to give the most emphasis on reputation built by actually observed behavior,
second-hand information should obtain less weight, since a node trusts its own
observations more than a report from a random other node.

In a mobile ad-hoc network, the point of keeping rating records about other
nodes of the network is to be able to make more informed decisions about
whether to forward for another node, which path to choose, whether to avoid
another node and delete it from the path cache, and whether to warn others
about another node. Using the Bayesian approach, decisions can be made
minimizing the risk for a loss, e.g., minimizing the risk of wrong classification
of events, of deeming another node malicious, although it is not, or, vice versa,
the risk of not recognizing a node as malicious although it actually misbehaves.
If the rating of a node in the table has deteriorated so much as to fall out of a
tolerable range, the suspect node is declared “detected“ and some action can
be triggered.

In this paper, we apply the Bayesian approach to reputation updates, however,
it can also serve for event classification of observations, i.e., whether they are
regular protocol events or malicious attacks, as well as for trust classification
to evaluate nodes according to their cooperation in the reputation system itself
independent from their cooperation in the routing and forwarding according to
the protocol. Dynamic trust adaptation according to the compatibility met-
ric given by the rating deviation could be considered. However, we use the
simpler approach of not discriminating between nodes and thus treating each
received information on a case-by-case basis and evaluate its utility solely on
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the grounds of how much it deviates from the rating the recipient already has.
Trust management is thus rendered obsolete in this particular approach.

In our evaluation, we consider several types of adversaries. In general, adver-
sarial nodes can act maliciously on two different levels. They can misbehave in
routing or forwarding, i.e. in the normal operation of an ad-hoc network. We
call this the network capabilities of the adversary, and we call a node engaged
in network misbehavior a malicious node. Additionally they can try to exploit
the incentive mechanism at the meta-level, i.e. in the case of a reputation sys-
tem they can lie about the reputation of others in order to obtain some benefit
or to have other nodes isolated. We call this the reputation capabilities and
refer to the adversary as liar.

The liar is interested in destabilizing the reputation system by spreading false
information. We consider the following ways of achieving that.

• Reverse the parameters α and β before showing them to another node. This
way, a plausible distribution is retained, innocent nodes are punished, and
malicious nodes are rewarded.

• Only slightly worsen reputation according to received reputation distribu-
tion, by increasing α and decreasing β. A liar could try to create instabilities
by lying only so much as to not be discarded as incompatible, yet sufficiently
to worsen the reputation of another node gradually over time.

• Improve reputation of another malicious node by slightly decreasing its α
and increasing its β.

We assume sufficient identity persistence for a reputation system to work, i.e.
that nodes cannot change their identity too easily. This can partly be achieved
by using cryptographically generated identities that prevent impersonation
[14]. For the creation of new identities, expensive pseudonyms could be used.

By means of simulation we evaluated the robustness of our approach against
the types of liars described above, and its efficiency at detecting malicious
nodes.

The simulation results indicate that our system largely reduces the impact
of false accusations, while still benefiting from the accelerated detection of
malicious nodes provided by second-hand information. We also found that
when information dissemination is not used, the time until malicious nodes
are detected can be unacceptable.

The remainder of the paper is organized as follows. Related work is discussed
in Section 2. Our Bayesian solution proposal is detailed in Section 3 and its
performance evaluation follows in Section 4. Section 5 offers a discussion and
future directions, and Section 6 concludes the paper.
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2 Related Work: Misbehavior Detection and Reputation Systems

In the following we describe and discuss several misbehavior detection and
reputation systems that are fully distributed and hence potential solutions
for mobile ad-hoc networks or peer-to-peer networks. For each of these we
describe the strategy used to detect malicious nodes and to cope with false
accusations and relate it to ours.

The following protocols either rely only on first-hand information or on posi-
tive second-hand information. Since in this paper we evaluate the use of dis-
seminated information, we provide a quantitative reason, namely the speed-up
of detection time, why they could potentially benefit from our Bayesian ap-
proach while still being robust against false accusations.

Watchdog and path rater components to mitigate routing misbehavior
have been proposed by Marti, Giuli, Lai and Baker [11]. They observed in-
creased throughput in mobile ad-hoc networks by complementing DSR with a
watchdog for detection of denied packet forwarding and a path rater for trust
management and routing policy rating every path used, which enable nodes
to avoid malicious nodes in their routes as a reaction. The nodes rely on their
own watchdog exclusively and do not exchange reputation information with
others. They thus chose the approach of not using information dissemination,
trading off the robustness against longer detection delay.

CORE, a collaborative reputation mechanism proposed by Michiardi and
Molva [12], also has a watchdog component; however it is complemented by a
reputation mechanism that differentiates between subjective reputation (ob-
servations), indirect reputation (positive reports by others), and functional
reputation (task-specific behavior), which are weighted for a combined rep-
utation value that is used to make decisions about cooperation or gradual
isolation of a node. Reputation values are obtained by regarding nodes as
requesters and providers, and comparing the expected result to the actually
obtained result of a request. Nodes only exchange positive reputation infor-
mation, thus making the same trade-off between robustness against lies and
detection speed as the watchdog and path rater scheme, but in addition, false
praise can make malicious nodes harder to detect. A performance analysis by
simulation is stated for future work.

The protocols discussed next already use negative second-hand information
and cope with false accusations by requiring the disseminated information
to come from several sources. Our approach could be beneficial for them in
the case of collusion of several liars. As opposed to the protocols previously
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discussed in this section, the benefit is not straightforward to quantify and
thus outside of the scope of this paper.

CONFIDANT (see our papers [4, 3]) stands for ‘Cooperation Of Nodes,
Fairness In Dynamic Ad-hoc NeTworks’ and it detects malicious nodes by
means of observation or reports about several types of attacks and thus al-
lows nodes to route around malicious nodes and to isolate them from the
network. Nodes have a monitor for observations, reputation records for first-
hand and trusted second-hand information, trust records to control trust given
to received warnings, and a path manager for nodes to adapt their behavior
according to reputation. Simulations for “no forwarding” have shown that
CONFIDANT can cope well even with half of the network population acting
maliciously. The protocol uses also second-hand information, in the form of
warnings, thus negative information only. The problem of false accusations
can arise in two cases: when trusted nodes lie or when enough liars collude.

A reputation-based trust management has been introduced by Aberer
and Despotovic in the context of peer-to-peer systems [1], using the data
provided by a decentralized storage method (P-Grid) as a basis for a data-
mining analysis to assess the probability that an agent will cheat in the future
given the information of past transactions. The disseminated information is
exclusively negative, in the form of complaints that are then redundantly
stored at different agents. When agents want to assess the trustworthiness
of other agents, they query several agents for complaints about the agent in
question. To assess the trustworthiness of the agents responding to the query
and thus to avoid relying on lies, a complaint query about that agent can be
made. To avoid the exploration of the whole network, the trustworthiness of
the responders is said to be given when a sufficient number of replicas returns
the same result. An assumption is that the underlying communication network
is sound in that the complaints do not have to be routed through malicious
nodes, so the approach is not readily applicable to mobile ad-hoc networks.

A context-aware inference mechanism has been proposed by Paul and
Westhoff [15], where accusations are related to the context of a unique route
discovery process and a stipulated time period. The rating of nodes is based on
accusations of others, whereby a number of accusations pointing to a single at-
tack, the approximate knowledge of the topology, and context-aware inference
are claimed to enable a node to rate an accused node without doubt. An ac-
cusation has to come from several nodes, otherwise the only node making the
accusation is itself accused of misbehavior. While this mechanism discourages
false accusations, it potentially also discourages correct accusations for fear of
being the only denouncer, resulting in reduced information dissemination.

As opposed to the Byzantine Generals problem, the nodes in a misbe-
havior detection and reputation system for mobile ad-hoc networks do not
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have to reach a consensus on which nodes misbehave. Each node can keep
its own rating of the network denoted by the reputation system entries and
it can choose to consider the ratings of other nodes or to rely solely on its
own observations. One node can have varying reputation records with other
nodes across the network, and the subjective view of each node determines
its actions. Byzantine robustness [16] in the sense of being able to tolerate a
number of erratically behaving servers or in this case nodes is the goal of a
reputation system in mobile ad-hoc networks. Here, the detection of malicious
nodes by means of the reputation systems has to be followed by a response in
order to render these nodes harmless.

3 Solution Proposal: A Bayesian Approach to Reputation Systems

In this section we give details on how in our system reputation ratings are
built and updated, how the ratings of other nodes are considered, and how
decisions about future cooperation are made. For an overview of the Bayesian
concepts used we refer the interested reader to the appendix.

3.1 Rating Representation

We propose to use a Bayesian approach for the representation and building
of reputation as well as for subsequent decision-making depending on the
reputation. Since the true probability of a node to act maliciously, say θ, is
unknown, we make an estimation of θ by inference from the data X obtained
by direct or indirect observations.

A binomial likelihood is assumed as P (X) = θn(1 − θ)1−n. The process of
updating ratings is as follows. First, choose a prior. To represent a non-
informative prior and thus a uniform likelihood, we use Beta(1, 1). Then cal-
culate the posterior distribution and update at each observation. We use s
to represent the number of successes and f for the number of failures. Then,
Beta(α, β)′ = Beta(α′, β′) with α′ = α + s and β ′ = β + f .

The advantage of using the Beta function is that it only needs two parameters
α and β that are continuously updated as observations are made or reported.
These two parameters reflect the current rating, the higher the Beta curve, the
more evidence samples have been taken in. The higher the peak and the nar-
rower, the higher the confidence in the rating that there is a certain probability
around which the observations center. Figure 1(a) shows the non-informative
flat prior of Beta(1,1), all probabilities of θ are equally likely. After some up-
dates according to observations of successes and failures, the posterior density
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is depicted in Figure 1(d). The actual calculation of the density has been
carried out here for illustrative purposes.
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(a) Non-informative Prior
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Fig. 1. Density of the Beta Function of Various Observations.

Applied to a reputation system, every node, say i, has a reputation component
that receives as input first- or second-hand behavior information on other
nodes, say j. It outputs decisions (misbehaving or not) for those js where
node i feels able to say something. We call Ri,j the summarized data that
captures j’s rating by i. Ri,j is modified as information are received according
to the update of the Beta function as explained above.

3.2 Merging Models

Before merging, we choose the models we deem likely to be correct. The ques-
tion is how to detect and avoid false accusations. Our approach is to exclude
those Rk,j for which there is a large incompatibility between Rk,j and Ri,j for
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some j. As a simple means to express that Rk,j makes a strong case that j is
malicious, whereas Ri,j does not, we exclude Rk,j from the model merging if it
deviates from Ri,j by more than d, the deviation threshold, in either direction.

Once we have the compatible ratings, we weight them before merging. In a
first approach, we give the most weight to each nodes’ own observations and
we do not assume any a priori knowledge on the trustworthiness or exper-
tise of a node. We thus weight second-hand information equally among the
witnesses (e.g. neighbors) that share their ratings. The weight for each rating
at an exchange encounter is thus 1

w
, w being the number of witnesses at this

particular instant.

We use a linear opinion pool for model merging. The updated rating is thus:

R′
i,j = Ri,j +

w
∑

k=1

1

w
Rk,j (1)

As an alternative approach we could conceive of modeling the trust given to
particular nodes and have the respective weight depend on it. A trust compo-
nent qualifies the trust that node i puts on second-hand information originated
by other nodes, say k. We call Ti,k the summarized data that captures the trust
that node i places on node k . Ti,k could first be configured by an external
mechanism or be adaptive to the behavior in information dissemination, taking
into account the accuracy. When the reputation system receives second-hand
information (from k , about j ), it would then use Ti,k to decide how to update
Ri,j and to determine whom to send ratings to. As mentioned in Section 1, we
chose not to use trust.

3.3 Decision Making

The decision-making process works as follows. First, the posterior according
to all the given data is calculated. This we do by updating Ri,j as explained
above. Then we choose the decision with minimal loss.

We use squared-error loss for the deviation from the true θ, which is minimized
by choosing E(Beta(α, β)). We now choose a decision δ∗(X) out of δ1(X),
classifying node j as regular, and δ2(X), classifying node j as malicious. The
decision δ∗(X) of choice is determined by the threshold t in Equation 2.

δ(X)∗ =











δ1(X) if E(Beta(α, β)) < t

δ2(X) if E(Beta(α, β)) = t
(2)
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4 Performance Evaluation

4.1 Goals and Metrics

By means of simulation, we want to investigate the robustness and efficiency of
a distributed reputation system in a mobile ad-hoc network. The key questions
addressed are

• How long does it take until a malicious node is detected, using first-hand
information only, using also second-hand information, i.e., the first-hand
information of others, or even more indirect disseminated information?

• What is the effect of false accusations and can they be detected?
• How robust is the system to wrong observations?
• With whom should information be exchanged – with neighbors or remote
nodes?

• And, what is the effect of mobility?

4.2 Simulation Setup

The simulation was implemented in R [9, 19]. To simulate good and malicious
behavior, neighborhood, observation mistakes, movement, and reputation up-
dates, we used a grid of nodes. We investigated and compared the effect of
using first-hand information only, using also second-hand information in a net-
work with no false accusations, and using also second-hand information in a
network with liars but discarding too deviant ratings.

4.3 System Model

The nodes are placed on a grid, to simulate a communications range of one hop,
and they observe the behavior of their neighborhood. Depending on its position
in the grid, a node has up to 8 neighbors. A node can only directly observe
neighbors, i.e., node i at row j and column k, denoted as ijk, can observe
any neighboring node n in its row nj,<k+1|k−1>, in its column n<j+1|j−1>,k, or
diagonally one hop away n<j+1|j−1>,<k+1|k−1>.

Periodically, nodes move around. We emulate this with the following algo-
rithms.

Local movement. We pick a node at random, say node ij,k and randomly
select a new location (j ′, k′) for it such that j ′ = [j − 2, j + 2] and k′ =
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[k − 2, k + 2] to keep the movement reasonably local. We then repeat this
with the node that we find at (j ′, k′) and so on, until the new location is
the original (j, k) and the permutation cycle is completed.

Local plus far movement. Most of the time the nodes move within a two-
hop radius as described above, but sporadically they choose a location with
long-distance hops.

Random movement. With this movement model, the new position of the
nodes is a random permutation of the previous position.

Before moving away, nodes exchange reputation information in the form of
Beta parameters. We have different models for the choice of witnesses.

Neighbors. Nodes exchange their reputation information with all nodes that
are reachable within one hop. This way, the information dissemination does
not need routing nor uses resources across the network.

A random set of nodes. Nodes pick their witnesses at random, so the in-
formation does not only spread locally but to wherever the chosen nodes are
located at the moment of exchange. In a mobile ad-hoc network this model
would consume more network resources than th neighbor model.

Friends. Again, the choice of witnesses is independent of location, but this
time it is always the same set of nodes used to exchange ratings.

At each exchange the nodes give their ratings the way they stored their first-
hand information. Liars apply different strategies to give false ratings, as ex-
plained in Section 1. We thus have the following liar models.

Reverse. When a node k lies, it swaps the α and β of its Betak,j(α, β) for all
nodes j represented by Rk,j before disclosing it to the neighbors for model
comparison.

Worsen. Liars increase α of benign nodes by 20%.
Improve. Liars increase β of malicious nodes by 20%.

This whole process of observing, exchanging ratings, and moving is iterated
until all of the malicious nodes are classified as detected by all of the nodes
in the network, which is the case when the expected value of the reputation,
E(θ) represented by E(Ri,j), exceeds a threshold of 0.75. As a rehabilitation
mechanism to mitigate the effect of false accusations, the nodes periodically
review their reputation ratings and reverse their classification from “detected“
to “regular” when the reputation is substantially better than the detection
threshold.

The threshold used to determine when to exclude a suspect liar’s rating de-
pends on the priorities. As is typical for diagnosis systems, there is a trade-off
between minimizing false positives or false negatives. We chose a threshold
of 50% deviation to err on the side of false positives, i.e., the mechanism
excludes some true information but reliably prevents false accusations from

11

njiang
As a rehabilitation

njiang
mechanism to mitigate the e®ect of false accusations, the nodes periodically

njiang
review their reputation ratings and reverse their classi¯cation from \detected

njiang
to \regular" when the reputation is substantially better than the detection

njiang
threshold

njiang
We chose a threshold

njiang
of 50% deviation to err on the side of false positives,

njiang
i.e., the mechanism

njiang
excludes some true information but reliably prevents false accusations from

njiang
Before moving away, nodes exchange reputation information in the form of
Beta parameters



having an impact. This way the robustness is maintained at the price of an
unused detection speed-up potential.

4.3.1 Scenarios

We evaluate six scenarios that differ in whether disseminated information is
considered at all, what kind of disseminated information is considered, and
how it is integrated in the rating of a node. The following is a list of these
scenarios with their names as they are used in the simulation.

First-hand information. nt(i) denotes the nodes that node i can observe
during the time interval t, i.e. the grid neighbors. Each node j issues a
sequence of bits out of [0, 1] according to a distribution that depends on
whether a node is benign, using P(outputbenign), or malicious, P(outputmalicious).
Node i sees the bits correctly with P(correctObservation).
(1) Place nodes in the grid.
(2) ∀ nodes, select type ∈ {benign,malicious} and according probability

distribution of output P(outputtype).
(3) repeat

(a) ∀ nodes output byte according to P(outputtype).
(b) ∀ nodes i, observe neighbors n correctly with probability P(correctObservation).
(c) ∀ nodes i, n update Ri,n using the Beta function.

(4) until t > o, o being the number of observations at each location.
(5) Pick node, move until cycle completed. Repeat 1–3.
until end of simulation, then ∀ nodes i and j evaluate Ri,j and compare

to the typej.
Second-hand information. (1) Iterations of the algorithm above.
(2) Before moving, ∀ nodes i and j output Ri,j .
(3) ∀ nodes i and j update Ri,j by integrating local Ri,j and Rk,j, the

exchange parters’ Ri,j .
Deltas only. Same as second-hand information, but use only the delta be-
tween the Rk,j received at the last encounter and the current Rk,j.

Third-hand information. Nodes do not only exchange their respective first-
hand information, but their second-hand information. Third-hand informa-
tion is not independent but reinforcing beliefs by potentially mirroring them
back to the originator, hence we only show the scenario for comparison.

With lies. Contaminated second-hand information.
We use probability distributions P(tellT ruthhonest) (probability of telling

the truth as an honest node) and P(tellT ruthliar) (probability of telling
the truth when a node is a liar). Independent of its status as a benign or
malicious type, nodes can be liars or honest.
(1) Iterations of second-hand algorithm, but drawing from the probability

distribution to tell a lie or the truth.
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(2) Compare Ri,j with all witnesses k, weight Rk,j by
1
w
, w being the number

of witnesses considered, and integrate with Ri,j .
(3) Include the contaminated information regardless.

Lies excluded. When comparing, only use Rk,js according to the compat-
ibility metric, deviating less than d from Ri,j , with d being the deviation
threshold and Ri,j the accumulated reputation of j as seen by node i.

4.4 Factors and Parameters

In Table 1 we list the factors varied throughout the simulation, Table 2 con-
tains the unchanged parameters.

Factor Level 1 Level 2 Level 3

Number of nodes 25 49 100

P(being malicious) 0.1 0.5 0.9

P(being a liar) 0.1 0.5 0.9

Witnesses neighbors friends random set

Liar strategy reverse worsen improve

Mobility local local plus far random

Table 1
Factors and their Levels

Parameter Level

observations before movement 10

P(outputbenign) 0.99

P(outputmalicious) 0.99

P(correctObservation) 0.99

P(tellT ruthhonest) 0.99

P(tellT ruthliar) 0.99

t, the threshold for detection 0.75

d, the deviation threshold 0.5

Table 2
Fixed Parameters
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Fig. 2. Mean Detection Time of All Malicious Nodes by All 25 Nodes.
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Fig. 3. Max Detection Time of All Malicious Nodes by All 25 Nodes.

4.5 Results

Figure 2 shows the mean detection time, i.e., the time in the simulation when
the last node detected a particular malicious node, vs. which fraction of the
malicious nodes were detected by all at that time, Figure 3 shows the max-
imum detection time for all nodes. Figures 4 and 5 show examples of larger
networks, also varying the number of malicious nodes and the number of liars.
These examples are representative of the results obtained by the simulation.
We chose to show individual representative examples for this type of plot of
detection fraction versus time instead of mean outcomes over several runs,
since the type of a node both concerning the cooperation and the lying prop-
erties are drawn from probability distributions and not explicitly specified,
thus the portion of malicious nodes or liars varies. However, for the mean of
the mean detection time by all nodes and the maximum of the max detection
time by all nodes, we consider several simulation runs in Figure 6.
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Fig. 5. Max Detection Time of All Malicious Nodes by All 100 Nodes.

Using the full set of second-hand information or using only the difference be-
tween already received second-hand information and the current second-hand
information consistently perform very similarly and very well. Exchanging the
full set of observations when nodes encounter repeatedly considers information
as new that has been integrated already and thus can bias the belief, whereas
keeping track of the last exchanged information, albeit only two parameters
per reputation, can add up to a significant storage requirement in large mobile
networks.

Over the course of the simulation, it has emerged that using the ‘liars excluded’
Bayesian scenario significantly improves on the performance of the mean de-
tection time when compared to the ‘first hand’ scenario, yet the performance
gain is even higher in the worst case, namely the maximum detection time,
i.e., the maximum time it takes for a malicious node to be deemed ‘detected’
by all the nodes of the network.
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Fig. 7. Mean Detection Time (Lies Excluded) vs. Lying Strategy.

Another observation is that, as one would expect, the detection improvement
given by the use of second-hand information even in the presence of liars, but
given the attempt to discard the false accusations by means of our Bayesian
approach, in fact increases with the network size. The larger the network, the
higher the probability of receiving information about nodes before actually
encountering them as neighbors and being able to observe their behavior.

When nodes not only exchange their own first-hand information but hand on
disseminated information of a deeper transitivity level, their own ratings once
voiced can be reflected to them at a later time, thus reinforcing their original
rating. Although using this ’third-hand’ or ’nth-hand’ information consistently
outperforms all other strategies, it is not a valid choice since these ratings are
not independent.

For networks of 25 nodes, some effects of varying the level of the factor of
the lying strategy are shown in Figures 7, 10, and 11. The mobility impact is
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Fig. 9. Mean Detection Time (Lies Excluded) vs. Witnesses.

shown in Figures 8, 12, 13, and the choice of witnesses is depicted in Figures
9 and 14. Except for the mobility factor, none of the others had an impact
on either the first-hand information or the truthful second-hand information
scenario.

As can be seen from Figure 15 , the performance of the Bayesian approach
of liar exclusion improves when the number of liars is small and approaches
the performance of truthful second-hand information. In the presence of many
liars, the performance degrades gradually but is still better than relying only
on first-hand information. In all the figures, the scenario ‘with lies’, i.e., in-
tegrating contaminated second-hand information regardless, performs better
than relying on first-hand information only, yet the price for this speed-up in
detection time is that innocent nodes are also being classified as ‘detected’ by
many nodes due to the effect of false accusations. This has consistently been
avoided by the ‘liars excluded’ scenarios throughout the entire simulation.
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Fig. 10. Max Detection Time (Lies Excluded) vs. Lying Strategy.
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Fig. 11. Max Detection Time (With Lies) vs. Lying Strategy.

Figure 16 shows that only the ’reverse’ lying strategy led to effective false ac-
cusations, i.e. false accusations that lead to the classification of benign nodes
as malicious. The number of effective false accusations increased with a grow-
ing population of liars. The impact of false accusations was largely reduced
by the Bayesian approach (Lies Excluded).

5 Discussion/Future Work

We are working on an extending the CONFIDANT protocol and its simulation
implementation with the Bayesian approach we proposed in this paper. This
way we can incorporate the insights gained to make the protocol robust against
false accusations yet reasonably fast in detection. It will also enable us to
evaluate our Bayesian approach in a more realistic mobile ad-hoc network. We
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Fig. 12. Max Detection Time (Lies Excluded) vs. Mobility.
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Fig. 13. Max Detection Time (With Lies) vs. Mobility.

then aim for more simulation runs and exploring a larger space of parameters
in this environment.

For instance, the current system is dampening the effect of false accusations
by forcing liars to lie more to have a fast effect, but then detection is easier. To
combat the slow deliberate degradation of reputation, we intend to introduce
an aging mechanism of reputation into the simulation.

Also, a side-effect of the emphasis on robustness was that, given the nature
of a node did not change throughout the simulation time, the rehabilitation
mechanism provided for the strategy of excluding liars was rarely required.
This might not be the case with more elaborate adversary models that we
intend to consider.

We have not solved all of the following challenges for merging ratings.
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Fig. 15. Max Detection Time (Lies Excluded) vs. Portion of Liars.

• False/fake ratings for deliberate deception and influence.
• Contradicting models. How to consolidate them, whom to believe, how to
assign weights for significance.

• Privacy concerns. Nodes may not want to expose their ratings to others, also
there is a reduction of uncertainty which might be beneficial to malicious
nodes.

• With whom to share information. Who provides the most valuable infor-
mation, who is trusted for their rating, and, related to the privacy concern,
whom can nodes show their ratings without harm.

Evaluating our approach within the CONFIDANT protocol implementation
will also enable us to see the overhead involved with the choice of witnesses in
terms of routing. Furthermore, observations might not be so clearly classifiable
in more realistic mobile ad-hoc environments due to collisions, link-layer errors,
and asynchronous moving of nodes. We can thus better evaluate the impact
of incorrect observations.
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Fig. 16. Effective False Accusations.

6 Conclusions

Using second-hand information can significantly accelerate the detection and
subsequent isolation of malicious nodes in mobile ad-hoc networks. However, if
nodes are deceived by wrong observations or false accusations, the robustness
of the reputation system is endangered.

In this paper we presented and evaluated a Bayesian approach for reputation
representation, integrating disseminated information, and coping with false
accusations. We found that, enabled by our Bayesian approach, by excluding
ratings that deviate substantially from first-hand information and the majority
rating of second-hand ratings gathered over time, robustness of the reputation
system against false accusations is largely achieved. This holds true even with
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a large number of liars in the network. As opposed to relying exclusively on
first-hand information, the increased robustness of our approach does not have
to be traded off against longer detection delays. The detection speed improves
significantly over merely using first-hand information and, with a decreasing
portion of liars, approximates the ideal case of using truthful second-hand
information.
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A APPENDIX: Relevant Bayesian Background

A.1 Belief Representation Using the Beta Function

Bayes’ Theorem is shown in Equation A.1. It is used to calculate the proba-
bility of a random variable given an observation.

P (Bi|A) =
P (A|Bi)P (Bi)

∑n
i=1 P (A|Bi)P (Bi)

(A.1)

A prior distribution (prior to receiving information) reflects the initial belief.
Any up-front information can be fed into the prior to give it a head start. The
prior, however, can also be chosen such that it reflects ignorance or indifference
toward the initial situation. Given this prior, at each observation the informa-
tion available is updated to reflect the added knowledge and to increase the
precision of a belief. If the likelihood of a property is binomial, i.e., successes
and failures occur independently, a good prior density is the Beta function.
The Beta function is the conjugate prior for binomial likelihood and thus the
posterior (after taking into account the received information) density is also
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Beta [2, 6]. The Beta function is used to reflect the prior belief. It is defined
as follows.

f(θ) = Beta(α, β) =
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 (A.2)

Γ(x+ 1) = xΓ(x),Γ(1) = 1 (A.3)

The posterior is given and updated at each observation in the following way.
We use s to represent the number of successes and f for the number of failures.
Then, Beta(α, β)′ = Beta(α′, β′) with α′ = α + s and β ′ = β + f .

The Beta function offers moments that are simple to calculate.

E(Beta(α, β)) =
α

α + β
(A.4)

σ2(Beta(α, β)) =
αβ

(α + β)2(α + β + 1)
(A.5)

A.2 Model Merging

In their tutorial on Bayesian model averaging, Hoeting et al. [8] give the
following methodology.

If ∆ is the quantity of interest, such as an effect size, a future observable, or
the utility of a course of action, then its posterior distribution given data D
is:

P(∆|D) =
K

∑

k=1

P(∆|Mk, D)P(Mk|D). (A.6)

This is an average of the posterior distributions under each of the models
considered, weighted by their posterior model probability. Mi, ...,Mk are the
models considered. The posterior probability for model Mk is given by

P(Mk|D) =
P(D|Mk)P(Mk)

∑K
l=1 P(D|Ml)P(Ml)

(A.7)

where

P(D|Mk) =
∫

P(D|θk,Mk)P(θk|Mk)dθk (A.8)
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is the integrated likelihood of model Mk, θk is the vector of parameters of
model Mk, P(θk|Mk) is the prior density of the parameters under model Mk,
P(D|θk,Mk) is the likelihood, and P(Mk) is the prior probability that Mk is
the true model. All probabilities are implicitly conditional on M, the set of
all models considered.

In addition, Davison [5] lists the following, with z being the variable of interest,
and y the data.

f(z|Mi, y) =

∫

f(z|y, θi,Mi)f(y|θi,Mi)π(θi|Mi)dθi
f(y|Mi)

(A.9)

Here θi is the parameter for model Mi, under which the prior is π(θi|Mi) and
the prior probability of Mi is P(Mi).

Berger [2] lists several methods for combining probabilistic evidence. To pro-
cess different sources of information, he lists two ad-hoc systems.

Linear Opinion Pool. Assign a positive weight wi (where
∑m

i=1 wi = 1) to
each information source πi (supposedly to reflect the confidence in that
information source), and then use

π(θ) =
m

∑

i=1

wiπi(θ) (A.10)

Independent Opinion Pool. When the information sources seem “inde-
pendent”, use, as the overall probability distributions for θ,

π(θ) = k

[

m
∏

i=1

πi(θ)

]

(A.11)

The alternative to the use of ad-hoc rules is, according to Berger, probabilistic
modeling, i.e., obtaining the joint distribution of all random observables and
unknown parameters of interest or, at least, determining enough to calculate
the conditional (posterior) distribution of the desired θ given the observables.
This is sometimes called the super Bayesian approach, to emphasize that
it is a single decision maker (the super Bayesian) who is trying to process
all the information to arrive at a distribution of θ which is consistent with
probabilistic reasoning.

π(θ1|p) =

[

1 +
(1− p)

p

α−β
π2(θ2)

π2(θ1)

]−1

(A.12)
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A.3 Decision Making

The goal is to minimize risk. Loss can be represented as squared-error loss or
0-1 loss for classification, for instance, as depicted in equations A.13 and A.14.

L(θ, α) = (θ − α)2 (A.13)

L(θ, αi) =











0 if θ ∈ Θi

1 if θ ∈ Θj, j 6= i
(A.14)

Then, for all actions the loss is calculated and weighted by its likelihood.
Finally, the action δ∗ with the smallest risk R (expected loss L) is chosen
from R(θ, δ∗) = E[L(θ, δ(X))].
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