
Introduction

Capability-Based
Addressing
R.S. Fabry
University of California.

Various addressing schemes making use of segment
tables are examined. The inadequacies of these schemes
when dealing with shared addresses are explained. These
inadequacies are traced to the lack of an efficient absolute
address for objects in these systems. The direct use of a
capability as an address is shown to overcome these
difficulties because it provides the needed absolute ad-
dress. Implementation of capability-based addressing is
discussed. It is predicted that the use of tags to identify
capabilities will dominate. A hardware address translation
scheme which never requires the modification of the
representation of capabilities is suggested. The scheme
uses a main memory hash table for obtaining a segment's
location in main memory given its unique code. The hash
table is avoided for recently accessed segments by means
of a set of associative registers. A computer using capa-
bility-based addressing may be substantially superior to
present systems on the basis of protection, simplicity of
programming conventions, and efficient implementation.

Key Words and Phrases: addressing, capabilities,
addressing hardware, protection, protection hardware,
shared addresses, information sharing, operating systems,
computer utility, segmentation, tagged architecture

CR Categories: 4.30, 4.32, 4.34, 6.21

Copyright (~) 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This is a revised version of a paper presented at the Fourth
ACM Symposium on Operating Systems Principles, IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, Oc-
tober 15-17, 1973, under the title "The Case for Capability-Based
Computers."

Author's address: Computer Science Division, Evans Hall,
University of California, Berkeley, CA 94720.

403

The idea of a capability which acts like a ticket au-
thorizing the use of some object was developed by
Dennis and Van Horn [15] as a generalization of ad-
dressing and protection schemes such as the codewords
of the Rice computer [28], the descriptors of the Bur-
roughs machines [6, 7], and the segment and page tables
in computers such as the GE-645 and IBM 360/67 [1, 14].
Dennis and Van Horn extended the earlier schemes to
include not just memory but all systems objects--mem-
ory, processes, input/output devices, and so on- -and to
allow the explicit manipulation of access control by non-
system programs. The idea is that a capability is a special
kind of address for an object, that these addresses can be
created only by the system, and that, in order to use any
object, one must address it via one of these addresses.

The use of capabilities as a protection mechanism
has been the subject of considerable interest [24, 29, 32,
43]. It is assumed that the reader is familiar with the use
of capabilities for protection; a different aspect of capa-
bilities is developed here.

It is argued below that there is an advantage in using
capabilities as a basic component of the address of every
object (except for objects associated with the processor
such as its registers). In order to accomplish this, user
programs must be able to store capabilities freely into
various permanent user data structures (subject, of
course, to some scheme for preserving the integrity of the
representation of capabilities). Not all schemes which
use capabilities actually allow capabilities to be used as
permanent addresses in this way. For example, the
original Dennis and Van Horn scheme did not because
it insisted that capabilities be stored only in C-lists asso-
ciated with computations.

Context-Independent Addresses

The advantage of a capability used as an address is
that its interpretation is context independent. It provides
an absolute address for an object. This fact is more im-
portant than it may at first appear.

Before the use of address relocation--such as base
and limit registers, paging, and segmentation--jobs were
allocated fixed areas of physical memory. Addresses
within the jobs were relocated at load time, and a job
was not moved once it had started running. The lack of
the ability to dynamically relocate resulted in under-
utilized computers. To avoid this underutilization, ad-
dress relocation was introduced. But in doing so, a new
problem was also introduced. Consider two jobs which
need to interact with each other. In a system without
relocation, jobs share an address space and can be al-
lowed to interact freely, sharing data structures and ad-
dresses as easily as if they were a single job. With address
relocation, however, the meaning of an address becomes
context dependent; each job has its own address space,

Communications July 1974
of Volume 17
the ACM Number 7

or perhaps several. This fact is generally interpreted as
an advantage: base and limit registers, paging, and seg-
mentation, by virtue of their address relocation, allow
users to be isolated from each other, thus providing pro-
tection of one job from another. On the other hand, the
sharing of addresses becomes more difficult, and this side
effect is generally ignored. This effect is particulaly
ironic for those systems which stress their usefulness for
cooperating users who want to work together, sharing
programs and data.

Although a capability functions as an absolute ad-
dress, the use of capabilities does not prevent a system
from using address relocation. A capability is an abso-
lute address for a virtual object; the system is free to
relocate the virtual object so long as it maintains the
correspondence between the object and its capabilities.

Fig. 1. Segment addresses.

j P C

1 RE

2

SEGMENT TABLE

?
I CALL 1

ACCESS 2

The Problem of Shared Segment References

Various addressing schemes making use of segment
tables have been implemented in present day systems.
Although the inadequacies of these schemes when deal-
ing with shared segment addresses may be apparent to
users of the systems, the inadequacies have not (with
rare exception) been explained in sysfem descriptions,
nor does there exist a systematic comparison of the
problems which arise with each of the schemes.

As an example of the problems encountered in these
systems, consider a particular structure, a set of inter-
acting subprograms. Figure 1 shows a process which has
three segments: a data segment, a main program, and a
subroutine. The segment table translates integer segment
addresses into references to the appropriate segments
and specifies the permitted types of access. R means
reading is allowed, W means writing is allowed, and E
means executing is allowed. The entries in the segment
table can be thought of as descriptors, capabilities, code-
words, or pointers; for our purposes these are the same.
The main p rogram in Figure 1 contains two segment
references, a call on the subroutine, coded as CALL 1, and
an access of the data segment, coded as ACCESS 2. The
PC register associated with the process contains the seg-
ment number of the segment which the program counter
addresses. In an actual system, the location of a word
within a segment is also important. For simplicity, the
word number components of addresses are omitted.

Figure 2 shows the case in which the program and
the segment references which it contains are shared. As-
sume for the moment that the correspondence between
integers and segments is constructed independently for
each process. Then, as in the figure, a segment may be
referred to by different integers in different processes.
How can the segment references in the shared main pro-
gram be coded? For process 1, the references should be
coded CALL 1 and ACCESS 2. For process 2, however, they
should be coded CALL 0 and ACCESS 1. Four different
solutions to this problem of shared segment references
are presented below.

404

Fig. 2. Shared segment addresses.

SEGMENT TABLE I FOR PROCESS 1

RE

RW

SEGMENT TABLE
FOR PROCESS 2

F

I CALL ?
ACCESS ?

SUB

Communications
of
the ACM

July 1974
Volume 17
Number 7

Fig. 3. Uniform address solution.

l

2

SEGMENT TABLE
FOR PROCESS l

l RE

2

SEGMENT TABLE
FOR PROCESS 2

I ACCEBS21

Fig. 4. Indirect evaluation solution.

LINKAGE SEGMENT
FOR PROCESS I 0 RW DATA FOR
FOR MAIN

I RE

2 RE]

LINKAGE SEGMENT
FOR PROCESS I 4 , R
FOR SUB

SEGMENT TABLE
FOR PROCESS

LINKAGE SEGMENT
FOR PROCESS 2
FOR MAIN

O R
1 R

0 2 E
LINKAGE SEGMENT 3 RE
FOR PROCESS 2
FOR SUB 4 RW

SEGMENT TABLE
FOR PROCESS 2

Uniform Address Solution
The uniform address solution is shown in Figure 3.

This solution requires that a shared integer segment ad-
dress be interpreted in a functionally equivalent manner
for all processes sharing the address. A shared address
is said to receive a functionally equivalent interpretation
for a set of processes if the objects referred to by the
address are used in the same way by each process. For
example, in Figure 3, the segment address 2 refers to the
data segment used by the process making the reference,
while the segment address 1 refers to the segment con-
taining the subroutine called by the main program in a
certain instruction. Note that a functionally equivalent
interpretation of a shared address sometimes causes the
same object to be referenced by all processes and some-
times causes a different object to be referenced by each
process.

The uniform address solution requires that the func-
tions of the various shared integer segment addresses be
defined centrally so that there will be no conflicts. This
requirement rules out the possibility of a single process
executing several independently constructed, shared
subprograms. This is ruled out because each independ-
ent constructor would be free to choose a function for a
particular index and the chosen functions would usually
conflict. This is a rather serious drawback if one desires
a programming environment in which a user is able to
build on the work of others in a general way [13].

Generality notwithstanding, the uniform address
solution is used successfully by Burroughs. The Bur-
roughs systems require a user to compile all his program

405

at once (except for certain standard system-wide sub-
routines). Thus the compiler can allocate the integer
segment addresses at compile time and embed them in
the code. The Program Reference Table of the B5700
functions exactly as the segment table in Figure 3 does
[6, 7, 351.

Indirect Evaluation Solution
The indirect evaluation solution is shown in Figure 4.

A shared integer segment address is treated as an index
of a position within a linkage segment and the linkage
segment contains segment table indexes. One linkage
segment per independently-created subprogram per
process is assumed; the linkage segment is created the
first time a subprogram is executed by a process. (A
slightly different scheme can be obtained if a new linkage
segment is created each time the subprogram is acti-
vated.) Thus, when process 1 executes the code for
ACCESS 2, word 2 of the linkage segment for process 1 for
the main program is fetched. This word contains 0,
which is then taken to be the segment table index of the
segment to be accessed, in this case the data segment for
process 1. Some processor register must be used to
remember the address of the linkage segment. Base
registers are indicated for this purpose in Figure 4. It is
assumed that both processes are executing the main
program, and thus each base register contains the seg-
ment table index of the linkage segment for the main
program.

Calling independently created subprograms is more
complicated with indirect evaluation of segment refer-

Communications July 1974
of Volume 17
the ACM Number 7

ences since the base register contents must be changed.
Figure 4 assumes that call instructions contain the ad-
dress of the linkage segment of the subroutine to be
called and that word 0 of this linkage segment contains
the segment table index of the segment containing the
code for the subprogram. Thus, when process 1 executes
CALL 1, Word 1 of the linkage segment for process I for
the main program is fetched. This word contains 4,
which is then placed in the base register. Word 0 of the
linkage segment indicated by the new contents of the
base register is then fetched. This word contains 2,
which is then placed in PC.

The point of linkage segments is to create independ-
ently allocated sets of integer segment addresses in order
to overcome the main drawback of the uniform address
solution. Thus there must be at least one linkage segment
per independent allocation of addresses.

When the indirect evaluation solution is used, seg-
ment addresses passed from one subprogram to another
as parameters are treated differently than addresses em-
bedded in shared programs. Segment table indexes are
passed rather than linkage segment indexes; this is be-
cause the segment table is process-wide, whereas the
linkage segments are not.

The indirect evaluation solution has several disad-
vantages. It requires extra space to hold the indirection
information, extra overhead to set up the indirection
information, and extra memory references to obtain the
indirection information. Most important, however, the
solution is inadequate. It provides one kind of address
space for addresses which are to be used by many pro-
grams but one process; it provides another kind of ad-
dress space for addresses which are to be used by many
processes but one program. It makes no provision for an
address space for addresses which are to be used by
many processes and many programs. Such addresses
might be needed, for example, in a multisegment data
structure which existed independently of any program
or process.

Nevertheless, the indirect evaluation solution has
been used successfully for Multics [3, 11, 14, 36]. The
actual Multics scheme differs in details from what has
been described, but it is the same in concept.

Multiple Segment Table Solution
The multiple segment table solution is shown in

Figure 5. This solution can be viewed as a modification
of the indirect evaluation solution in which segment
table indexes in the linkage segments are replaced by
capabilities and the linkage segments are renamed seg-
ment tables. The base register and the program counter
which contained segment table indexes are modified to
contain capabilities also. Thus, when process I executes
the code for ACCESS 2, the evaluation of the integer seg-
ment address works in the same way as for Figure 3; the
difference is that the segment table is now private to a
particular program as well as to a particular process.
Figure 5 assumes that the subroutine instruction con-

406

Fig. 5. Multiple segment table solution.

SEGMENT TABLE
FOR PROCESS 1
FOR MAIN

BASE IPROCESSI

SEGMENT TABLE O ~ FOR PROCESS l FOR SUB

ACCESS 2
SEGMENT TABLE FOR PROCESS 2 -J FOR MAIN SUB

PC SEGMENT TABLE ~ 2 ~ [- ~
FOR PROCESS 2 PROCESS 2 FOR SUB

tains the address of the segment table for the called pro-
gram, and that word 0 in the segment table points to the
segment containing the called program. Thus, when
process 1 executes the code for CALL 1, word 1 of the seg-
ment table for process 1 for the main program is loaded
into the base register. Word 0 of this new segment table
is then fetched and placed in PC.

The main disadvantage of the multiple segment table
solution is that it does away with the per-process seg-
ment table and thus with the only addresses which could
be shared among several programs being executed by
the same process. Thus this solution compounds the
problem of shared segment references.

The difference becomes apparent if one considers
parameter passing during a subroutine call. For exam-
ple, in the scheme of Evans and LeClerc [18, 33], which
uses a multiple-segment-table-type solution, entries are
made in the segment table for a subroutine each time the
subroutine is called; these entries are capabilities for the
various parameters passed to the subroutine. Such a
scheme either disallows recursive subroutines or else
requires a new version of the segment table for each
level of recursion. Another solution is to store the capa-
bilities for the parameters in a stack, much as is already
done on the Burroughs machines. (The Evans and
LeClerc scheme also allows a segment table to be asso-
ciated with a data structure. I f one reads into their
scheme a mechanism for varying the contents of the seg-
ment tables associated with data structures dynamically

Communications July 1974
of Volume 17
the ACM Number 7

Fig. 6. Capability addressing solution.

PROCESSOR
REGISTERS

FOR PROCESS l

PROCESSOR
REGISTERS

FOR PROCESS 2

f
L F - -
- DATA FOR

PROCESS I

containing the subroutine to be called. When the CALL is
executed, this capability is placed in PC.

In comparing Figure 6 with Figure 3, a distinction is
made between processor registers and the segment
tables. This distinction is not related to implementation
technology but rather to allocation. The allocation of
processor registers is under control of the person or com-
piler generating even the smallest section of code; one is
always free to redefine the use of these registers by saving
the contents and later restoring them. Thus there is no
requirement for a central mechanism to define the use of
the registers, and the main problem with the uniform
address solution is avoided.

Figure 6 illustrates both types of functionally equiva-
lent interpretations for segment addresses. The access to
the data segment must refer to a different segment for
each process and thus specifies indirect evaluation
through a processor register. The reference to the sub-
routine refers to the same segment for each process and
is thus embedded directly in the program. (Note that
this is not meant to imply that references to called pro-
grams must always be bound in advance, but that for
cases in which advance binding is appropriate, it can be
handled that way.)

and under program control, then one would classify it as
using a capability addressing solution.)

One can consider the display registers of the B6700
to define segment tables and view the B6700 as using the
multiple segment table solution [8, 35].

The protection system suggested by Needham [34]
uses multiple segment table addressing in which there
are four simultaneously available segment tables: one
for capabilities which are global to the process; one for
capabilities associated with the current program and
shared by all processes using the program; one for capa-
bilities associated with the current program and private
to the process; and one for the arguments for this activa-
tion of the program. As Needham points out in his
paper, there are still difficulties with pointers from one
segment to another which appear in some shared data
structures.

Capability Addressing Solution
The capability addressing solution [21] is shown in

Figure 6. In this scheme capabilities may be used wher-
ever the integer addresses were used previously. In par-
ticular, capabilities may be stored in segments and in the
registers of the processor. (There must, of course, be
some scheme for preserving the integrity of the repre-
sentation of capabilities. Two schemes are discussed
later.) This scheme does away with segment tables and
with the mandatory indirect evaluation of shared ad-
dresses. In Figure 6, when ACCESS 0 is executed, the 0
means the segment indicated by register 0 and is thus
evaluated indirectly. The subroutine call instruction is
assumed to be followed by a capability for the segment

Other Solutions
The solutions which have been compared are not the

only solutions to the problem of shared segment refer-
ences. They are the ones which have been most thor-
oughly developed and which appear to have the most
promise.

Another solution is to address each segment with a
unique integer which is assigned at the time the segment
is created, never changed, and not reused even after the
segment has disappeared from the system. Call this the
unique integer solution. As is explained below in the sec-
tion on implementation, a similar unique integer is the
major component in a capability. In fact, aside from the
access control bits which determine whether or not read-
ing, etc., is allowed, the only difference is that in the
capability addressing solution, the integers are known
to refer to segments which may be accessed, while in the
unique integer solution, accessing rights must be deter-
mined separately.

Comparison of Relative and Abolute Addresses

The rather lengthy example just completed is a com-
paratively easy one for the addressing schemes which
are based on segment tables. Should we have attempted
to construct a shared time-varying multisegment data
structure containing internal cross-references and having
an existence independent of any particular program or
process, we could have done so only by using absolute
addresses.

The reason for this is best understood in terms of an
example. In Multics, two users can set up private indi-

407 Communications July 1974
of Volume 17
the ACM Number 7

rection tables to translate from segment numbers con-
tained in a shared data structure to segment table in-
dexes for arbitrary segments. Linkage segments are, of
course, an instance of such an indirection table for pro-
grams. If these two users want the segment numbers
contained in the data structure to have an absolute inter-
pretation, they need only arrange the indirection table
properly. But the problem remains as to how the shared
data structure can specify how the indirection table
should be arranged. This specification requires some
way to refer to a segment in a context-independent man-
ner; i.e. it requires absolute addresses.

Multics, of course, provides what is, in effect, a sec-
ond way of addressing all segments in order to handle
this case, namely the full path names of the file system.
(A different system might not provide this second way
of addressing. There is no inherent reason to insist that
every segment is named by the file system or that protec-
tion be provided on a per-segment basis in terms of read,
write, execute, and append. The reader who doubts this
is referred to systems which allow users to define new
types of objects, perhaps consisting of many segments
and perhaps with very different modes of access being
relevant [23, 29, 32, 42, 46].)

In Multics, the use of the file system's full path name
as an absolute address may be quite awkward because
of its variable length. Furthermore, if the name is em-
bedded in a data structure rather than a program, it will
be necessary either to convert the name into a segment
number each time it is used or else to use some ad hoc
indirect evaluation. One wonders two things: What frac-
tion of the time that a file system name is used would a
simple absolute address have sufficed? and How much
programmer time is spent minimizing the occurrence of
absolute references in order to create programs which
run efficiently? I f one could measure both the direct cost
of the linkage mechanisms and the indirect cost of creat-
ing programs which utilize these mechanisms in a rea-
sonable way, it might turn out that one substantial
source of inefficiency in the modern mult iprogramming
systems which rely on shared objects is that they have
eliminated the old-fashioned idea of an absolute address
for such objects.

Hardware Implementation

The problems of implementing capability addressing
are now examined. There are several computers in which
every explicit memory access uses an address in the form
of a segment capability and word number pair and
which allow capabilities to be directly manipulated by
user programs in the traditional ways that addresses
are used. One is the Chicago Magic Number Computer
developed by the Institute for Computer Research at the
University of Chicago [19, 20, 21, 41, 47]. This system
was never completed. A second computer is the System
250 built by the Plessey Company in England [9, 10, 16,

408

17, 25, 26]. The Plessey system is available commercially.
A number of systems use capabilities as a protection

mechanism at the operating system level but run on con-
ventional machines, including the CAL-TSS system [30,
42], the Bcc system [31], the sue system [40], and the
HYDRA system [46]. Since these systems interpret capa-
bilities as addresses in software, they are somewhat less
relevant to the present discussion.

Tagged machines such as the Burroughs B6700, the
Rice computers [22, 23, 28], and Iliffe's Basic Machine
[27] have the potential of implementing what we have
described above as capability addressing. However,
there appear to be no operating systems yet for these
machines which allow capabilities to appear as addresses
in arbitrary ways within retained data structures. Thus
these systems are also somewhat less relevant to the
present discussion.

Based on experience with these various implementa-
tions a number of implementation considerations have
been clarified.

Integrity of Capabilities
Because of the access control properties of capabili-

ties, it is important that no ordinary program can manu-
facture or modify the bit pattern with which a capability
is represented. Two ways are known for maintaining the
integrity of the representation of capabilities: the tagged
approach and the partition approach.

The tagged approach used on the Burroughs B6700,
the Rice computers, and the Basic Machine adds one or
more tag bits to each word in a segment and to each proc-
essor register. This tag is used to specify whether the
contents of the word or register are a capability or not.
We refer to a piece of information which is not a capa-
bility as being data; in this sense, data includes pro-
grams. The testing and setting of the tag bits is done by
the processor each time an access is made, and uses cer-
tain simple rules: when a word is copied, the copy is
given the same tag as the original; arithmetic and logical
instructions must be applied to words tagged as data
and always produce a data tag on the result; addressing
always checks that the segment address is tagged as a
capability; and so on.

The partition approach is used on the Chicago Magic
Number Machine and on the Plessey System 250. In the
partition approach, each segment is designated at crea-
tion as containing either capabilities or data. In addi-
tion, there is one set of processor registers for data and
one for capabilities. The processor instruction set satis-
fies rules analogous to those above: data can be copied
only into data segments and registers; capabilities can be
copied only into capability segments and registers; and
SO o n .

The tagged approach and the partition approach are
equivalent in the sense that a structure represented with
one approach can be translated into an equivalent struc-
ture in the other approach. Which approach is better?
The partition approach has several advantages. It is

Communications July 1974
of Volume 17
the ACM Number 7

simple for capabilities and data words to be different
lengths. This may be important, since capabilities tend
to be b ig - -a t least 64 bits long and perhaps longer. (In a
bit-oriented machine like the B1700 [44, 451 this argu-
ment for the partition approach may vanish, however.)
The partition approach allows capabilities to be located
by the operating system more easily since they are in
known places. This is important for both the Chicago
Magic Number Computer and the Plessey System 250
since, in both, the operating system modifies the repre-
sentation of capabilities under certain conditions. An
implementation is described below, however, in which
such modifications are not required. Another advantage
of the partition approach is that tag bits are not required
in memory. A disadvantage of the partition approach is
due to the fact that most objects require both data and
capabilities and thus require two segments with the par-
tition approach instead of the one required by the tagged
approach. Extra capabilities are required to pair the seg-
ments as is usually desired. Various operations must
then deal with two segments and become more complex.
Extra secondary storage accesses may be required to
move the pair of segments in and out of memory. To use
Saltzer's distinction [37], the advantages of the partition
approach are all technological, while some of its disad-
vantages are intrinsic. Thus one might expect the tagged
approach to dominate in the long run.

Address Translation

From the user's point of view, a capability is simply
an address for a virtual object and is specified whenever
the object is to be accessed. From the implementation
point of view, a capability is a bit pattern which specifies
to the address translation logic where the physical object
which currently represents the virtual object is located.
This discussion is restricted to capabilities for segments,
although analogous statements apply to other objects.
Access type checking, such as checking whether or not a
store operation is allowed, is well understood and will be
ignored here. Furthermore, it is assumed that segments
are not paged; paging may be introduced in an obvious
way. Thus the situation is as follows. A user wishes to
access some word in some segment. He writes an instruc-
tion which specifies a capability for the segment to be
accessed and an integer which identifies the word within
the segment. What does the hardware do when such an
instruction is executed?

In the scheme used on the Chicago Magic Number
Computer, there are two representations of segment
capabilities, known as in-form and out-form. These
two forms are distinguished by a bit in the capability
representation. An in-form capability is used only for
segments which are in primary memory. It contains the
absolute address of the origin of the segment in primary
memory and the length of the segment. In-form capabil-
ities are never allowed to exist on secondary storage; a
capability is converted to out-form before being moved
to secondary storage. Out-form capabilities contain the

secondary storage address of the first record of the seg-
ment and a unique sequence number which serves to
invalidate capabilities for segments which no longer
exist. An attempt to access a segment using an in-form
capability causes the hardware to compare the requested
word's offset wi ththe length of the segment and, if there
is no conflict, to calculate the address of the word of
primary memory to be accessed by adding the offset to
the address of the origin of the segment. An attempt to
access a segment using an out-form capability results in a
trap to the system.

The disadvantage of the approach taken on the Chi-
cago Magic Number Computer is that the operating
system must frequently convert back and forth between
in-form and out-form representations, and must occa-
sionally update the length and address fields in all of the
in-form capabilities for some segment. Various schemes
are used to minimize this overhead. In retrospect, it
appears that the overhead is still substantial.

The Plessey System 250 also uses a scheme of in-form
and out-form capabilities. The scheme has several im-
provements over the Chicago Magic Number Computer,
especially in the representation of in-form capabilities.
In-form capabilities are evaluated indirectly. There is an
indirection table stored in primary memory at a fixed
location. Each segment for which capabilities are pres-
ently in primary memory has an entry in the indirection
table. The in-form capability for an object contains the
index of the segment's entry in the indirection table. The
entry in the indirection table contains a bit which says
whether or not the segment is in primary memory, and
contains the segment's secondary storage address and
length. If the segment is in primary memory, the entry
also contains the segment's primary memory address.
The indirection table entry is not fetched on every access
to a segment; it is instead fetched whenever a capability
is loaded into a processor register.

Using this scheme, the length and primary memory
address fields for a segment appear only in one p lace- -
the segment's entry in the indirection table (assuming no
process which uses the segment is running). This sub-
stantially simplifies updating this information. Further-
more, in-form capabilities appear only in primary mem-
ory, and out-form capabilities appear only in secondary
storage. This convention makes it simple for the system
to decide when to convert back and forth between repre-
sentations. There may still be a substantial overhead in
such conversion, however.

The following hardware implementation for address
translation is suggested for future implementers of capa-
bility-based addressing. It would have been beyond the
scope of the hardware available for the Chicago Magic
Number Computer but should be reasonable for a com-
puter being designed today. As suggested by Dennis and
Van Horn, there is a unique code associated with each
segment. The unique code is assigned at the time the
segment is created and does not change during the life
of the segment. It is not reused, even after the segment

409 Communications July 1974
of Volume 17
the ACM Number 7

disappears from the system. There is only one represen-
tation of a capability, and it contains the segment's
unique code.

The hardware must be able to find the base address
and size for a segment in primary memory once it
knows the unique code for the segment. It does this by
consulting a hash table maintained in primary memory
by the operating system which contains an entry for
every segment residing in primary memory. There is a
single hash table for all users. For each unique code
entered in the hash table there is a presence bit which
'tells whether or not thesegment is in primary memory;
additional fields indicate the segment's size and the
secondary storage address of its origin. Once an entry
has been put in the hash table, the entry remains, even if
the segment is written back to secondary storage. Entries
age out of the hash table slowly, much as the active seg-
ment table entries are handled in Multics. The reason
for keeping entries in the table after the segment has left
primary memory is to speed up bringing the segment in
again, should it be needed.

When a segment is accessed and the hardware looks
up its unique code, there are three possible results. The
segment may be in primary memory, in which case the
appropriate word is accessed. The segment may be in the
hash table but not present in pr imary memory, in which
case the hardware causes a type A exception and reports
the address of the hash table entry. Finally, the segment
may not be in the hash table, in which case the hardware
causes a type B exception and reports the unique code.

In the case of a type A exception, the operating sys-
tem initiates a read using the secondary storage address
and size obtained from the hash table entry and blocks
the process which was making the access. When the
segment has been read in, the hash table entry is up-
dated and the process is allowed to continue. In the
case of a type B exception, the operating system first
obtains the segment's size and secondary storage ad-
dress and places them in a newly allocated hash table
entry and then proceeds as with a type A exception.
Obtaining a segment's size and secondary storage ad-
dress, given its unique code, is done by consulting a
data structure on secondary storage which provides
the mapping between the unique code and the size
and secondary storage address for all segments. Such a
data structure is organized as a modified hash table so
as to minimize the expected number of secondary stor-
age accesses required to find an entry.

The final feature of the suggested implementation is
a small associative memory which remembers the sizes
and primary memory addresses for the unique codes of
the most recently accessed segments. Experience with
Multics indicates that even a small associative memory
can be quite effective [38].

Paging
Experience with Burroughs machines indicates that

when segments are allocated in terms of "natura l" units

410

for the problem being solved (and the compiler auto-
matically breaks up large arrays), segment sizes are on
the average smaller than typical present-day page sizes
[2]. On Multics, where the cost of an additional segment
is high in terms of additional linkage operations and
additional system bookkeeping information, a typical
user makes segments larger by combining several differ-
ent objects in a single segment, thus making his pro-
gram run more efficiently. This practice should be
discouraged, however, since neither the protection
mechanism nor the memory management mechanism
allows objects thus combined to be treated individually.

Experience with the Plessey System 250 indicates
segment sizes more like those of Burroughs' machines
than like those of Multics. Thus a paged address trans-
lation scheme may perform worse than a nonpaged
scheme. M. O'Halloran, one of the designers of the
Plessey System 250, suggests that an inverse concept of
paging--i .e, many segments per page rather than many
pages per segment-- is needed to cope with so many
very small segments.

Instruction Sets
For capability-based addressing, capabilities must be

able to be copied around freely. The capab?lity functions
as a basic component in addresses for every object be-
yond the walls of the processor. The user must be able
to do anything with a capability that he would do with
an ordinary address on an ordinary machine. Addresses
containing capabilities may be used for parameter pass-
ing, subroutine returns, elaborate data structures, and
so on. Furthermore, every instruction which addresses a
word, input /output device, etc., must implicitly or ex-
plicitly specify a capability for the object to be accessed.

An en t e r ins t ruc t ion is needed to call a subroutine
and simultaneously change the protection domain. The
Chicago Magic Number Computer demonstrated that
an enter instruction need be no less efficient than an
ordinary call instruction. A new type of access for seg-
ments is added, called en t e r access . Enter access is
weaker than read, write, or execute access and allows
only the transfer of control to a fixed entry point, say
word zero, using the enter instruction. The enter instruc-
tion works like the call used with Figure 6, except that
the enter changes the access bits in the capability which
is placed in PC to allow reading and executing the pro-
gram segment. By giving the calling program a capabil-
ity for the called program's segment which specifies
only enter access, the called program, but not the calling
program, can obtain the capabilities embedded in the
called program's segment.

The Stack °

When a program is organized into subroutines, each
subroutine may need a temporary storage area for
parameters, returns, and local storage. Such storage is
often implemented as a stack frame allocated on a com-
mon stack each time there is a subroutine call. I f the

Communications July 1974
of Volume 17
the ACM Number 7

subroutines run in different protection domains, the
stack frames cannot be allocated in a single segment.
This is because a subroutine might keep a capability for
its stack frame even after it returns control to its caller.
It could then use this capability later to interfere with
other subroutines to which the stack frame is allocated.
The problem could be avoided if there was an efficient
mechanism for revoking capabilities.

Assuming revocation is not possible, one solution is
to allocate each stack frame in a newly-created segment
which will be discarded when the stack frame is no
longer needed. Such a scheme adds a substantial over-
head to subroutine calling and returning. A better solu-
tion is a hardware-managed stack which is not treated
as a segment for which capabilities exist, but as a stack
of processor registers. The Burroughs B6700 has such a
stack, although the implementation relies partly on sys-
tem compilers and is complex because of its ability to
cope with Algol naming. Schroeder's thesis is also rele-
vant [39]. The design of the Chicago Magic Number
Computer is quite weak in this respect.

I f the stack is arranged so that the temporary stor-
age of the calling routine is unavailable to the called
routine, so that the called program cannot alter the re-
turn location, and so that parameters can be passed in
an orderly way, then the simple enter instruction de-
scribed above can be used for passing control to a more
privileged program, to a less privileged program, or
between mutually suspicious programs.

The Own Variable Problem
In addition to temporary storage allocated for a sub-

routine each time the subroutine is called, a rout ine may
need storage which is allocated when a process first
executes the routine and which is retained from call to
call of the subroutine by that process. In Algol, such
storage is provided by o w n variables. For example, a
pseudo random number generator needs an own varia-
ble to remember where it is in its pseudo random se-
quence of numbers. Such information could be retained
by the caller and passed as a parameter, but such a
solution violates programming generality [13].

Linkage segments, in addition to providing for the
indirect evaluation of segment addresses, provide a sim-
ple implementation for own variables. It would be un-
satisfactory to remove the need for the indirection
information in a linkage segment only to find that link-
age segments remain so as to implement own variables.

The Algol concept of own variables is not fully gen-
eral, however. It is likely that languages which provide
more control over retention, such as Berry's Oregano
[4], will prevail in the long run. Should this be the case,
the implementation of own variables based on linkage
segments will be too specialized, and one would expect
to provide a stack mechanism which allows for retention
of stack frames such as the scheme suggested by Bob-
row and Wegbreit [5].

Conclusion

Capability-based addressing provides an efficient
type of absolute address for an object. The use of such
absolute addresses can simplify programming conven-
tions when a general-purpose scheme for shared ad-
dresses is required. Recent advances eliminate the need
for the modification of the representation of capabilities
by the operating system and suggest how to solve the
own variable problem in a general way. These advances
eliminate the major implementation problems of pre-
viously designed systems. A computer using capability-
based addressing may now be substantially superior to
present systems on the basis of protection, simplicity of
programming conventions, and efficient implementation.

References
1. Arden, B.W., Galler, B.A., O'Brien, T.C., and Westervelt,
F.H. Program and addressing structure in a time-sharing environ-
ment. J. ,4CM 13, 1 (Jan. 1966), 1-16.
2. Batson, A., et al. Measurements of segment size. Proc. 3rd
Syrup. on Operating Systems Principles. Stanford U., Oct. 1971,
25-29.
3. Bensoussan, A., Clingen, C.T., and Daley, R.C. The
MULTICS virtual memory: concepts and design. Comm..4CM
15, 5 (May 1972), 308-318.
4. Berry, D.M. Introduction to Oregano. In J. Tou and P.
Wegner (Eds.). Sigplan Notices--Proc. Symposium on Data
Structures in Programming Languages, Vol. 6, No. 2, Feb. 1971,
pp. 171-190.
5. Bobrow, D.G., and Wegbreit, B. A model and stack imple-
mentation of multiple environments. Comm. A C M 16, l0 (Oct.
1973), 591-603.
6. Burroughs Corporation. Burroughs B5500 Information
processing systems reference manual. Detroit, Mich., 1964.
7. Burroughs Corporation. The descriptor--a definition of the
B5000 information processing system. Detroit, Mich., 1961.
8. Cleary, J.G. Process handling on Burroughs B6500. Proc.
Fourth Australian Comp. Conf., Adelaide, South Australia, 1969,
pp. 231-239.
9. Cosserat, D.C. A capability oriented multi-processor system
for real-time applications. Presented at the I.C.C. Conf.,
Washington, D.C., Oct. 1972, 8 pp.
10. Cotton, J.M. The operational requirements for future com-
munications control processors. Presented at lnternat. Switching
Symp., Cambridge, Mass., June 6-9, 1972, 5 pp.
11. Daley, R.C., and Dennis, J.B. Virtual memory, processes,
and sharing in MULTICS. Comm. A C M lI , 5 (May 1968),
306-313.
12. Daley, R.C., and Neumann, P.G. A general purpose file
system for secondary storage. Proc. AFIPS 1965 FJCC, Vol. 27,
Pt. I., AFIPS Press, Montvale, N.J., pp. 213-230.
13. Dennis, J.B. Programming generality, parallelism and
computer architecture. Proc. IFIP 1968, North Holland, Amster-
dam, pp. CI-7.
14. Dennis, J.B. Segmentation and the design of multipro-
grammed computer systems. J. ,4CM 12, 4 (Oct. 1965), 589-602.
15. Dennis, J.B., and Van Horn, E.C. Programming semantics
for multiprogrammed computations. Comm. A C M 9, 3 (Mar.
1966), 143-155.
16. England, D.M. Architectural features of System 250. In
bt]btech State t~f the Art Report or7 Operating Systems, 1972, 12 pp.
17. England, D.M. Operating System of System 250. Presented
at Internat. Switching Symp., Cambridge, Mass., June 6-9, 1972,
5 pp.
18. Evans, D.C., and LeClerc, J.Y. Address mapping and the
control of access in an interactive computer. Proc. AFIPS 1967
SJCC, Vol. 30, AFIPS Press, Montvale, N.J., pp. 23-32.

411 Communications July 1974
of Volume 17
the ACM Number 7

19. Fabry, R.S. A user's view of capabilities. ICR Quart. Rep.
15 (Nov. 1967), ICR, U. of Chicago, Sec. IC.
20. Fabry, R.S. Preliminary description of a supervisor for a
machine oriented around capabilities. ICR Quart. Rep. 18 (Aug.
1968), ICR, U. of Chicago, Sec. lB.
21. Fabry, R.S. List-structured addressing. Ph.D. Th., U. of
Chicago, 1971.
22. Feustal, E.A. The Rice research computer--a tagged archi-
tecture. Proc. AFIPS 1972 SJCC, Vol. 40, AFIPS Press, Montvale,
N.J. pp. 369-377.
23. Feustal, E.A. On time advantages of tagged architecture. IEEE
Trans. on Computers C-22, 7 (July 1973), 644-656.
24. Graham, G.S., and Denning, P.J. Protection--principles and
practice. Proc. AFIPS 1972 SJCC, Vol. 40, AFIPS Press,
Montvale, N.J., pp. 417-429.
25. Halton, D. Hardware of the System 250 for communication
control. Presented at the lnternat. Switching Syrup., Cambridge,
Mass., June 6-9, 1972, 7 pp.
26. Hamer-Hodges, K.J. Fault resistance and recovery within
System 250. Presented at I.C.C. Conf., Washington, D.C., Oct.
1972, 6 pp.
27. Iliffe, J.K. Basic maehhw principles. American Elsevier, New
York, 1968.
28. Iliffe, J.K., and Jodeit, J.G. A dynamic storage allocation
scheme. Comput. J. 5 (Oct. 1962), 200-209.
29. Jones, A.K. Protection structures. Ph.D. Th., Carnegie-
Mellon U., 1973.
30. Lampson, B.W. On reliable and extendable operating
systems. In Techniques in Software Engineering, NATO Science
Committee Workshop Material, Vol. 11, Sept. 1969.
31. Lampson, B.W. Dynamic protection structures. Proc. AFIPS
1969 FJCC, Vol. 35, AFIPS Press, Montvale, N.J., pp. 27-38.
32. Lampson, B.W. Protection. Proc. 5th Ann. Princeton Conf.,
Princeton U., Mar. 1971, pp. 437-443.
33. LeClerc, J.Y. Memory structures for interactive computers.
Project GENIE document No. 40.10.110, U. of California,
Berkeley, 1966.
34. Needham, R.M. Protection systems and protection imple-
mentations. Proc. AFIPS 1972 FJCC, Vol. 41, AFIPS Press,
Montvale, N.J., pp. 571-578.
35. Organick, E.I. Computer System Organization--the B5700
B6700 Series. Academic Press, New York, 1973.
36. Organick, E.I. Tile Multics System: An Examination (~/'lts
Structure. MIT Press, Cambridge, Mass., 1972.
37. Saltzer, J.H. Traffic control in a multiplexed computer system.
MAC-TR-30, Proj. MAC, MIT, Cambridge, Mass., 1966.
38. Schroeder, M.D. Performance of the GE-645 associative
memory while Multics is in operation. Proc. Workshop on
System Performance Evaluation, Cambridge, Mass., 1971, pp.
227-245.
39. Schroeder, M.D. Cooperation of mutually suspicious
subsystems in a computer utility. Ph.D. Th., MIT, 1972.
40. Sevick, K.C., et al. Project SUE as a learning experience.
Proc. AFIPS 1972 FJCC, Vol. 41, AFIPS Press, Montvale, N. J.,
pp. 331-339.
41. Shepherd, J. Principal design features of the multi-computer.
(The Chicago Magic Number Computer). ICR Quart. Rep. 19
(Nov. 1968), 1CR, U. of Chicago, Sec. 1-C.
42. Sturgis, H.E. A postmortem of a time sharing system. Ph.D.
Th., U. of California, Berkeley, 1973.
43. Wilkes, M.V. Time Sharing Computer Systems. 2nd ed.,
American Elsevier, New York, 1972.
44. Wilner, W.T. Design of the Burroughs BI700. Proc. AFIPS
1972 FJCC, Vol. 41, AFIPS Press, Montvale, N.J., pp. 489-497.
45. Wilner, W.T. Burroughs BI700 memory utilization. Proc.
AFIPS 1972 FJCC, Vol. 41, AFIPS Press, Montvale, N.J., pp. 579-
586.
46. Wulf, W.A., et al. HYDRA: The kernel o f a multiprocessor
operating system. Carnegie Mellon U., Comput. Sci. Dep. rep.,
June 1973.
47. Yngve, V.H. The Chicago Magic Number Computer. ICR
Quart. Rep. 18 (Nov. 1968), ICR, U. of Chicago, Sec. 1-B.

Formal Requirements
for Virtualizable
Third Generation
Architectures
Gerald J. Popek
University of California, Los Angeles
and
Robert P. Goldberg
Honeywell Information Systems and
Harvard University

Virtual machine systems have been implemented on a
limited number of third generation computer systems, e.g.
CP-67 on the IBM 360/67. From previous empirical
studies, it is known that certain third generation computer
systems, e.g. the DEC PDP-10, cannot support a virtual
machine system. In this paper, model of a third-
generation-like computer system is developed. Formal
techniques are used to derive precise sufficient conditions
to test whether such an architecture can support virtual
machines.

Key Words and Phrases: operating system, third
generation architecture, sensitive instruction, formal
requirements, abstract model, proof, virtual machine,
virtual memory, hypervisor, virtual machine monitor

CR Categories: 4.32, 4.35, 5.21, 5.22

Copyright © 1974, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

This is a revised version of a paper presented at the Fourth
ACM Symposium on Operating Systems Principles, IBM Thomas
J. Watson Research Center, Yorktown Heights, New York, Oc-
tober 15-17, 1973.

This research was supported in part by the U.S. Atomic
Energy Commission, Contract No. AT(ll-1) Gen 10, Project 14
and in part by the Electronic Systems Division, U.S. Air Force,
Hanscom Field, Bedford, Massachusetts under Contract Number
F19628-70-0217.

Authors' addresses: Gerald J. Popek, Computer Science De-
partment, University of California, Los Angeles CA 90024; Robert
P. Goldberg, Honeywell Information Systems,Waltham, MA 02154.

412 Communications July 1974
of Volume 17
the ACM Number 7

