
Lecture 2

Interrupt Handling
by

Euripides Montagne
University of Central Florida

Outline

1. The structure of a tiny computer.

2. A program as an isolated system.

3. The interrupt mechanism.

4. The hardware/software interface.

5. Interrupt Types.

Von-Neumann Machine (VN)

IP

MAR

AMDROP ADDRESS

MEMORY

A L U

Decoder

IR

Instruction Cycle

w Instruction cycle, or machine cycle, in VN is
composed of 2 steps:

w 1. Fetch Cycle: instructions are retrieved from
memory

w 2. Execution Cycle: instructions are executed
w A hardware description language will be used to

understand how instructions are executed in VN

Definitions

w IP: Instruction Pointer is a register that holds the
address of the next instruction to be executed.

w MAR: Memory Address Register is used to locate
a specific memory location to read or write its
content.

w MEM: Main storage, or RAM (Random Access
Memory) and is used to store programs and data.

Definition of MDR

MDR: Memory Data Register is a bi-directional
register used to receive the content of the memory
location addressed by MAR or to store a value in a
memory location addressed by MAR. This register
receives either instructions or data from memory

Definitions Cont.

w IR: Instruction Register is used to store instructions
w DECODER: Depending on the value of the IR, this

device will send signals through the appropriate
lines to execute an instruction.

w A: Accumulator is used to store data to be used as
input to the ALU.

w ALU: Arithmetic Logic Unit is used to execute
mathematical instructions such as ADD, or
MULTIPLY

Fetch Execute Cycle

w In VN, the instruction cycle is given by the
following loop:

Fetch
Execute

w In order to explain further details about the
fetch /execute cycle, the data movements along
different paths can be described in 4 steps.

Data Movement 1

w Given register IP and
MAR the transfer of
the contents of IP into
MAR is indicated as :

MARçIP

A

IP

MAR

MDROP ADDRESS

MEMORY

A L U

Decoder

Data Movement 2

w To transfer information
from a memory location to
the register MDR, we use:

MDRçMEM[MAR]

w The address of the memory
location has been stored
previously into the MAR
register

IP

MAR

MDROP ADDRESS

MEMORY

A L U

Decoder

A

MAR

Data Movement 3

w To transfer information from the MDR
register to a memory location, we use:

MEM [MAR] çMDR
*see previous slide for diagram

w The address of the memory location has been
previously stored into the MAR

Instruction Register Properties

w The Instruction Register (IR) has two fields:
Operation (OP) and the ADDRESS.

w These fields can be accessed using the

selector operator “.”

Data Movement 4

w The operation field of the IR register is sent to the
DECODER as:

DECODERçIR.OP

w The Operation portion of the field is accessed as
IR.OP

w DECODER: If the value of IR.OP==0, then the
decoder can be set to execute the fetch cycle again.

Data Movement 4 Cont.

DECODERçIR.OP IP

MAR

MDROP ADDRESS

MEMORY

A L U

Decoder

A

Instruction Cycle

w The instruction cycle has 2 components.
w Fetch cycle retrieves the instruction from

memory.
w Execution cycle carries out the instruction

loaded previously.

00 Fetch Cycle

1.MAR çIP
2.MDR çMEM[MAR]
3.IR çMDR
4.IP çIP+1
5.DECODER çIR.OP

1.Copy contents of IP into
MAR

2. Load content of memory
location into MDR

3. Copy value stored in
MDR into IR

4. Increment IP register
5. Select Instruction to be

executed

Execution: 01 LOAD

1. MAR çIR.ADDR
2. MDR çMEM[MAR]
3. A çMDR
4. DECODER ç00

1. Copy the IR address
value field into MAR

2. Load the content of a
memory location into
MDR

3. Copy content of
MDR into A register

4. Set Decoder to
execute Fetch Cycle

Execution: 02 ADD

1. MAR çIR.ADDR
2. MDR çMEM[MAR]
3. A çA + MDR
4. DECODER ç00

1. Copy the IR address
value field into MAR

2. Load content of memory
location to MDR

3. Add contents of MDR
and A register and store
result into A

4. Set Decoder to execute
Fetch cycle

Execution: 03 STORE

1. MAR çIR.ADDR
2. MDR çA
3. MEM[MAR] çMDR
4. DECODER ç00

1. Copy the IR address
value field into MAR

2. Copy A register
contents into MDR

3. Copy content of
MDR into a memory
location

4. Set Decoder to
execute fetch cycle

Execution: 04 END

1. STOP 1. Program ends
normally

00 Fetch
MAR çIP
MDR çMEM[MAR]
IR çMDR
IP çIP+1
DECODER çIR.OP

02 Add
MARçIR.Address
MDR çMEM[MAR]
A ç A + MDR
DECODER ç00

01 Load
MARçIR.Address
MDRçMEM[MAR]
A ç MDR
DECODERç00

03 Store
MARçIR.Address
MDR çA
MEM[MAR] çMDR
DECODER ç00

04 Stop

Instruction Set Architecture

One Address Architecture

w The instruction format of this one-address
architecture is:

operation<address>
w Address are given in hexadecimal and are

preceded by an “x”, for instance x56

Example One-Address Program

w Memory Address
x20 450
x21 300
x22 750 (after program execution)
x23 Load <x20>
x24 Add <x21>
x25 Store<x22>
x26 End

Programs with Errors

w So far, we have a computer that can execute
programs free from errors.
wWhat would happen if an overflow occurred

while executing an addition operation?
wWe need a mechanism to detect this type of

event and take appropriate actions.

Overflow Detection

w A flip/flop will be added to the ALU for
detecting overflow
w The Fetch/Execute cycle has to be extended

to: Fetch/Execute/Interrupt cycle.
w An abnormal end (ABEND) has to be

indicated.

VN with Overflow Flip/Flop

IP

MAR

AMDROP ADDRESS

MEMORY

A L U

Decoder

NewIP

OldIP

OV

Interrupt Cycle

w In the interrupt cycle, the CPU has to check for an
interrupt each time an instruction is executed.

w Modifications have to be made to the instruction set
to incorporate the interrupt cycle.

w An operation code of 05 will be added to
accommodate the Interrupt Cycle.

w At the end of each execution cycle, the DECODER
will be set to 05 instead of 00, to check for
interrupts at the end of each execution cycle.

Interrupt Cycle 05

1. If OV=1
Then HALT

DECODER ç00

1. Abnormal End
(ABEND) for
Overflow

2. Set Decoder to Fetch
Cycle

03 Store
MARçIR.Address
MDR çA
MEM[MAR] çMDR
DECODER ç05

04 Stop

05 Abend
IF OV = 1 Then HALT
DECODER ç 00

01 Load
MARçIR.Address
MDRçMEM[MAR]
A çMDR
DECODERç05

02 Add
MARçIR.Address
MDR çMEM[MAR]
A ç A + MDR
DECODER ç05

ISA –Interrupt cycle

Interrupt Handling Routine

w Instead of halting the machine, the flow of
execution can be transferred to an interrupt
handling routine
w This is done by loading the IP register with

the start address of the interrupt handler in
memory from NEWIP.
w Causes a change in the Interrupt Cycle

IP

MAR

AMDROP ADDRESS

MEMORY

A L U

Decoder

NewIP = 0000

OldIP

OV

Interrupt Handler Takes
Control of VN

(USER PROGRAM)

(INTERRUPT HANDLER)

0000

05 Interrupt Cycle

If OV=1
Then IPçNEWIP

DECODER ç00

w Jump to interrupt
handler at memory
location 1000

w Set decoder to fetch
cycle

03 Store
MARçIR.Address
MDR çA
MEM[MAR] çMDR
DECODER ç05

04 Stop

05 Interrupt Handler Routine
IF OV = 1 IP ç NEWIP
DECODER ç 00

01 Load
MARçIR.Address
MDRçMEM[MAR]
A çMDR
DECODERç05

02 Add
MARçIR.Address
MDR çMEM[MAR]
A ç A + MDR
DECODER ç05

Hardware/Software Bridge

w The interrupt handler is the first extension
layer or virtual machine developed over VN
w First step towards an operating system

Interrupt Handler

VN

Interrupt Handler Virtual Machine

Virtual Machine

Shared MemorywThe interrupt handler has to be loaded into memory along with any user program.wSharing memory space raises a new problem: the user program might eventually execute an

instruction which may modify the interrupt handler routine

Shared Memory Example

Interrupt Handler is
loaded at MEM[0]
with a length of 4000
words.

User program executes:
STORE<3500>, thus

modifying the
handler routine.

Interrupt Handler

User Program

4000

3500

Memory Protection

w A new mechanism must be implemented in
order to protect the interrupt handler routine
from user programs.
w The memory protection mechanism has three

components: a fence register, a device to
compare addresses, and a flip flop to be set if
a memory violation occurs.

Memory Protection
Components

w Fence Register: register loaded with the address of
the boundary between the interrupt handler routine
and the user program

w Device for Address Comparisons: compares the
fence register with any addresses that the user
program attempts to access

w Flip/Flop: is set to 1 if a memory violation occurs

VN with Memory Protection

MAR

AMDROP ADDRESS

MEMORY

A L U

Decoder

NewIP

OldIP

OV

IP

Address
<
Fence

Fence
(4000)

MP

Changes to the ISA

wWith the inclusion of the mechanism to
protect the Interrupt Handler, some
modifications need to be made to the ISA
(Instruction Set Architecture)
w Instructions Load, Add, and Store have to be

modified to check the value of the Memory
Protection (MP) once the first step of those
instructions has executed

Modified ISA

01 Load
MARçIR.Address
If MP=0 Then

MDR çMEM[MAR]
A çMDR

DECODER ç05

02 Add
MARçIR.Address
If MP=0 Then

MDR çMEM[MAR]
A ç A + MDR

DECODER ç05

03 Store
MARçIR.Address
If MP=0 Then

MDR çA
MEM[MAR] çMDR

Decoder ç05
05 Interrupt Handler Routine

IF OV = 1 IP ç NEWIP
IF MP = 1 IP ç NEWIP
DECODER ç 00

Program State Word (PSW)

w The PSW, or Program State Word, is a
structure that give us information about the
state of a program.
w In this register, we have the IP, MODE,

Interrupt Flags, and the Mask(defined later)

Program State Word

IP

Interrupt Flags MASK

OV MP
To be defined later

Privileged Instructions

wWhat if a user program attempted to modify
the fence register?

The register is not protected so it does not
fall under the previous memory protection
mechanism.
w Use the idea of privileged instructions to

denote which instructions are prohibited to
user programs

Privileged Instruction
Implementation

w To distinguish between times when privileged
instructions either are or are not allowed, the
computer operates in two modes

w User mode: 0
w Supervisor mode: 1
w From now on, interrupt handler and supervisor are

terms that can be used interchangeably
w In User mode, only a subset of the instruction set

can be used
w The supervisor has access to all instructions

Implementing Privileged
Instructions cont.

w 1. Add another flip/flop (flag) to the CPU and
denote it as the mode bit

w 2. Create a mechanism in the CPU to avoid the
execution of privileged instructions by user
programs

w 3. The instruction set has to be organized in such a
way that all privileged instructions have operation
codes greater than a given number.
-For example, if the ISA has 120 instructions,
privileged instructions will have operation codes
greater than 59

Mechanism for User/Supervisor
Modes

w This device compares the opcode in the Instruction Register
(IR.OP) with the opcode of the last non-privileged
instruction.

w If the outcome yields a “1”, then this is a privileged
instruction.

w This outcome is then compared with the mode bit.
w If the mode is 0 (indicating user mode), and it is a privileged

instruction, then the Privileged Instruction bit (PI) is set to
one.

w The hardware will detect the event, and the interrupt handler
routine will be executed

Mechanism for User/Supervisor
Modes Cont.

IR.OP 59

>
Mode
Bit = 0

PI

CPU After Mode Flag Addition

CPU

IP ModeOV MP PI

NewIP Fence

Accumulator

Supervisor
Mode

User Mode

PSW

PSW After Mode and PI flag
Addition

IP

Interrupt Flags MASK

Mode

OV MP PI
To be defined later

Types of Interrupts

Interrupts

Software Interrupts

Hardware Interrupts I/O Interrupt

External Timer

Traps

System Calls

Traps

w An interrupt is an exceptional event that is
automatically handled by the interrupt handler.

w In the case of an overflow, memory addressing
violation, and the use of privileged instruction in
user mode, the handler will abort the program

w These types of interrupts are called traps
w All traps are going to be considered synchronous

interrupts

I/O Interrupts

w This type of interrupt occurs when a device sends a
signal to inform the CPU that an I/O operation has
been completed

w An I/O flag is used to handle this type of interrupt
w When an I/O interrupt occurs, the Program State of

the running program is saved so that it can be
restarted from the same point after the interrupt has
been handled.

Saving the state of the running
program

MAR

AMDROP ADDRESS

MEMORY

A L U

Decoder

NewIP

OldIP

OV

IP

Address
<
Fence

Fence
(4000)

MP

Program State Word

IP

Interrupt Flags MASK

Mode

OV MP PI To be defined later
I/O

I/O Device

05 Interrupt Cycle

IF OV = 1 THEN IP ß NEWIP; MODE ß 1 (ABEND).
IF MP = 1 THEN IP ß NEWIP; MODE ß 1 (ABEND).
IF PI = 1 THEN IP ß NEWIP; MODE ß 1 (ABEND)

IF I/O = 1 THEN OLDIPß IP;
IP ßNEWIP;
MODEß1;

DECODER ß 00

Supervisor

w The Supervisor can use both user and
privileged instructions.
w Sometimes a user program requires some

services from the Supervisor, such as
opening and reading files.
w A program cannot execute open or read

functions itself, and so needs a mechanism to
communicate with the Supervisor

SuperVisorCall (SVC)

w An SVC is also known as a System Call
w It is a mechanism to request service from the

Supervisor or OS.
w This mechanism is a type of interrupt, called

a software interrupt because the program
itself relinquishes control to the Supervisor
as part of its instructions.

System Calls

w There are two types of system calls:
1. Allows user programs to ask for service
(instructions found below opcode 59)
2. Privileged Instructions (over opcode 59)

SCVT

w The System Call Vector Table(SCVT) contains a
different memory address location for the beginning
of each service call

w Service calls are actually programs because they
require multiple instructions to execute

w Each memory address contained in the SCVT
points to runtime library, generally written in
assembly language, which contains instructions to
execute the call

Runtime Libraries

w Runtime Libraries: precompiled procedures
that can be called at runtime
w Runtime Libraries set a new flip/flop, called

the SVC flag, to “1”, which causes the
system to switch to Supervisor Mode in the
Interrupt Cycle

SVC Instruction Format

w SVC(index) is the format for system calls.
w The index is the entry point in the SCVT

Readè èSVC(index) (IR.OP=SVC, IR.ADDR=index)Compiler

80 SVC(index)

80 SVC(index)
OLDIPçIP;
B çIR.ADDRESS

IP çRTL-ADDRESS

DECODER ç05

w Save IP of current program
w The Index value is

temporarily loaded into
register B

w Address of Runtime
Library

w Transfer to Interrupt Cycle

MAR

AMDROP ADDRESS

MEMORY

A L U

Decoder

NewIP

OldIP

OV

IP

Address
<
Fence

Fence
(4000)

MP

RTL-Address

B

1

2

3

SVC(read) = 80(4)

Runtime Library and SVCT
Example

User Program
-
-
SVC(4)
-
-
-
-

Runtime Library for
“Read”

SVCFLAG=1

LOADIP OLD-IP

I.H. searching code
for “Read”

IF SVCFLAG=1
IP ß SCVT[B]

LOADIP OLD-IP

Address
End

Address
Read

Address
Write

Address
Close

Address
Open SCVT

54321

Properties of Runtime Libraries

w Libraries are shared by all programs
w Are not allowed to be modified by any

program.

05 Interrupt Cycle

If OV=1 Then IPç NEWIP; MODE ç 1 (ABEND)
If MP=1 Then IPç NEWIP; MODE ç 1 (ABEND)
If PI=1 Then IPç NEWIP; MODE ç 1 (ABEND)
IF I/O = 1 THEN OLDIPß IP;

IP ßNEWIP;
MODEß1;

If SVC=1, THEN OLDIP çIP;
IPç NEWIP;
MODE ç 1;

DECODER ç00

Program State Word

IP

Interrupt Flags MASK

Mode

OV MP PI
To be defined later

I/O SVC

Timer Interrupt

w What if a program has an infinite loop?
w We can add a time register, set to a specific value

before a program stops, which is decremented with
each clock tick

w When the timer reaches zero, the Timer Interrupt bit
(TI) is set to “1”, indicating that a timer interrupt
has occurred and transferring control to the
interrupt handler

w Prevents a program from monopolizing the CPU

Timer Interrupt cont.

IP ModeOV MP PI

NewIP Fence

Accumulator

Supervisor
Mode

User Mode

TI Timer

Program State Word

IP

Interrupt Flags MASK

Mode

OV MP PI
To be defined later

I/OTI SVC

Interrupt Vector

w Switching between user and supervisor modes must
be done as quickly as possible

w In the case of the VN machine, control is
transferred to the interrupt handler, which then
analyzes the flags and determines which is the
appropriate course of action to take.

w A faster form of switching directly to the procedure
or routine that handles the interrupt can be
implemented using an interrupt vector

Interrupt Vector, cont.

w The idea of an interrupt vector consists of
partitioning the interrupt handler into several
programs, one for each type of interrupt.
w The starting addresses of each program are

kept in an array, called the interrupt vector,
which is stored in main memory.

Interrupt Vector Structure

w For each type of interrupt, there is a
corresponding entry in the array, called IHV.
w Instead of transferring control just to the

Interrupt Handler, we specify the element in
the array that corresponds to the interrupt
that occurred.
w This way, the routine that handles that

interrupt is automatically executed.

05 Interrupt Cycle with the
Interrupt Vector

If OV=1 Then IP çIHV[0]; Mode ç1
If MP=1 Then IP çIHV[1]; Mode ç1
If PI=1 Then IP çIHV[2]; Mode ç1

If TI=1 Then OLDIP çIP;
IP çIHV[3];
MODE ç1;

OV

IP

TI

PI

I/O

0

2

3

4

5

1

SVC

05 Interrupt Cycle with the
Interrupt Vector, Cont.

If I/O=1 Then OLDIP çIP;
IP çIHV[4];
MODE ç1;

If SVC=1 Then OLDIP çIP;
IP çIHV[5];
MODE ç1;

DECODER ç00;

ç

OV

IP

TI

PI

I/O

0

2

3

4

5

1

SVC

Multiprogramming and Timers

w Multiprogramming: allowing two or more
user programs to reside in memory
w If we want to run both programs, each

program, P1 and P2, can be given alternating
time on the CPU, letting neither one
dominate CPU usage.

Process Concept

In order to implement multiprogramming we
need to utilize the concept of a process.

Process: defined as a program in execution

We’ll explore this concept further in the next
lecture.

