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Abstract. Contour trees have been used in geographic information sys-
tems (GIS) and medical imaging to display scalar data. Contours are
only defined for continuous functions. For an image represented by dis-
crete data, a continuous function is first defined as an interpolation of
the data. Then the contour tree is defined on this continuous function. In
this paper, we introduce a new concept termed monotonic line, which is
directly defined on discrete data. All monotonic lines in an image form a
tree, called monotonic tree. As compared with contour trees, monotonic
trees avoid the step of interpolation, thus can be computed more effi-
ciently. Monotonic tree can also be used as a hierarchical representation
of image structures in computer imagery.

1 Introduction

The concepts of contour trees have been developed by Morse [1], Roubal and
Peucker [2], and recently by van Kreveld et al. [3]. In geographic information
systems (GIS), contour trees are used to display scalar data defined over the
plane, or the three-dimensional space. For example, the elevation in the land-
scape can be modeled by scalar data over the plane, where a contour (also called
an isoline) is a line where the elevation function assumes the same value. Contour
trees are also used in medical imaging to show the scanned data.

Contours are only defined for continuous functions. For an image represented
by discrete data, a continuous function is first defined as an interpolation of
the data. Then the contour tree is defined on this continuous function. In this
paper, we introduce a new concept termed monotonic line, which is directly
defined on discrete data.

We observe that for any 2D Morse function, a curve is a normal contour with
value v iff it’s a boundary of the set {x ∈ IR2|f(x) > v}. This is not true for
non-Morse functions. However, the equivalent condition is more general, and can
be used to define contours for discontinuous or discrete functions. Specifically, an
outward-falling/climbing monotonic line of an gray image is a boundary where
the image assumes higher/lower values in the pixels adjacent to the boundary
from inside than those from outside (see Figure 1(a)). The two kinds of mono-
tonic lines correspond to positive and negative contour lines in [1], respectively.
To make the boundary of the image domain a monotonic line, we extend the
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input image to the whole digital plane such that the extended function assumes
−∞ out of the domain.

It can be proved that monotonic lines don’t cross each other, i.e., if l1 = ∂X,
l2 = ∂Y are two monotonic lines, where X, Y are two simply connected regions,
then X ⊆ Y , Y ⊆ X or X

⋂
Y = Ø. Based on this property, we can define a

parent-child relation: monotonic line l1 is the parent of monotonic line l2, if l2 is
directly enclosed by l1. Under this parent-child relation, all monotonic lines in an
image form a rooted tree, called monotonic tree. See Figure 1(b)(c). A monotonic
tree can be reduced. A maximal sequence of uniquely enclosing monotonic lines
is called a monotonic slope. All monotonic slopes in an image form the topological
monotonic tree (TMT). See Figure 1(d).

Algorithms for computing traditional contour trees can be easily modified to
compute monotonic trees or topological monotonic trees. Because the monotonic
line is directly defined on pixels, the interpolation step is avoided. Thus the
monotonic trees and the topological monotonic trees can be computed more
efficiently.
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Fig. 1. (a) An outward-falling monotonic line (the solid line in the figure), (b) a set of
monotonic lines, (c) the monotonic tree, (d) the topological monotonic tree (TMT).

Monotonic tree can be used as a hierarchical representation of image struc-
tures in computer imagery. As compared with other models such as wavelet, the
monotonic tree model has following advantages.

(1) The monotonic tree retrieves and represents the structures of an image at
all scales. In addition, these structures are organized hierarchically as a tree,
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which gives us a better way to analyze the relationship between different
levels.

(2) The monotonic tree retrieves the structures of an image directly and main-
tains their original shapes.

An example is shown in Figure 2. In this example, the tree region and wa-
ter wave region are characterized by the shapes and permutation of the TMT
elements in these two regions, which makes it possible to recognize the trees
and water waves by classifying and clustering the TMT elements. Based on our
monotonic tree model, we made an online demo for scenery analysis, which is
available at “http://monet.cse.buffalo.edu:8888”.

(a)

(b)

(c)

Fig. 2. (a) Original image, (b) the elements of the TMT at a smaller scale, and (c) the
elements of the TMT at a larger scale. In (b) and (c), the TMT elements are shown
by black and white regions in a gray background.

2 Preliminary

In our theoretical discussion, we choose hexagonal grid for the digital plane. We
use notations in [6] with modifications. The digital plane is a pair (Vh, Πh),
where Vh is the set of pixels:

Vh = {h1(1, 0) + h2(−0.5,
√
0.75)|h1, h2 ∈ ZZ}, (1)

and Πh is the edge-adjacency shown in Figure 3(a). Πh is a symmetric binary
relation on Vh such that Vh is Πh-connected. Formally,

Πh = {(p, q)|p, q ∈ Vh, and ‖ p − q ‖= 1}. (2)



Monotonic Tree 117

Each pixel P has 6 edges, named as ei(P ) for i = 0, 1, ..., 5. See Figure 3(b).
Each ei(P ) is an element of Πh. We define function nextP on {ei(P )}5i=0 by

nextP (ei(P )) = e(i+1)%6(P ). (3)

Function nextP defines the counter-clockwise direction in the border of P .
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Fig. 3. (a) Hexagonal grid, (b) six edges of pixel P , and (c) the connected boundary
of a digital region.

For any subset X of Vh, its border is defined as

∂X = {(p, q) ∈ Πh|p ∈ X, and q 
∈ X}. (4)

We define function nextX on ∂X such that for e = (p, q) ∈ ∂X with p ∈ X and
q 
∈ X,

nextX(e) =
{
nextp(e) if nextp(e) ∈ ∂X;
next−1q (e) otherwise. (5)

Function nextX defines the counter-clockwise direction in the border of X. For
example, in Figure 3(c), nextX(α) = β and nextX(β) = γ.

The following definition defines connected regions.

Definition 1. A region X is called a connected region if (X,Πh|X) is a con-
nected graph, i.e., for any p, q ∈ X, there exists a Πh-connected path in X con-
necting p and q, where a Πh-connected path is a sequence of pixels {pi}n

i=1
such that (pi, pi+1) ∈ Πh for i = 1, 2, ..., n − 1.

For a connected region with no holes, its border is a connected boundary,
which is an boundless list of pixel edges. See Figure 3(c). Formally, we give two
definitions.
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Definition 2. A boundless list is a pair (X,next) such that X is a set and
(1) next is a bijective function from X to X; and
(2) ∀x, y ∈ X, there exists an integer n ≥ 0 such that either x = nextn(y), or
y = nextn(x).
A circular list is a boundless list (X,next) such that X is a finite set.

It’s easy to see that for a circular list (X,next) and any x, y ∈ X, there exists
an integer n ≥ 0 such that x = nextn(y).

Definition 3. For a region X ⊆ Vh, a connected boundary of X is a subset
S of its border ∂X such that nextX(S) = S and (S, nextX |S) is a boundless list.

About the boundaries of regions, we have following lemma.

Lemma 1. For any X ⊆ Vh,
(1) ∂X = ∂(Vh − X);
(2) nextX = (nextVh−X)

−1;
(3) the border of X can be decomposed into a set of connected boundaries; and
(4) if X is bounded (i.e., it’s finite), then its connected boundaries are circular
lists.

This lemma is obvious. Next we give the definition for simple connection.

Definition 4. A region X ⊆ Vh is called simply connected if both X and
Vh − X are connected.

The simple connection we defined here is a little bit different from the tradi-
tional definition on Euclidean plane. However, if we add an infinite pixel to the
hexagonal grid and make it a digital sphere, then our definition fits the definition
of simple connection on Euclidean sphere.

About simple connection, we have following lemma.

Lemma 2. For a bounded region X ⊂ Vh, X is simply connected iff
(∂X, nextX) is a circular list. That is to say, for a bounded region X,
(∂X, nextX) is a circular list iff both X and Vh − X are connected.

This lemma is an equivalent of Jordan’s curve theorem on the hexagonal
grid. Due to the limited space, in this paper, we give our lemmas and theorems
with the proof omitted.

Next, we model gray images on the hexagonal grid.

Definition 5. A gray image is a pair (f,Ω) such that Ω ⊂ Vh is a bounded
and simply connected region, and f is a real valued function defined on Ω.

For any gray image (f,Ω), we extend the function f to the whole plane by

fE(p) =
{
f(p) if p ∈ Ω;
−∞ otherwise. (6)

fE is called the extended function of f . In fact, instead of choosing −∞, we
can choose any value which is less than all values assumed by f , or greater than
all values assumed by f .
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3 Monotonic Line

In this and following sections, let I = (f,Ω) be a fixed gray image, and fE be
the extended function of f . For a region X ⊆ Vh, we denote the immediate
interior [6] of ∂X as IntBorderP ixelSet(X), and the immediate exterior as
ExtBorderP ixelSet(X), i.e.,

IntBorderP ixelSet(X) = {x ∈ X|(x, y) ∈ Πh for some y 
∈ X}; (7)
ExtBorderP ixelSet(X) = {y ∈ Vh − X|(x, y) ∈ Πh for some x ∈ X}. (8)

Now we can define monotonic line.

Definition 6. A monotonic line of I is a boundary ∂X such that X ⊆ Ω is
simply connected and not empty, and there exists some v ∈ IR with the property
that either of the following is true:
(1) ∀x ∈ IntBorderP ixelSet(X), fE(x) > v, and

∀y ∈ ExtBorderP ixelSet(X), fE(y) < v;
(2) ∀x ∈ IntBorderP ixelSet(X), fE(x) < v, and

∀y ∈ ExtBorderP ixelSet(X), fE(y) > v.
If (1) is true, ∂X is called outward falling; if (2) is true, ∂X is called
outward climbing. We denote the set of all monotonic lines of I as
MonotonicLineSet(I).

We can prove that monotonic lines don’t cross each other, i.e., for any ∂X, ∂Y
in MonotonicLineSet(I), one of the following is true: X ⊆ Y , Y ⊆ X or
X

⋂
Y = Ø.

Theorem 1. ∀∂X, ∂Y ∈ MonotonicLineSet(I), one of following is true:
X ⊆ Y , Y ⊆ X or X

⋂
Y = Ø.

The basic idea to prove this theorem is simple. Suppose we have two mono-
tonic lines ∂X and ∂Y crossing each other. Let a, b, c, d be four pixels around a
crossing point. See Figure 4. By the definition of monotonic line, we discuss on
four cases:
(1) both ∂X and ∂Y are outward falling;
(2) ∂X is outward falling, ∂Y is outward climbing;
(3) ∂X is outward climbing, ∂Y is outward falling; and
(4) Both ∂X and ∂Y are outward climbing.
For each case, we can get a contradiction. For example, in case (1), there exists
v1 such that

fE(a) > v1, fE(c) > v1, and fE(b) < v1, fE(d) < v1;
and there exists v2 such that

fE(c) > v2, fE(d) > v2, and fE(a) < v2, fE(b) < v2.
Then we get both fE(a) > v1 > fE(d) and fE(d) > v2 > fE(a), which is a
contradiction.
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Fig. 4. ∂X crosses ∂Y .

4 Monotonic Tree and Topological Monotonic Tree

We first define some relations on MonotonicLineSet(I).

Definition 7. For any monotonic lines ∂X, ∂Y ∈ MonotonicLineSet(I),

– ∂X encloses ∂Y , denoted as Enclose(∂X, ∂Y ), if X ⊃ Y ;

– ∂X directly encloses ∂Y , denoted as DirectEnclose(∂X, ∂Y ), if
Enclose(∂X, ∂Y ) and there is no ∂Z ∈ MonotonicLineSet(I) such that
X ⊃ Z ⊃ Y ;

– ∂X uniquely directly encloses ∂Y , denoted as
UniqueDirectEnclose(∂X, ∂Y ), if DirectEnclose(∂X, ∂Y ) and
∀∂Z ∈ MonotonicLineSet(I), DirectEnclose(∂X, ∂Z) ⇒ ∂Y = ∂Z.

The relation DirectEnclose is a parent-child relation on the set of monotonic
lines in gray image I. Based on Theorem 1, we can easily prove that:

Theorem 2. (MonotonicLineSet(I), DirectEnclose) is a rooted tree, and ∂Ω
is its root.

The tree (MonotonicLineSet(I), DirectEnclose) is called the monotonic
tree of image I, and denoted as MonotonicTree(I).

Next we can define monotonic slope and topological monotonic tree.

Definition 8. A monotonic slope s is a maximal sequence of monotonic lines
s = {li}n

i=1 with n ≥ 1 such that
(1) ∀i = 1, 2, ..., n − 1, UniqueDirectEnclose(li, li+1); and
(2) either all li are outward-falling, or all li are outward-climbing.
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s is called outward-falling/outward-climbing if all li are outward-
falling/outward-climbing. The first monotonic line l1 is called the enclos-
ing line of the slope s. The set of all monotonic slopes is denoted as
MonotonicSlopeSet(I).

We can also define some relations on MonotonicSlopeSet(I).

Definition 9. For any sa, sb ∈ MonotonicSlopeSet(I), we define
(1) Enclose(sa, sb) if ∃la ∈ sa,∃lb ∈ sb, Enclose(la, lb);
(2) DirectEnclose(sa, sb) if ∃la ∈ sa,∃lb ∈ sb, DirectEnclose(la, lb).

The relation DirectEnclose is a parent-child relation on the set of all mono-
tonic slopes.

Theorem 3. (MonotonicSlopeSet(I), DirectEnclose) is a rooted tree, and the
monotonic slope which contains ∂Ω is the root.

The tree (MonotonicSlopeSet(I), DirectEnclose) is called the topological
monotonic tree of I, and denoted as TopologicalMonotonicTree(I).

5 Properties of Monotonic Tree

In this section, we introduce some theorems about monotonic tree.

Theorem 4. Inside Intersecting Theorem
For any ∂X, ∂Y ∈ MonotonicLineSet(I), if

IntBorderP ixelSet(X)
⋂

IntBorderP ixelSet(Y ) 
= Ø,
then

∂X is outward falling ⇔ ∂Y is outward falling.

This theorem is equivalent to the statement that for a sequence of monotonic
lines which intersect from inside, either they are all outward falling, or they are
all outward climbing. See Figure 5(a).

(a) (b)

Fig. 5. (a) An inside-intersecting sequence, and (b) two inside-intersecting sequences
which intersect from outside.
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Theorem 5. Outside Intersecting Theorem
For any ∂X, ∂Y ∈ MonotonicLineSet(I), if

IntBorderP ixelSet(X)
⋂

ExtBorderP ixelSet(Y ) 
= Ø,
then

∂X is outward falling ⇔ ∂Y is outward climbing.

This theorem is equivalent to the statement that for two inside-intersecting
sequences, if they intersect from outside, then the monotonic lines in one se-
quence are all outward falling, and the monotonic lines in the other sequence are
all outward climbing. See Figure 5(b).

Theorem 6. Separation Theorem
Let x, y be two pixels in Ω.
(1) If there is a Πh-connected path P = {w1 = x,w2, ..., wn = y} in Ω such
that f is constant along this path, i.e., f(w1) = f(w2) = ... = f(wn), then
∀ ∂X ∈ MonotonicLineSet(I), x ∈ X ⇔ y ∈ X.
(2) If f(x) 
= f(y), then there is some ∂X ∈ MonotonicLineSet(I) such that
x ∈ X ⇔ y 
∈ X.

This theorem states that for any two pixels in the image domain, (1) if they
are connected by a path where the function assumes constant value, then no
monotonic line separates them; and (2) if the function assumes different values
at the two pixels, then there is some monotonic line separating them.

Theorem 7. Private Region Theorem
For any ∂X ∈ MonotonicLineSet(I), let {∂Yi}n

i=1 (n ≥ 0) be the set of children
of ∂X in the monotonic tree. Then
(1) (X − ⋃n

i=1 Yi)
⋂

IntBorderP ixelSet(X) is not empty; and
(2) ∀x, y ∈ (X − ⋃n

i=1 Yi, ) f(x) = f(y).

This theorem states that each monotonic line has a nonempty private region
and that the function is constant over this region. Based on this theorem, we
give following definition.

Definition 10. For any ∂X ∈ MonotonicLineSet(I), let {∂Yi}n
i=1 (n ≥ 0) be

the set of children of ∂X in the monotonic tree. We define the private region
of ∂X to be:

PRegionI(∂X) = X − ⋃n
i=1 Yi.

We define the assumed value of ∂X to be the constant value assumed by f
over PRegionI(∂X). The assumed value of ∂X is denoted as V alueI(∂X).

Theorem 8. Value Jumping Theorem
For any ∂P, ∂C ∈ MonotonicLineSet(I), if ∂P is the parent of ∂C, then
(1) V alueI(∂P ) 
= V alueI(∂C); and
(2) ∂C is outward falling ⇔ V alueI(∂P ) < V alueI(∂C).

The property (1) in this theorem says that there is a value jump (up or down)
from a child to its parent. Value jumping is a natural property for contour trees,
but it’s not straight forward for monotonic trees.
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6 Conclusion and Discussion

Contour trees are only defined on continuous functions. When applying the con-
tour tree model to computer imagery, we have to make an interpolation of the
discrete data, which make the computation not efficient. We solved this problem
by introducing our monotonic tree model.

One main difficulty of computer imagery comes from the discrete and noise
nature of images. While we have plenty of powerful theories to analyze the struc-
tures of smooth functions, we need more for discrete functions. The monotonic
tree can be used as a theoretical tool for discrete functions.

The capacity of the monotonic tree model can be extended. The topological
structure of the monotonic lines in an image is captured by the topological mono-
tonic tree. We may further define differential slope and differential monotonic
tree to capture the differential information. A differential slope may be defined
as a sequence of monotonic lines where the gradient is smooth.
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