63

CAPABILITY CONCEPT MECHANISMS AND
STRUCTURE IN SYSTEM 250

D.M. ENGLAND
Plessey Telecommunications Research,
Maidenhead, G.B.

SUMMARY

The idea of Capabilities was introduced in 1966 in a paper by J.B.Demnis
and E.C. Van Horn (Ref.2). Capabilities are described in a monograph on Time-
Sharing Systems (Ref.3) by Professor M.V, Wilkes, whose work at Cambridge on
Capabilities and Capability machines has been of substantial benefit to the
Plessey Company's own developments. A number of Capability machines have been
designed; of particular note is the work of R.S. Fabry (Refs. 4 and 5), who
conceived the idea of copying Capabilities.

The System 250 processing system, developed by the Plessey Company Limited,
is the first Capability machine to be realised in hardware. This paper
discusses the concept of Capabilities as implemented in System 250. It explains
the use of Capabilities in the construction of protected data structures. It
describes some types of data structure that can be realised and how they are
used in the construction of systems. The paper commences with a brief descrip-
tion of System 250 architecture. '

This paper also forms an introduction to a companion paper (Ref.1), which
describes the theoretical implications of Capabilities for the design of

operating systems and the sharing and protection of information.

64

INTRODUCTION

Aims and Scope
1. System 250 is a multi-processor system. It has been developed by the

Plessey Company for real-time applications, especially in the field of tele-
communications. Perhaps the most important concept in the design of System 250
is the "Capability". The aims of this paper are as follows:~

(1) To describe the Capability concept and how it is implemented in
System 250.

(2) To provide a basis for a companion paper (Ref.1) which discusses the
application of Capabilities to the sharing and protection of information.
2. Although the scope of this paper is limited to the Capability comcept, it
is useful to begin with a brief description of System 250.

Outline of System 250 architecture

3. System 250 (Fig.1l) is based on a multi-processor concept, using separate

- CPU and Store Modules. It employs a 24 bit word. An interconnection system
permits any CPU to access any store word. The hardware configuration consiigs
of a number of CPUs, each of which’is connected to a number of Store Moduiés
by means of a parallel data highway which is called a CPU Bus. The CPUs share
the system workload by referenée to a common work-list located in store.

4. High speed peripheral devices are interfaced to the CPU Buses in the same
way as Store Modules. This means that they can be addressed like Store Modules.
Each device looks to a CPU like a Store Module containing a small number of
words, which are in fact the command, status, data, and address registers of
the device controller. .

5. Low activity devices, including teletypes, VDUs, and other kinds of
terminal equipment, are interfaced to the system by means of a Serial Data
Collection and Distribution Medium, composed of a metwork of data switches
connected by serial transmission paths. External events are recorded by the
Serial Medium and input by a CPU at some suitable. Consequently, Phietedare o
B EREARE ST UPE S A Sy S e g

6. No specialised input/output channelling modules are needed in System 250.

Instead, the system is designed such that each CPU is capable of performing the
channelling function by software. This permits the CPUs to share input/output
channelling as part of the normal system workload. On completing a transfer to

or from a device, a CPU is immediately capable of commencing another, and

consequently there are’S873e¥ice intérripes in System 250.
7. The only types of interrupt which occur in System 250 are internal to a

CPU and include fault, interval timer, and trap (see para.l18) interrupts.

65

8. From the point of view of this paper, the storage system is of particular
importance. It is composed of fast stores and disks and is organised as a
Virtual Memory, which means that:-

(1) Storage space on disk is allocated dynamically by the Operating
System in segments of arbitrary size.)

(2) Transfers between fast store and disk occur automatically under
Operating System control.

(3) Space in fast store is allocated automatically for segments that
need to be transferred from disk.

(4) A single address space is employed for the entire storage system. A
ségment of information is addressed.by means of a unique reference, regardless
of its location in the storage system. This reference is called a "Capability".
9.. The System 250 Operating System contains two main components:-—

1) The Basic Control System controls the Hardware configuration and
provides a virtual machine for user programs. v

(2) The User Terminal System employs the facilities of this virtual
machine and provides a standard means of man-machine commug{Eacion. In

particular, the design of the User Terminal System is such that System 250 can

" be used as a time-sharing system for program development, including the develop-

ment of large interactive systems,

BASIC MECHANISMS
Capability Registers
10. The CPU contains eight conventional, programmable Data Registers, and also

contains eight programmable Capability Registers (Fig.2). The purpose of a
Capability Register is to provide a means of addressing fast store. A
Capability Register is 48 bits in length, and its format consists of four
fields, namely a Store Module address, the base and limit addresses of a store
segment contained within that Store Module, and an access field which defines
the operations that are permitted on that segment.

11. CPU instructions access words within a segment by reference to a
Capability Register which defines it. The address construction concatenates
the Store Module and base addresses from the specified Capability Register,
and using the resulting value as an addressing base adds the address offset and
(optionally) a modifier value to give the absolute address of the referenced
word,

12. The access field is a six bit code whose constituent bits define the
operations that are permitted on the segment concerned, in any suitable
combination. The “"Read Data" and "Write Data" access types permit operatioms

between the segment and the Data Registers e.g. Load Data and Store Data.

86

Similarly, "Read Capability" and "Write Capability” access types permit Load
and Store operations between the segment and Capability Registers. The
"Execute" type permits the segment to be executed as program code. The
"Enter" type permits subroutine calls from one code gegment to another
13. Thus, a Capability Register defines the permitted bounds of a segment
and the operations permitted upon it. Any attempt by alprogram to refer out-
side these bounds, or to perform illicit operations, is detected by hardware
in the CPU and the program is interrupted into a fault handler. The
Capability Register can now be seen to have the following functions:-

(1) To provide an addressing base for access to segments in fast
store.

(2) To protect a segment against illicit operations.

(3) To limit the scope of the program and thus protect the data
structure outside this scope from illicit access.
14, Certain combinations of access types are not permitted in the system, as
they would destroy the protection which Capabilities afford. For example, if
an access field were to permit a value to be written into a segment as data and
read out again as a Capability, then it would be possible to manufacture B
Capabilities and thence gain access anywhere in fast store. The general rule
is that a segment is either of Capability type or of data type, but not a
combination of the two.
Load Capability Instruction
15. Althougnh there is a superficial resemblance between a Capability Register

and a conventional base/limit register, there is a fundamental difference
between them, namely that, unlike a base/limit, a Capability Register is
alterable within user programs without recourse to a privileged operating
system routine. Just as Data Registers are programmable, using CPU instructions
1ike Load Data and Store Data, so Capability Registers are programmable using a
separate set of CPU instructions, such as Load Capability (Fig.3) and Store
Capability. There is a direct analogy between data and Capability types of
information, Data and Capability Registers, data and Capability segments, and
CPU instructions which either operate on data or on Capability values.

16. The ability of a program to load different values into Capability Registers
permits it to gain access to -as many different segments as is needful during its
execution. At the same time, the scope of a program is bounded by the set of
Capability values which its Capability segments contain.,

17. The system would be very inflexible if a Capability value had the same
format as a Capability Register; absolute addresses would then be scattered

throughout fast store, and it would be extremely difficult to move the location

68

(3) No segment may be accessed except by means of a Capability.
Capabilities therefore provide a single referencing system for the entire
storage medium,

Structure of a Package

23. The Capability structure of a program package is depicted in fig. 4. It
consists of a central Capability segment that defines a number of satellite
segments, which may include further Capability segments. The central Capability
segment defines at least one code segment and the data structure on which it is
free to operate.

24. By hardware conventions, one of the eight Capability Registers (CR7)
defines the code segment currently being executed by a CPU, and another (CR6)
defines the central Capability segment of the package concerned. The code
segment begins by having access to the central Capability segment, and as the
code is executed it loads Capability values into the remaining Registers, in
order to gain access to the required parts of its data structure. A

jump to another code segment is achieved simply by loading the capability

for it into CR7. Such jumps can, of course, only take place into accessible
code segments.

25. If the package is a device handler for one of the devices attached to the
CPU buses, then the device is accessed using a Capability which defines it. As
the device handler is the only package that possesses a Capability for the

device, the device is thereby protected from illicit access.

PROGRAM
The Enter Capability

26. In order for a package to call another as a subroutine, it must first
possess a Capability for the called package. This Capability is of the Enter
access type, which only permits a subroutine entry into a code segment of the
called package.

27. Although the calling package possesses a Capability for the called package's
central Capability segment, the Enter access type does not permit the Load
Capability instruction to be performed, and the data structure of the called
package is thereby protected.

Structure of a Program

28. A program consists of a number of program packages interconnected by Enter
Capabilities as shown in Figure 5. The packages may be arranged in a convent-—
ional subroutine hierarchy, with one package being accessible from a number of
others.

29. It needs to be emphasised that this program structure is established at

assembly time. All the segments that constitute the program are assembled, and

67

of a segment, as this woﬁld require finding and changing all the absolute
addresses which refer to it. Instead, all the base/limit values defining
segments in fast store are collected into a single segment that is called

the System Capability Table (SCT), which is defined by a non-programmable
Capability Register. The format of a Capability value consists of the

access field and an offset value to the entry in SCT in which the absolute
location of the required segment in fast store is defined. The Load Capability
instruction takes the access field from the Capability value and the remaining
fields from the SCT entry.

18. In order to be able to move tne location of a segment, and to change the
absolute values in its SCT entry accordingly, a facility exists to set a trap
for programs which attempt to access the segment while these operations are
taking place.

19. Inclusion of an access field within a Capability value, rather tham in
SCT, permits the access to a segment to vary from program to program. For
example, one program may be permitted to read from a segment and to write into

it, while another program is only permitted to read it. o

"PACKAGE
Capability as Access Right

20. In order to develop the concept of Capabilities further, it is necessary
to dissociate it from the mechanics of addressing physical locations in fast
store.This is achieved conceptually by replacing Capability Registers by
Virtual Capability Registers, and thus by-passing the SCT. The Virtual Capabi-
lity Register consists of an access field and a segment identity field. The
Load Capability instruction can now be regarded as loading a Virtual Capability
Register with a Capability value of similar form. When loaded, the Capability
value (access right) permits the corresponding segment to be accessed and
operated upon.
21. It was stated earlier that storage in System 250 is organised as a Virtual
Memory. Once dissociated from fast store addressing, it can be seen how a
Capability provides a unique reference to a segment in the Virtual Memory. It
should be explained that the physical representatién of a Capability on disk
includes an absolute disk address, and that the Virtual Memory automatically
converts Capability values from their disk form to their fast store form, or
vice versa, whenever Capability segments are transferred in or out.
22. The concept of a Capability may be summarised as follows:~

(1) A Capability is an access right for a segment of store.

(2) The segment may be operated upon by suitable CPU instructions when

the Capability is loaded into a Capability Register.

69

cross-references are resolved, prior to the first execution of the program.
Capability segments are assembled in much the same way as code segments. In
assembly language, a Capability consists of an access field and the symbolic
name of the segment defined.

30, Within a program, two or more packages may possess a Capability for a
common segment. Moreover, this may be a code segment. A good example is
where there are a number of device handlers of the same type. - Although each
one is a package in its own right, they have an identical structure and their
code segments are common., As each package possesses its own data structure,
these code segments are in fact re~entrant., Indeed, as System 250 is a multi-

processor the re-entrant executions could be simultaneous.

RESOURCE

Dynamic Allocation of Resources

31. The Operating System consists of a set of program packages which can be
called in the normal way by means of an Enter type Capability. As the Enter
type Capability provides protection to the called package, there is no need in
system 250 for any privileged mode of operation.

32. One of these packages is called the Store Allocator. When entered during
the execution of a program, the Store Allocator allocates a new segment and
delivers a Capability for it. The segment may be a data segment or a Capability

segment, and its length may be anything from one word to an arbitrary maximum

" of 1600 words. The Store Allocator is responsible for allocating space on disk

and in fast store, for allocating a free SCT entry, and for putting into it
the correct address values. The Store Allocator is the one place in the
system where Capabilities can be manufactured.
33. During program exeéution the Store Allocator provides the storage
resources required for the program to fulfil its task. A single store segment
is, however, only the simplest form of storage resource, and much more complex
data structures are possible. In a typical system, data structures of a
particular form appear many times over. For example, in a telephone exchange
system each data structure containing information about a subroutine may be of
the same form. Other examples are a symbol directory in a time-sharing system,
and an aircraft track in an air traffic control system. Given the basic
facility of a Store allocator, it is possible to envisage any number of
resource allocator packages, each of which creates a data structure of some
standard form.
34, The characteristics of a resource include:-

(1) A data structure, in tne form of an arrangement of Capability and

data segments suitable for accommodating the data which describes,for example,

70 71
a particular subscriber or directory or track. : PROCESS
(2) The operations which are permitted on the data structure, e.g. Execution of a Program
to change a subscriber's class~of-service information. . 39. During the execution of a program, a dynamic data structure may be
35, The Operating System provides facilities for allocating and manipulating constructed by repeated calls to resource allocator packages. This data
a number of resource types, listed as follows:-— . structure is orthogonal to the program structure, and is related to the

specific program execution. The term employed for the execution of a program
store segment

L. is a "process", and this data structure is referred to as the "process data
synchronising flag

structure",
process.

data stream 40. By a software convention, one of the Capability Registers (CRS) is used
a

throughout a process to define the first Capability segment of the process
user

iob ! data structure. As the process proceeds, Capabilities for resources that
jo

) are created may be stored, by means of a Store Capability instruction, in
symbol directory ; -

. this or subsequent Capability segments.
text file

Call Return and Store Capability Instructions

Structure of a Resource

41. As a process proceeds, it performs subroutine calls from one package to

36. The structure of a resource, as created by a resource allocator package, T "))
. P : another by means of the Call instruction. The Call instruction has two
is depicted in Figure 6. It consists of a central Capability segment with a

arameters, the Enter type Capability for the called package's central
number of satellite segments, which are the constituents of the data structure. P eters, yP P y P 8

Capability segment and an offset to the Execute type Capability of the code

This includes one or more code segments for performing operations on the) i)
segment to be entered. The effect of the Call instruction is to load the

resource. All the resources of a particular type have these code segments in ; . . L. . X
; Execute type Capability into CR7 and the Enter type Capability into CR6, in
common. !

. . e with the conventions ibed i 4, Two f i
37. When a resource allocator package is entered during program execution it accordanc the conventions describ n para. 24. 0 further actions

. . £ are required of the Call instruction:-
delivers a Capability for the newly created resource. Except in the case o]

the Store Allocator, this is an Enter type Capability which permits the | (1) In order.for fhe code segment defined in CR7 to operate on the
. . ; : data structure defined in CR6, the latter must be supplied with a Read
constituent code segments of the resource to be called as subroutines. It is i

. : : Capability access type. This is supplied automatically by the Call instruction.
evident that a resource has the same structure, and is called in the same way, i P y yP pp y by

: : 2 e CR6 and CR7 a i i i
as a program package. The difference between them is simply that the resource ’ (2) Befor n 7 re.overwrltten, t?elr old values,together with
is created dynamically during program execution. There is an important analogy : the current.val?e of an'InStr“°t1°“ Address Register (IAR), are preserved in
between store segments and other types of resource. When a resource allocator { a stack (which is described below), so that these values can subsequently be
. restored by means of a Return instruction.
package is called it creates a suitable resource and returns a Capability for , y
. : 42. By convention, CR6 defines the package's data structure during its
it. 1In the case of a store segment, this Capability provides access rights to

i) i : execution. As CR6 is overwritten by both the Call and Return instructionms,
permit certain CPU instructions to operate on the segment. In the case of any

. A . . this provides a further mutual protection of the called and calling packages'
other resource the Capability is of Enter type and provides access rights to

data structures.
permit certain code segments to operate on the resource, . 3 . . . 3
A . | 43. The Return instruction is parameterless and its action is to restore the
38. The concept of a resource provides a method of creating protected data t ;

CR6, CR7, and IAR values for the calling package.

structures. Resources can be of arbitrary complexity according to a user's
Process Dump Stack

needs. A resource can be accessed by a single Capability which only permits

defined set of tions to be performed upon the resource 44, Associated with each process is a segment that is called the "Process
a defined set of operatio .

Dump Stack". It has two parts, as follows:-

(1) The stack area, used to preserve the CR6, CR7, and IAR values

12

during a Call instruction, by incrementing the stack pointer to define a new
entry, which can then be used by the called package.

(2) A dump area, in which the remaining register values can be preserved
on interrupt or context change.
45, The Process Dump Stack is defined by a special Dump Stack Capability
Register. The preserving of a Capability value in the Dump Stack occurs each
time that a Capability Register is loaded, i.e. at the.time when the required
Capability value is actually available. This takes place during a Load
Capability instruction and also during a Call instruction, when the new CR6
and CR7 values are preserved in the new stack entry. Considering that these
capability slots in the Dump Stack are loaded during a Load Capability
operation, the location in the system of Virtual Capability Registers is now
discovered.
46, The operation of the Store Capability instruction can now be explained.
The action of this instruction is to store the value in a Virtual Capability
Register into a word in a Capability segment. The Capability value is actually
transferred from the corresponding Dump Stack slot.

Structure of a Process

47. A process is a resource. It possesses a data structure which is created
by a Process Allocator package. A process may be created dynamically, e.g.

the creation of a telephone call process when it is detected that a subscriber
has raised his hand set, and in a time-sharing system the creation of a command
interpreter process when a user logs in. Of course, the process must be created
during the execution of another process, which must supply the Process Allocator
with enough information to initialise a new Dump Stack e.g. initial CR6 and CR7
values plus any parameters that are to be set in the remaining Data and
Capability registers.

48, The structure of a process is depicted in Figure 7. The central Capability
segment of the process defines a number of segments which contain general
information about the process e.g. its priority and the user job to which it
belongs. One of the segments defined is the Process Dump Stack.

49, A process which creates another is supplied with an Enter type Capability
which can be used to perform operations upon it, e.g. to block ox unblock
execution of the created process.

50. A process was described above as the execution of a program. It is better
described as a data structure to which a CPU can be applied. From the Enter
type Capability for a process stems an entire data structure which is

activated and manipulated by the application of a CPU. From the CR6 slot in
the Dump Stack stems the current program structure, and from the CRS slot stems

the active data structure of the process.

74

arbitrarily complex in its inter-connections; segments can be referenced from
many different places, and Capability segments can refer back into limbs of
the data structures of which they form a part. However complex the total data
structure of a system becomes, it retains an essential order and discipline
imposed by the mutual protection of its components and the systematic manner

in which new components are created and cemented to the existing framework.

ADDITIONAL FEATURES

57. Finally, certain additional features have been identified which would
enhance the benefits of a Capability system. Although these features are
not yet implemented in System 250, they are included here partly for complete-
ness and partly because the companion paper assumes them to be avajilable:=

(1) Mixed Segments: A mixed segment is one which can include both data
and Capability values. The introduction of mixed segments removes the rigid
distinction between data and Capability segments and therefore provides
greater flexibility in the structuring of information. In order for there to
be no loss of protection, the distinction between data and Capability types of
value attaches to the values themselves.

(2) Process Workspace Stack: The purpose of this stack is to supply a
package automatically with working space when called during the execution of
a process. This working space is referenced relative to the stack pointer.
The stack may also be used to preserve and protect a package's working data,
when a further package is called, by incrementing the stack pointer by a
suitable value.

13

SYSTEM

Change Process Instruction

51, In a system there may be many processes simultaneously in existence. In
terms of a virtual machine (para.9), each process has a virtual processor on
which to operate. The mapping of virtual processors onto a smaller number of
real CPUs is achieved by queueing the processes for an available CPU. When

a process occupying a CPU either ends or arrives at a suspension point, it
enters a CPU Scheduler package. The Scheduler selects the first process from
the queue and performs a context change into it, so that this process now
occupies the CPU.

52. A context change is achieved by the Change Process instruction. This
instruction has a single parameter, namely a Capability for the Dump Stack of
the new process to occupy the CPU. The effect of the Change Process
instruction is to store the current Data Register values in the dump area,
load the Dump Stack Capability Register with its new value, reload all Data
Registers from the dump area, and reload all Capability Registers, including
the values in the current entry of the stack. P
53. The execution of Change Process transfers complete control of a CPU from
one process to another. The effect of an interrupt on a CPU is to force a
Change Process from the one which currently occupies the CPU into the
interrupt process. As the context of the old process is presexved in its

Dump Stack, control can subsequently be restored to it.

Structure of a System

54, This paper has described how everything in a system, even the represent-—
ation of processing, is reducible to data structures. It has also described
how the data structures which comprise a system are built up from component
data structure, an inter—connected network of Capabilities providing the
cement which binds the whole structure together.

55. A system is constructed from static data structures, including preset
data and code segments, packages, and programs, and dynamic data structures,
including processes and other resources. Preset data and code are assembled
and loaded into the system, where they reside in segments of the Virtual
Memory. Packages are formed by assembling and loading Capability segments
defining their constituent segments. Programs are formed by the inclusion of
Enter type Capabilities within these Capability segments. Processes and the
resources they create are formed when CPUs are applied to these static program

structures.
56. The resulting system is an ever changing list structure that can be

15

REFERENCES
Cosserat D.C. A data model based on the Capability protection mechanism.
Proceedings of the International Workshop on Protection in Operation

Systems (this proceedings), IRIA, Paris, August 1974.

Dennis J.B. and Van Horn, E.C. Programming Semantics for multi-

programmed computations. Comm, ACM 9, 3, March 1966.

Wilkes M.V. Time sharing computer systems. Macdonald. London 1968

Fabry, R.S. List - structured addressing. Ph.D Thesis, University of

Chicago, 1971.

Fabry, R.S5. The case for capability based computers. Presented at
Fourth Symposium on Operating System Principles, Yorktown, New York.
Oct. 1973.

England D.M.
the Art Report 14 - Operating Systems, 1972.

Architectural Features of System 250. Infotech State of

Papers by Cotton, J.M., England, D.M., Halton, D., and Hemmings W.A.C.,
in Proceedings of International Switching Symposium, Boston, Mas.,
June 1972,

Papers by Crompton J.M., Cosserat D.C., Hamer-Hodges K.J., and
Repton C.S., in Proceedings of International Conference on Computer

Communication, Washington, Oct. 1972,

3
76 v 77
{a) CAPABILITY REGISTER FORMAT T
OFFSET
STORE STORE 1
MODULE BASE SEGMENT
ceu STORE ACCESS LIMIT T
Mfo
chu STORE
{b] INSTRUCTION FORMAT & ADDRESS CONSTRUCTION
cPU . DISK o : FUNCTION g‘égf MOD. E;‘g‘. ADDRESS OFFSET
; ABSOLUTE ADDRESS = (STORE MODULE: BASE) + OFFSET 4 MODIFIER
SERIAL
MEDIUM |

! {c) ACCESS TYPES

f I X X X X X X
: I
| (——-l
ALWAYS [l FOR VALID CAPABILITIES
TERMINAL ;
: ENTER - EC €
CAPABILITY TYPES WRITE - WC <€ :
: READ ~ RC
}
]
EXECUTE -~ ED <€
DATA TYPES WRITE - WD <«
READ - RD €

FIG.1. SYSTEM 250 -TYPICAL HARDWARE CONFIGURATION F16.2. CAPABILITY REGISTER

78 79

CURRENT CODE
CAPABILITY SEGMENT

SEGMENT A
crR?} ED | SEGMENT A]l———->!
cr6| STORE BASE L | NT 4] AN
RC LiMIT
OFFSET
(FROM INSTRUCTION}
- ACCESS{SCT OFFSET =~
- i
-] :
- H
— !
_ :
- ! g CENTRAL CAPABILITY CAR
- | . SEGMENT B SEG.
/ “
e REQUIRED SEGMENT | cre| RWC | seGMENT B |——————>{ €D [seomenT A
CR3N, | : ED SEG.
‘\ I] RD \)
. i DATA
\ SEG.
\ |
| RWD |SEGMENT C .
\
\ |
\ |
\ | DATA
\ l ! SEGMENT C
CR3| RWD [SEGMENT C [—u 3
LOAD CAPABILITY INTO \ SYSTEM CAPABILITY TABLE | ! | | J
CR3 FROM CR6 4 OFFSET \ - | |
\\ | |
] :
\ —
\|sTORE| - BASE <

LIMIT i

FI1G.4. STRUCTURE OF A PACKAGE

F1G.3. LOAD CAPABILITY

FIG.5.

80

STRUCTURE OF A PROGRAM

81

RESOURCE
TYPE CODE

/ posT] SEGMENTS

WAIT
FOR

CAPABILITY
FOR RESOURCE

jec] |

RESOURCE
DATA
STRUCTURE

FIG.6. STRUCTURE OF A RESOURCE
(SYNCHRONISING FLAG)

CAPABILITY
FOR PROCESS

2

82

CODE SEGMENTS
EG.BLOCK, UNBLOCK

DUMP STACK
[y
CRO-4

PROCESS

PROCESS

CR5 SLOT |——>.DATA
STRUCTURE
DATA REG.y
SLoTs DUMP AREA
STACK STACK AREA
_POINTER
1
USED o
STACK
ENTRIES |

PROGRAM

CR6 SLOT

DATA
STRUCTURE

CR7 SLOT

IAR SLOT

DATA ABOUT
PROCESS

| I—S—— |

FIG.7. STRUCTURE OF A

UNUSED :
sTACK !
ENTRIES |

PROCESS

83

AN EXTENSIBLE STRUCTURE FOR
PROTECTED SYSTEMS' DESIGN

J. FERRIE
C. KAISER
D. LANCIAUX
B. MARTIN
IRIA/LABORIA, Rocquencourt, France

PRELUDE

This note is the first draft of a study being developed at IRIA on the topic
of protection related to operating systems. The purpose of this research is to de-
velop and analyze addressing and protection structures which will help to run
more secure programs and to limit the propagation of errors. We are planning to
microprogram these structures om a minicomputer and to implement a small but sig-
nificant subsystem.

INTRODUCTION

Statement of the problem

Protection is the general term used to describe the action of hardware and
software mechanisms which control the access to the items of a system. Its purpo-
se is not té avoid the production of errors, but only to prevent their propagation
towards protected items [Crocus]. In the present article, system security which
determines the user's confidence in the system and which is based on the correct
use and reliability of the protection mechanisms, is not taken into account.,

Systems items which may generate errors and whose actions have to be control-
led are called agents. A process is an exemple of an agent. Items which require
protection are referred to as objects. An object is defined by the operations that
can be performed on it. Protection mechanisms will not allow us to operate on an

object with unpermissible operations.

