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Abstract

Query-by-example is the most popular query model for today’s image retrieval systems. A

typical query image contains not only relevant objects (e.g., Eiffel Tower), but also irrelevant

image areas (e.g., the background). The latter, referred to as noise in this paper, has limited

the effectiveness of existing image retrieval systems. To address this drawback, the user must

be allowed to draw contours to precisely outline the relevant image areas as the query. We

refer this class of queries as noise-free queries (NFQs), and propose a technique for processing

them in a sampling-based matching framework. We introduce a new similarity model, and

investigate indexing techniques for this new environment. We also implement a prototype to

demonstrate this approach. Our query model is more expressive than the standard query-by-

example. The user can draw a contour around a number of objects to specify spatial (relative

distance) and scaling (relative size) constraints among them, or use separate contours to dis-

associate these objects. Our experimental results confirm that traditional approaches, such as

Local Color Histogram and Correlogram, suffer from noisy queries. In contrast, our method

can leverage NFQs to offer significantly better performance. This is achieved using only 1/16

of the storage overhead required by the other two techniques.

Keywords: Image processing and retrieval, noise reduction, arbitrary-shaped queries, image

indexing, clustering, core-area detection.



1 Introduction

The popularity of digital images have spurred a demand for robust content-based image retrieval

systems. These systems are needed in various application domains including medical imaging,

digital libraries, geographic mapping, and electronic commerce, to name but a few. The grow-

ing demand for this technology has led to a significant body of recent research addressing image

retrieval problems ([1],[2],[3],[4],[5],[6],[7],[8], etc.).

Image databases can be queried in several ways. Query-By-Example (QBE), however, is by

far the most widely supported model in research prototypes and commercial products. In this

environment, a user formulates a query by means of giving an example image selected from a pool

of general image categories. Since this sample set is generally small, the expectation of finding

a perfect example (i.e. the entire content is relevant) is low. As a result, a query image typically

contains not only the objects of the user’s interest, but also irrelevant image areas. We refer to the

latter as noise in this paper. Many content-based image retrieval techniques have been developed in

recent years to enhance robustness with respect to translation, scaling, and changes in the viewing

angle. However, problems with noise have been largely neglected. We address this outstanding

issue in this paper by proposing a similarity model for noise-free queries. This new model enables

the user to precisely include only relevant objects in formulating a query. Queries so defined are

called noise-free queries (NFQs). In the following, we review some of the existing image retrieval

techniques and examine their ability to support NFQs.

In a typical content-based image retrieval system, essential properties of the database images

are extracted and stored as feature vectors. During a retrieval process, the feature vector of the

query image is computed and compared against those in the database. Typically, these feature

vectors capture the color distribution (e.g., color histograms). Recent techniques also include other

features such as texture [9], structure [8], etc. to increase the overall effectiveness. A scheme,

based on local matching, was proposed in [2]. This method utilizes a large number of overlapping

square subimages of each image. A signature is computed for each such subimage. The signatures
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of each image are mapped into points in the feature space, and clustered into subimage groups.

For each subimage group, the centroid of the signature points is used as the group signature.

Matching between two images is done by pair-wise comparison of their matching groups (i.e.,

having similar group signatures). This scheme minimizes the effect of global features on local

matches. However, it cannot tell the difference between several scattered red balloons and a red

car since the balloons and the car would have similar group signatures. To address this problem,

a scheme, called Correlogram [7], can be used to capture finer details of the color distribution by

incorporating both color and its spatial layout, so called spatial color indexing. Their experimental

results [7] indicate that Correlogram offers excellent performance for a wide range of images. It

can handle both translation and scaling in the matching objects. It can also tolerate differences in

the background areas, or in the object appearance due to small changes in the viewing angle. In this

paper, we refer to all the aforementioned techniques as the whole-matching approach since they

extract features based on the entire image area, and tightly integrate them into feature vectors. Any

matching must be done on the entire image area; and noise exclusion obviously is not possible.

Image comparison can also be done by matching homogeneous image regions. This is referred

to as the region-based approach (e.g., QBIC [1], VisualSeek [10], Netra [11], Blobworld [12].)

This scheme segments each image into several regions; and image matching is done by compar-

ing the visual features, such as average color, dominant color, texture, shape, size, etc., of these

regions. While this approach has many advantages, its effectiveness relies on the accuracy of im-

age segmentation techniques which are far from reliable today. This is due to the fact that image

segmentation and content recognition are a pair of ”chicken and egg” problem [13]. While reliable

image segmentation cannot be achieved without recognition of the image content, image recogni-

tion relies on good image segmentation. When image regions are incorrectly detected, their visual

features are wrong and would affect the precision of the image retrieval result. Today’s region-

based systems also do not support NFQs. The user still submits the entire image area as the query.

We note that matching arbitrary-shaped regions is not the same as searching for images similar to

an arbitrary-shaped query. The former may contain noise.
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From the above discussion, we can make the following observation. To support noise-free

queries, we must get outside the conventional whole-matching paradigm. The user must be allowed

to use an irregular-shape image as a query. That is, one must be able to draw contours around the

relevant objects in order to specify the query precisely. We can support such NFQs in a region-

based framework by matching only image regions falling within the query contours. While this

solution is straightforward, its performance is limited by the reliability of the image segmentation

techniques as we have discussed. In this paper, we address this class of queries using a sampling-

based approach called SamMatch [14]. The contribution of this paper is the design of a new

similarity model and its implementation techniques including indexing methods and a query model

to support NFQs. By insulating the similarity computation from the interference of noise, our

experimental results indicate that retrieval effectiveness can be improved significantly for a wide

range of queries.

The remainder of this paper is organized as follows. We review our SamMatch environment,

and present a similarity model for NFQ’s based on this framework in Section 2. We describe our

indexing method in Section 3. Our query processing technique is introduced in Section 4. In Sec-

tion 5, we discuss an efficient algorithm for determining the core area of a query. Our experimental

study is discussed in Section 6. Finally, we present our concluding remarks in Section 7.

2 A Similarity Model for NFQs

In this section, we first review the SamMatch environment. We then present the similarity measure

for processing NFQs in this framework, and discuss the technique for handling scaling in the

matching objects.
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2.1 SamMatch Environment

In SamMatch, we take samples of 16 � 16-pixel blocks at various locations of each image. The

rationale for this block size is that the correlation between pixels tends to decrease after 15 to

20 pixels [15]. In other words, a run of similar pixels usually ends after 15 to 20 pixels. This

characteristic allows us to significantly reduce storage overhead by representing each sampled

block using its average color. To support general applications, we collect these blocks at uniform

locations throughout the image (Figure 1). This strategy is reminiscent of the audio digitizing

process, in which the magnitudes of a sound wave are sampled at some fixed time intervals and

stored as numbers. This collection of numbers captures the characteristics of the sound wave to

the details allowed by the sampling rate. Similarly, our technique samples an image with respect

to space intervals as illustrated in Figure 1. It shows 113 samples evenly spread out in a 256� 256

image frame.

Without loss of generality, we assume that the images are stored using the Munsell color

system1. In this uniform color system, the dissimilarity of two colors is simply the distance be-

tween them. We quantize the (H,V,C) data into 256 possible values. The most dominant Haar

wavelet coefficient of each sampled block is used as its average color [17].

Sampled location

Sampled block

Figure 1: Ckeckerboard-pattern sampling of image blocks

1If the images are in RGB, one can convert them into Munsell using the mathematical transformation presented in

[16].
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2.2 Similarity Measure for Processing NFQ’s

Unlike the rectangular shapes of traditional queries, each NFQ is an arbitrary-shaped image. A dis-

tinct advantage of the SamMatch environment is that we can compare arbitrary-shaped subimages

by comparing only the sampled blocks falling within the subimage area. This feature of SamMatch

lends itself naturally to supporting NFQ’s. Consider two arbitrary-shape subimages Q and I , each

represented by n sampled blocks. Their matching score can be computed as follows:

S(Q; I) =
nX

i=1

wi

1 +D(cIi ; c
Q

i )
(1)

where D(cI
i
; c

Q

i ) is the distance between the average color of block i of subimage I , cI
i
, and the

average color of block i of subimageQ, cQ
i

. In other words, we compare the corresponding sampled

blocks of the two subimages. A ’1’ is added to the denominator to prevent division by zero. In

the numerator, wi is a weighing factor which can be set to indicate the significance of the match at

block i. This parameter can be formulated in different ways to enhance the matching effectiveness.

Since SamMatch compares the corresponding sampled blocks of two images, this strategy can

be viewed as a structured-based matching technique. We can also call it an object-based matching

method because the comparisons are based on matching the sampled-block structure (or skeleton)

of the objects within the query areas. This matching scheme implicitly takes into account the shape,

size, and texture features, etc. of the image objects. SamMatch, therefore, has the benefits of the

region-based techniques without having to rely on the unpredictable accuracy of segmentation

methods. This is achieved by letting the user point out the object areas at query time.

We consider the following two factors in our system:

� In general, not all colors are equally likely in real-world images. As a result, matches on rare

colors are more discriminating. wi can be designed to exploit this fact by taking into account

the frequency of the matching color at block i. That is, wi is proportional to the inverse fre-

quency of the matching color cQ
i

. To facilitate this enhancement, we studied 16,000 images

to determine the frequencies of the 256 possible average colors.
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� We consider a cluster of well-matched blocks as more significant than a collection of scat-

tered matched blocks. The rationale is that a cluster of adjacent blocks often identifies an

object in the image whereas scattered blocks are less meaningful. Thus, wi should be raised

or lowered proportional to the matching scores of the neighboring blocks within a preset

vicinity. We consider this spatial correlation in our similarity computation.

2.3 Handling Scaling in the Matching Objects

In SamMatch, the same sampling rate is used for all database images. However, we can apply

various sampling rates on the query image to find matches at various scales. This is illustrated

in Figure 2. Figure 2(a) shows one database image with its sampled blocks. In this example, the

query image is assumed to be smaller in size, and is sampled at three different rates as illustrated

in Figures 2(b), 2(c), and 2(d). We note that a lower sampling rate corresponds to a longer distance

between the sampled blocks. By comparing the blocks in Figure 2(b) with the corresponding

blocks in the database images, we can find images of similar but bigger objects. Similarly, the

blocks in Figure 2(c) are sampled at the same rate as that used for the database images to find

images of matching objects of similar size. Finally, the sampling rate shown in Figure 2(d) is used

to find images of similar, but smaller objects.

(a) (b) (c) (d)

Matching areas with the same number of sampled blocks

Figure 2: One fixed sampling rate for database images (a) and three sampling rates for the query

(b, c, d) in order to match larger objects, same-size objects and smaller objects, respectively

To support matching at various practical scales, our system currently employs five different

sampling rates for the query images. This results in five different sampling configurations with 25,
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41, 61, 85, and 113 sampled blocks, respectively. Although we can take advantage of additional

sampling rates, our experiments indicate that these five are sufficient to achieve excellent perfor-

mance. We will address the translation in the matching objects in Section 3. We decide not to

consider rotation invariance in this paper since this property is not always desirable, e.g., resulting

in false retrievals.

3 Indexing

In this section, we present implementation techniques for the similarity model presented in Section

2. To facilitate subimage matching at different scales, we slide five square-shape windows of

various sizes over database images, and index them on the subimages captured by these windows

at sliding positions. We will refer to these subimages as indexing subimages. In the following two

subsections, we first describe signatures, and then discuss the index structure in more detail.

3.1 Image Signatures

We use sliding window of sizes 25, 41, 61, 85, and 113 sampled blocks, respectively, as illustrated

in Figure 3(a). Thus, the smallest indexing subimage covers only 25 sampled blocks at any sliding

position. On the other hand, the largest indexing subimage can contain all 113 sampled blocks of

an image. In our design, a sliding step is the distance between two nearest sampling blocks in the

sliding direction. An example of sliding a small window over five positions is shown in Figure 3.

The rationale for our window sizes and the sliding step size is as follows:

1. Subimages containing fewer than 25 sampled blocks are not interesting for most image-

retrieval purposes.

2. The contents of heavily overlapping subimages are essentially similar. It is not necessary to

consider square-shape subimages less than one sliding step from the indexing subimages.
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In other words, the subimages used in our design practically represent all ”possible” subimages of

the database image.

(a) (b)

Figure 3: Various subimage sizes (a) and sliding examples (b)

There are 41, 25, 13, 5 and 1 indexing subimages of sizes 25, 41, 61, 85, and 113 sampled

blocks, respectively. In total, each database image contains 85 indexing subimages. For each

indexing subimage, we compute its signature as seven statistical average-variance pairs as follows:

� the first pair is computed from the average colors of all the sampled blocks in the indexing

subimage (Figure 4(a));

� each of the next four pairs is computed from the average colors of the sampled blocks in a

distinct quadrant of the indexing subimage (Figure 4(b));

� finally, each of the last two pairs is computed from the average colors of the sampled blocks

along one of the two diagonals of the indexing subimage (Figure 4(c)).

We use as many as 14 features because R�-tree [18] has been shown to perform well up to 16

dimensions [19]. These average-variance pairs are designed to capture the various local character-

istics of the indexing subimage. For each pair, the average is the mean of the average colors of the

relevant sampled blocks; and the variance is the statistical variance of these average colors. Using

average-variance pairs has the following advantage. Those computed from heavily overlapping

indexing subimages are similar although their Haar wavelet coefficients may be quite different.
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An indexing subimage

(a) (b) (c)

Figure 4: The seven areas used to compute the signature of an indexing subimage.

3.2 Clustering and Indexing

The introduction of the signatures is to support our initial search procedure as follows. Given an

arbitrary-shaped image as the query, we can identify its core area as the largest square subimage

that contains a noise level (i.e., irrelevant area) no greater than a predetermined limit. We will

discuss an efficient algorithm for finding this core area in Section 5. Once this core area has been

determined, we can compute its signature, and use it to find similar indexing subimages in the

database. This initial search step can leverage an index structure such as an R�-tree to quickly filter

out those database images that have no chance of matching the query image. Only those database

images with at least one matching indexing subimage need to participate in the more thorough test

of comparing the corresponding sampled blocks. We will discuss the image retrieval procedure in

more detail in the next section.

Although we can index the database images on their 85 signatures, such an access structure

would be a monolith. To substantially reduce the size of the index, we map the 85 signatures of

each image into signature points in the 14-dimensional feature space, and cluster them into m

minimal bounding rectangles (MBRs). In other words, each database image is represented by its

m MBRs; and we index the database on these MBRs. This strategy significantly reduces the height

of the R�-tree.

There are many high-performance data clustering algorithms proposed recently such as BIRCH

[20], WaveCluster [21]. Without loss of generality, we adapt BIRCH for our system. Since a

straightforward application of this algorithm could result in too many MBRs, we modified it as
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follows to control the number of generated MBRs:

1. Apply the BIRCH algorithm [20] to obtain clusters using the default values.

2. Split the clusters (also described in [20]) until none contains more than N signature points.

3. Order the clusters by forming a Hamilton chain between the two farthest clusters using a

greedy approach, i.e., find the closest cluster and connect it to the chain at each step.

4. Let the first cluster be called recipient

5. If there is a cluster following recipient then let the recipient’s next cluster be called donor.

Exit otherwise, i.e., there are no more clusters.

6. While the number of signature points in recipient is smaller than N , repeat:

(a) If donor is non empty then

i. Select one signature point from donor that is nearest to recipient.

ii. Move it to recipient.

iii. If donor is now empty then free donor and let the cluster following donor be donor.

(b) Exit otherwise, i.e., there are no more signature points.

7. Let donor be recipient and go to step 5.

The above procedure forces a fixed number of clusters for each image, each (except the last)

containing N signature points. Although these clusters might not be as compact as those generated

by BIRCH, the significant reduction in the height of the R�-tree helps reduce the search time. We

will examine this issue in more detail when we discuss the experimental results in Section 6. A

clustering example is given in Figure 5. The signature points, computed from an actual image, are

grouped into five clusters using the above procedure. A straightforward application of the BIRCH

algorithm would create as many as 15 clusters.
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Figure 5: Five clusters of 2-D signature points (right) computed from the image (left).

We note that our sliding windows are not used in the same way as in the Walrus technique

[2]. The latter slides a window over the image area to discover regions of similar characteristics,

whereas we use sliding windows of different sizes to capture the various possible subimages for

the purpose of indexing.

4 Image Retrieval Procedure

In this section, we first present our query model, and then discuss the implementation technique

using the index structure presented in the last section.

4.1 Query Formulation

We recall that SamMatch is capable of matching irregular-shaped subimages. This feature enables

us to support noise-free queries as follows. To express a query, the user first selects a suitable

image from the collection of image categories. A contour is then drawn as precisely as desired to

specify the relevant objects in the selected image. An example is illustrated in Figure 7(a). It shows

a query for a person about to enter a car. This query is represented internally by the sampled blocks

falling within the contour. We observe that this query is essentially noise free since irrelevant parts

of the image, such as the trees and clouds, have no effect on the outcome of the retrieval.

Other unique benefits of this query model are as follows. A query contour imposes spatial

(relative distances) and scaling (relative sizes) constraints on the enclosed objects. For instance,
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the NFQ in Figure 7(a) implies the following semantic constraints:

� Spatial Constraint: The person must be close to the driver’s side of the car.

� Scaling Constraint: The car must be about five times the size of the person.

Enforcing scaling constraints is not the same as handling scaling in existing methods. The intent

of the query in our example is to find images of a person about to enter a car. Such a query should

not match an image having at the bottom a person standing on the street, and a billboard of a car

in the upper right corner. Existing retrieval techniques capable of tolerating translation and scaling

of objects (e.g., [2],[7]) would incorrectly return this image as a good match. In fact, they would

retrieve any images having a person and a car, disregarding the intended constraints on the two

objects. If disassociating the query objects is desired, SamMatch allows the user to use a separate

contour for each object. Thus, our query model is more expressive than conventional whole-image

matching model.

Some degree of flexibility in formulating queries can also be achieved by treating each database

image as a collection of non-overlapping subimages, each having its own color histogram [5],[22].

For a given query, any combination of the local histograms can be selected for matching the

database images with the query image. We refer to these techniques as the Local Color His-

togram (LCH) approach. Although they provide a means to exclude some degree of noise, several

drawbacks remain:

� The storage overhead is very high compared to SamMatch. For instance, the storage cost for

only one local color histogram is about the same as the storage overhead for the SamMatch

approach. We will discuss this issue in more detail in Section 6.

� This approach is not noise free since each rectangular subimage is rather large and can con-

tain substantial noise.

� It is not clear how to handle matching at different scales when the objects of interest span
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multiple subimages. For instance, the query image in Figure 6(a) will not match the database

image in Figure 6(b) no matter which subimages are selected for matching.

We will show experimental results to compare SamMatch and LCH in Section 6.

(a) Query image (b) A database image

Figure 6: LCH does not support matching at different scales.

4.2 Query Processing

As we have discussed previously, the query image is sampled at five different rates to support

matching at five different scales. The execution of a query involves the following steps:

� Search Preparation:

1. We apply five different sampling rates to the query image to create five different ver-

sions of the NFQ, each designed to compare against subimages of a predetermined

size.

2. We determine the core area of the NFQ using the algorithm presented in the next sec-

tion. We recall that a core area is the largest square subimage that contains a noise level

no greater than a predetermined limit. We compute the signature of this core area us-

ing the same technique used for the indexing subimages (discussed in Section 3). Any

one of the query versions can be used in this computation to give essentially similar

signatures due to the property of the Haar wavelet coefficients. This step is illustrated

in Figure 7(b).
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� Initial Search: We use a tiny hyperrectangle centered at the signature point of the core area

as the search key to find all relevant MBRs using the R�-tree. This step is illustrated in

Figure 7(c). The result is a collection of candidate subimages enclosed in the qualified

MBRs.

� Detailed Matching: For each candidate subimage, we compare it against the version of NFQ

having the same number of sampled blocks. This is done by comparing the average colors

of the corresponding sampled blocks falling within the query contour. Equation (1) is used

to compute the matching score. This step is illustrated in Figure 7(d). If the matching score

is higher than a predefined threshold, the database image containing the matching indexing

subimage is returned as a query result. This step is illustrated in Figure 7(e).

� Ranking: We rank the returned images according to their matching score.

We note that a tiny hyperrectangle, centered at the signature point of the core area, is used as

the search key in the Initial Search step since the R�-tree supports range queries. For convenience,

we refer to this hyperrectangle as the query rectangle, and the signature point of the core area as

the query point. In practice, the query rectangle is adjusted to control the size of the returned set in

the initial search.

(a) (b) (c) (d) (e)

Figure 7: Query Processing

A requirement of the proposed query processing technique is that the core area must not be

smaller than the smallest indexing subimage. This should not be deemed as a limitation of the

SamMatch approach since we can always employ higher sampling rates to support core areas as
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small as desired. This can be accomplished without incurring more indexing overhead since we

index the database on the MBRs, not individual subimages. Alternatively, we can also use non-

square sliding windows for specialized applications. For instance, long rectangular windows can

better support applications with many slim query objects.

5 Core Area Detection

As mentioned in the last section, we need to determine the core area in order to use the R�-tree in

the initial search procedure. We treat this issue in this section by presenting an efficient algorithm

for the detection of the optimal core area given the maximum tolerable noise level (i.e., number

of irrelevant pixels). Such a core area is optimal in the sense that it is maximized to capture the

characteristics of the NFQ to the greatest extent. Although we could ask the user to draw this core

area as part of the query, such a core area is likely not optimal. This approach also makes the

system more tedious to use.

5.1 Problem Definition

Given an image frame, it defines a discrete Z � Z space (digitized equivalent of Euclidean R�R

space). Let us consider an NFQ S, and a square subset L of the image, such that S � Z � Z and

L � Z � Z. The number of relevant pixels in L can be represented as <(L) = jL \ Sj and the

number of irrelevant pixels, or noise, as <(L) = jL � Sj. Using these concepts, we can describe

the problem of finding the core area as follows.

Core-Area Detection Problem : Given an NFQ S � Z � Z and the maximum tolerable noise

level �, a square L � Z�Z is the core area of the NFQ if it satisfies the following conditions:

1. <(L) � �, and

2. for any square L’ � Z � Z
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(a) <(L’) > �, or

(b) <(L’) � � and <(L’) < <(L), or

(c) <(L’) = <(L) and <(L) � <(L’) � �.

Intuitively, the above definition requires the core area be the largest square subimage with noise

no more than the maximum tolerable level. Furthermore, it contains the least noise among those

square subimages with the same dimensions.

Although there has been research on related problems (e.g., binary shape decomposition [23],

[24]), we are not aware of any solution to the above problem. In [23], for example, 2-D binary

shapes are morphologically decomposed into conditionally maximal convex polygons. Each con-

vex polygon component is a subset of the given image, and the union of all such polygons is

the original image. Obviously, this is a different problem, in which noise and the sizes of those

polygons are not of concern.

5.2 An Efficient Algorithm

The core area can be found by exhaustively scanning over the NFQ. This approach however, is

very expensive. We consider a much more efficient strategy in this subsection. In our technique,

we first determine a set of good seed pixels. For each such pixel, we gradually expand an enclosing

square subimage, up to the noise limit, to search for the optimal core area. A pixel is a good seed if

it has good potential to expand into the optimal core area. This potential is computed based on the

number of reachable pixels in each of the eight predefined directions as illustrated in Figure 8(a).

For each direction, we count the number of connected relevant pixels until a noise pixel (in <(L))

is encountered. These eight counts form an array called the extend of the pixel. We note that we

can take advantage of the counts already computed for the adjacent pixels when doing the counting

for a given pixel as illustrated in Figure 8(b). Thus, the extends of all the pixels in the NFQ can be

calculated in one pass over the image area using dynamic programming.
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(i,j)

(n-i-1,n-j-1)

(a) (b)

Figure 8: Optimal core area detection - (a) compute the extend by counting the connected pixels in

eight predefined directions, (b) using dynamic programming to compute all extends in one pass

Within each extend array, the eight counts are recorded in ascending order (i.e., extend[0] <

extend[1] < � � � < extend[7]) to prepare for the following computation:

potential(x;y) =
dX

i=0

extend[i]� extend[i� 1]

2i
+
x+ 2 � y

104
; where extend[�1] = 0

(2)

Using the above equation, we can determine the potential of a given pixel, at location (x; y), as

a seed for expanding into the optimal core area. We explain this equation as follows. The first

term increases the potential measure by an increment for each round i. The denominator, however,

reduces this increment amount by a factor of 2i due to the following reasons. The eight components

of the extend array can be seen as the ”radii” of eight concentric squares as illustrated in Figure 9.

These squares form eight square bands of pixels. The innermost band is the smallest square with

only relevant pixels; and it has full potential to be included in the core area. However, as we

move to a band further from the center, the percentage of relevant pixels in this band typically

drops. The potential of this band being a part of the core area, therefore, decreases accordingly.

This characteristic is captured in our equation by using 1=2i as a weighing factor for round i. In

essence, Equation (2) roughly estimates the size of the core area seeded at (x; y). We use this

estimate as the potential measure of this location as a seed for expanding into the optimal core

area. The second term in Equation (2) is very small. It is included for the convenience of resolving

ties when comparing the potential measures of neighboring pixels. Since this term is x+2�y

104
, we

favor the y value over the x value. This choice is arbitrary and has no effect on the outcome.
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Figure 9: The eight concentric squares with respect to a pixel in the NFQ. Their radii are the

extend’s of the pixel.

Once all the potential measures have been computed, we scan the image area to find candidate

pixels with a better potential than all their adjacent pixels. Among these candidates, we select

only those pixels with a potential measure greater than a certain threshold to participate in the

subsequent search operation. This is done by applying a SmartExpand procedure to each of the

final candidates. At each step, this procedure expands the square, enclosing the candidate pixel,

toward the image area where the least noise is absorbed. This is illustrated in Figure 10. Although

there are four directions for expanding the white square, it is done in the lower-right direction

because the least noise is absorbed. This expansion process repeats until the maximum allowable

noise is encountered. We note that considering only pixels with a better potential than all their

immediate neighbors in the final search procedure allows us to substantially reduce the cost of our

technique.

Figure 10: Applying SmartExpand to each good seed pixel to search for the core area.

A high-level description of the proposed core-area detection technique is given in Algorithm 1.
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To illustrate the effectiveness of this technique, a core area detected by this algorithm is given in

Figure 11.

Algorithm 1 Detecting the core area L of an NFQ

1. Find the minimum bounding square, MBS, that encloses the NFQ.

2. For all (x; y) 2MBS, compute their extend in one pass using dynamic programming.

3. For all (x; y) 2MBS, compute their potential using Equation (2).

4. Scan the pixels in MBS to determine the set of good candidates, candidates, whose

potential is greater than all their adjacent pixels and a predefined threshold.

5. Let L be a minimum square of size 0� 0 .

6. Process each (x; y), in candidates, in turn as follows:

(a) Let L’ be a extend[0] � extend[0] square centered at (x; y).

(b) Apply the SmartExpand procedure to expand L’. If the size of L’ is now greater

than L, then let L be L’.

Figure 11: An NFQ (left) and its core area (right) detected by Algorithm 1 using � = 10%

Time and Space Complexity

Assuming the size of MBS is n � n, the time complexity of Algorithm 1 can be broken down as

follows:
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� The time complexity of Step (2) is O(n2) using dynamic programming.

� In Step (3), all the potential measures can be computed in O(n2).

� Step (4) takes O(n2) since only immediate neighbors are considered.

� Step (5) requires a constant time to execute.

� Step (6) can be completed in O(n2 �m), where m is the number of candidates, each requires

no more than O(n2) time to count the noise pixels.

Thus, the time complexity of Algorithm 1 is O(n2 � m). Since m is generally less than 6 as

observed in our experiments, the time complexity of Algorithm 1 is O(n2).

In terms of memory space, it is easy to see that Algorithm 1 requires O(n2) space, which is

very reasonable. We will provide experimental results in the next section to better illustrate the

efficiency of our technique.

6 Experimental Study

To assess the benefits of the SamMatch (SM) approach, we did experiments to compare it with

Local Color Histogram (LCH) [22] and Correlogram (Corr.) [7]. The rationales for using these

two schemes in our study are as follows:

� Local color histograms were used in [22] to allow the user to compose query images using

subimages from multiple image sources. We adapt this scheme for our study as follows.

Since subimages are treated independently with their own color histogram, one can easily

exclude irrelevant subimages in a query. Since there is no other practical technique for

NFQs, we use LCH as a reasonable approach to assess the effectiveness and efficiency of

SamMatch.
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� Correlogram was also selected for this study because it has been shown to provide excel-

lent results [7] when the entire image area is relevant. This scheme is used to verify that

SamMatch support NFQs not at the expense of whole-image matching.

In addition to comparing SamMatch with the above methods, we performed additional experiments

to study the alternative implementation techniques for SamMatch.

We designed more than 100 NFQs of various characteristics to compare the robustness of

the three image retrieval techniques. These NFQs contain diverse objects, such as roses, birds,

airplanes, balloons, buildings, skies, sand, statues, food, etc. The test queries can be classified into

three groups as follows:

� Type 1 (30 queries): The query image, from which we define the NFQ, has the same size as

those images in the database. Furthermore, the NFQ is small covering only a small region

of the query image.

� Type 2 (20 queries): The query image has the same size as those images in the database.

However, the NFQ is relatively large covering almost the entire query image.

� Type 3 (more than 50 queries): The query image is smaller or larger than the size of the

database images. The corresponding NFQ can be small or large.

We note that Type 3 was included in our study to capture the fact that images are typically not

uniform in size. It is unrealistic and restrictive to assume that the sizes of the query images and

those of the database images are always the same. We present and discuss the experimental results

in the following subsections.
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6.1 Comparative Studies

We describe our performance metric as follows. Let A1; A2; : : : ; Aq denote the q relevant images

in response to a query Q. The recall R is defined for a scope S, S > 0, as:

R=S =
jfAijrank(Ai) � Sgj

q

This measure indicates the percentage of the returned images ranked within the specified scope.

For instance, if a query returns 30 out of a total of 40 relevant images in some scope S, then its

R=S is computed as 30/40 or 0.75. The rationale for this metric is that the retrieved images that

fall far behind in the rankings often do not make it to the user. This metric was first used in [7]. An

important benefit of this approach is that we do not need to use a threshold in the image retrieval

procedure. Instead, for each query we request the system to retrieve the S highest-ranked images.

To compute R=S, we need to know the relevant images in the database. This was done manually in

our study as follows. We used a commercial image database, called Art Explosion, available from

Nova Development. This database is organized as a hierarchy of subfolders according to the image

categories. We added a few images of our own in order to test specific features. In total, the test

database has 15,808 images which is significantly larger than many databases used in recent studies

[2],[25],[7],[12],[26],[22],[9],[11],[27],[28]. For each query, we determine the relevant images by

inspecting the 500 highest-ranked images returned by each of the three image retrieval techniques,

and those images in the relevant categories according to the organization of the database. In total,

we inspect about 1,200 images for each test query.

6.1.1 Performance under Type-1 Queries

In this study, we compare the three techniques in processing NFQs that cover some small area of

the query image. An example of these NFQs is shown in Figure 12. The R=S averages observed

in this experiment are presented in Figure 14(a). It shows that SamMatch offers 40% improvement

over Correlogram. Although LCH also shows some improvement, it is not as good as SamMatch

which allowed us to more precisely exclude noise from the query.
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(a) query (b) highest-ranked returned images

Figure 12: Some of the highest ranked (left-to-right) images returned by SamMatch (first row),

by Corr. (second row) and LCH (third row) in response to the query (left): ”Retrieve images

containing a yellow flower”.

6.1.2 Performance under Type-2 Queries

query SM: 2 SM: 21

Corr.: 2 Corr.: 89

LCH: 2 LCH: 201

query SM: 2 SM: 16 SM: 41

Corr.: 2 Corr.: 9 Corr.: 223

LCH: 2 LCH: 93 LCH: 1258

(a) (b)

Figure 13: Some relevant answers in Type-2 queries. Lower is better.

In this experiment, the objects of interest cover almost the entire area of the query image. Two

such NFQ examples and their similar database images are shown in Figures 13(a) and 13(b). The

results of this study are plotted in Figure 14(b). We see that LCH actually performs much worse

than Correlogram under these queries. This indicates that we cannot handle NFQs by simply
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partitioning images into their subimages as in LCH. In contrast, SamMatch continues to offer the

best performance under this category. We also observe in Figure 13(b) that both SamMatch and

Correlogram can detect objects viewed from different angles. This can be attributed to the fact that

these schemes are much better than LCH in capturing the spatial layout of the colors.
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Figure 14: R/S averages under specific types of NFQs

6.1.3 Performance under Type-3 Queries

As we have discussed, this class of queries represents many practical applications, in which database

and query images do not have the same size. We observe that LCH cannot support such queries.

An example is illustrated in Figure 15 showing that there is no easy way to match the two identical

apples using LCH. Similarly, we cannot perform such comparisons under Correlogram. Due to

these limitations, we investigated only SamMatch in this experiment. The experimental results are

(a) query (b) database image

Figure 15: There is no easy way to match the apple in the small query image with the apple of the

same size in the larger database image.
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presented in Figure 14(c). They indicate that SamMatch is highly effective. We show two examples

in Figures 16 and 17 to illustrate the quality of this technique. They demonstrate that SamMatch

is robust to scaling and translation of the objects. The objects in the retrieved images have differ-

ent sizes and are found at different locations. Furthermore, the large amount of irrelevant content

(occupying as much as 75%) of the database images does not affect their ranking. Interestingly,

the two rightmost images in Figure 17 are ranked very low. This is because the person and the car

in this image do not satisfy the spatial and scaling constraints imposed in the query. Since we are

looking for images of a person about to enter a car, these two images should not be considered as

very relevant. On the other hand, the 11th and 17th ranking of the rightmost images in Figure 16

appear to be low. This is due to the misalignment of the apple and the sliding windows in the

region. Such problems can be easily addressed by using more window sizes and smaller sliding

steps. We feel that the current configuration is sufficient for most applications.

(a) query (b) high-ranked retrieved images

Figure 16: Some images (ranked, left-to-right, 1, 2, 3, 4, 11, and 17) returned in response to query

(left): Retrieve images containing an apple of any size at any location.

(a) query (b) some retrieved images

Figure 17: Some images (ranked, left-to-right, 1, 2, 215 and 395) returned in response to query

(left): Retrieve images containing a man about to enter his car.
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6.1.4 Space Requirement

In this study, we compare the three image retrieval techniques in terms of storage overhead. Since

quick-and-dirty filtering and indexing were not used for Correlogram in [7] and LCH in [22], we

assume that index is not used in all three techniques in this study. Thus, the storage overhead

reported in this subsection is due to the feature vectors alone.

In our performance studies, the size of each image is 256 � 256 pixels, and there are 256

possible colors. We can compute the space requirement for the feature vector of each technique as

follows:

� There are three levels of image partitioning in LCH [22]. Each database image is partitioned

into 1, 4, and 16 equal-size non-overlapping subimages at levels 1, 2, and 3, respectively.

Therefore, the required storage space is (1 + 4 + 16) � 256 � 2 = 10,752 bytes - ”256”

represents the 256 possible colors; and ”2” is due to the fact that two bytes are used for

counting each color since up to 256� 256 = 65,536 pixels can have the same color.

� We use the distance set D = f1; 3; 5; 7g (i.e., four color histograms) for Correlogram as in

[7]. The space requirement for its feature vector is 4� 256� 2 or 2048 bytes.

� For SamMatch, the space requirement is 113 bytes, one for each sampling block.

In summary, LCH requires more than five times the storage overhead of Correlogram in order

to achieve very limited support for NFQs. On the other hand, SamMatch can take full advantage

of NFQs while using only 1/16 the space required by Correlogram. These results indicate that our

approach is more suitable for very large image databases.

6.2 Performance Issues Specific to SamMatch

In this subsection, we investigate the effect of the number of clusters per image on the overall

performance of the system.
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Building an index on individual subimages in the database would result in a very deep R�-

tree. To reduce the time required to search through this access structure, we index the database

on the MBRs, each represents a cluster of subimages in a given image. The tradeoff is that each

qualified MBR must be searched sequentially to find the similar subimages. The experimental

results for different clustering configurations, up to ten clusters, are shown in Figure 18. The

light bar indicates the average time spent on searching the R�-tree; and the dark bar represents the

average time spent on searching within the qualified MBRs to find the similar indexing subimages.

The sum of the two gives the average response time of the queries for the corresponding clustering

configuration. The plot shows that the performance is significantly better when the number of

clusters is from 4 to 7. This is a nice property since it allows us a lot of leeway to select a good

number of clusters for a given application. In practice, the database administrator can tune this

parameter, as in any database system, to ensure the best performance.
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Figure 18: Average search times for different clustering configurations

To get more insight, we provide more information on three of the clustering configurations in

Table 1. We explain the parameters as follows:

#MBRs: The average number of MBRs retrieved from the R� tree. They intersect with the core

area of the query.
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#signatures: The average number of subimages retrieved from the R� tree. These subimages are

the signatures points fall within the qualified MBRs.

R� tree time: The average time spent on searching the R� tree for qualified MBRs.

Similarity Computation: The average time spent on searching within the qualified MBRs to find

the similar subimages.

Speedup: Speedup with respect to a sequential algorithm that scans the entire database to compute

the similarity between each image and the query image.

We observe that using a single cluster for each image is a bad idea; the benefit is limited. As we

increase the number of clusters per image from 5 to 10, the number of subimages retrieved from

the R�-tree decreases from 16,371 to 5,219. Although this helps to reduce the similarity compu-

tation cost from 4.30 seconds to 2.78 seconds, the time spent in searching the R� tree increases

substantially from 2.85 seconds to 19.7 seconds.

No. of Cluster per image (c) One Five Ten

#MBRs 2,988 963 614

#signatures 253,980 16,371 5,219

R� tree time 7.35 2.85 19.7

Similarity Computation 54.1 4.30 2.78

Speedup 6.83 58.7 18.7

Table 1: Summary of results on different clustering configurations

7 Concluding Remarks

Query-by-example is by far the most popular query model for image database management sys-

tems. Typically, a query image, selected from a collection of general image categories, contains

not only the objects of interest, but also irrelevant image areas. Excluding these noise areas from
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similarity computation is essential to achieve better precision and recall. This calls for the ability

to define the relevant areas precisely at query time. This flexibility, however, would render the

precomputation of the feature vectors impossible since we do not know the matching areas at the

database build time. To the best of our knowledge, this issue has not been studied in the literature.

To address this problem, we defined in this paper a new class of queries, called noise-free queries

(NFQs), and introduced a new similarity model, based on our SamMatch framework, to support

them.

SamMatch enables the user to draw a contour on a query image to precisely outline the relevant

areas for image matching. To support such NFQs, we take samples of each image much in the

same way audio is digitized. Each sample is a small block of pixels with their average color (i.e.,

the most dominant Haar wavelet coefficient) pre-computed. To process a NFQ, the system only

needs to compare the samples falling within the query contour. This environment also allows the

system to match objects at different scales by applying different sampling rates to the query image.

Furthermore, ”sliding” one set of samples over another can uncover translations of the matching

areas. Our query model is also more expressive than standard QBE. The user can draw a single

contour to specify spatial and scaling constraints among the query objects, or use multiple contours

to disassociate them. The net effect of all these new features is a highly effective technique for

image retrieval systems.

To assess the feasibility of the proposed similarity model, we investigated indexing and query

processing techniques for this new environment. We implemented three systems based on Sam-

Match, Local Color Histogram (LCH), and Correlogram, respectively, and compared their perfor-

mance. Although LCH can be adapted for NFQs, our experimental results indicate that it is not

very effective. Correlogram only performs well when the objects of interest occupy almost the

entire image area. Under this condition, Correlogram outperforms LCH by a significant margin. In

all cases, SamMatch still exhibits the best performance. In practice, the query image may not have

the same size as the database images. Only SamMatch can support this more realistic environment,

and continue to offer excellent performance. We also analyzed the storage overhead incurred by
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the feature vectors. It shows that SamMatch uses less than 1/16 the storage space required by the

other two techniques.
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