Capability Concept Mechanism and Structure in System 250

By
Christian Diercks

Overview

- Intro
- Plessey System 250 Architecture
- Basic Capability Mechanism
- Basic capability table
- Load Capability Instruction
- Structure of a Package
- Structure of a Program
- Structure of a Resource
- Execution of a program
- Call Return and Store Capability Instruction
- Process Dump Stack
- Structure of a Process
- Structure of a System
- Conclusion
- Reference
Introduction

- Capability concept and implementation
- Plessey System 250
 - first capability system sold commercially
 - First functioning computer to use capability addressing
 - Designed to meet critical real time performance and reliability needs (Tel.)
 - Applying capabilities to a multiprocessor environment

System 250

- Multiprocessor System
 - Symmetric
 - Up to 8 processors with 8 storage modules
 - Segmented memory space by operating system (Virtual Memory)
- Segment contains capabilities or data
System 250

- No event interrupts in system
- Interrupts can occur internally
 - Fault
 - Interval timer
 - Trap
System 250

- To access data in a memory segment, a program must load one of the capability registers with a capability for that segment.

- A Plessey capability permits its possessor to access an object in the system, where an object is a logical or physical resource.

Basic Capability Mechanism

Definition

- A capability (also known as a key) is a concept in secure computing. It refers to a value that references an object along with an associated set of access rights.
- A user program must use a capability to access an object.
Basic Capability Mechanism

- Provide addressing base for access to segments in fast store
- To protect a segment against illicit operations
- To limit the scope of the program and thus protect the data structure outside this scope from illicit access

Basic Capability Mechanism

- Addressing Fast Store
- Accessing words with reference to Capability Register

[Diagram showing the relationship between Store Module, Base, Store Segment, Offset, and Limit]
Basic Capability Mechanism

CPU instructions access words within segment by reference to a capability register which defines it.

Absolute Address = (STORE MODULE:BASE) + Offset + Modifier

Basic Capability Mechanism

Capability Register define the permitted bounds of a segment and the operations permitted upon it
System Capability Table (SCT)

- Base/limit values defining segments are collected into single segment SCT
- Each processor has an internal register that contains the address of the SCT
- Physical addressing information is centralized and relocation of segments is simplified
- One SCT entry for each object in the system

Load Capability Instruction

- A program executes a LOAD Capability instruction to transfer a capability from a capability segment to a capability register.
- Loading capability to get a new segment
Load Capability Instruction

Steps
- Hardware examines the SCT index the specified capability in memory
- Index selects the SCT entry for the segment
- Capability register is constructed from the right field in the capability and the base and limit from SCT entry

![Diagram of Load Capability Instruction](image)
Structure of a Package

- Package consists of a central capability segment that defines a number of satellite segments, which may include further capability segments

- Convention
 - CR(7) defines code segment currently being executed
 - CR(6) defines the central capability segment of the package concerned

Structure of a Package

- A protected subsystem is built by creating a central capability block in which the subsystem will execute

- Central capability block contains capability for code, data, and capability segments available to the executing process
Structure of a Package

Structure of a Program

- A program consists of a number of program packages interconnected by Enter capabilities
- One package being accessible from a number of other others
Structure of a Program

Plessey 250 operating system is constructed as a set of protected subsystems that manage various types of resources.

Enter type capability ensures no need for privileged mode.
Structure of a Resource

- OS provides facilities for allocating and manipulating a number of resource types
 - Store segment
 - Synchronized flag
 - Process
 - Data stream
 - User
 - Job
 - Symbol directory
 - Text file
Execution of a program

- Execution of program may construct a dynamic data structure by repeated calls to resource allocation packages

- Convention
 - CR(5) is used to define the first capability segment of the process data structure

Call Return and Store Capability Instructions

- Subroutine calls are performed by call instructions
 - Enter type capability for package central capability block
 - Offset to the execute type capability of the code segment to be entered

- Effect of call instruction
 - Load execute type capability into CR(7)
 - Load enter type capability into CR(6)
Call Return and Store Capability Instructions

Two further actions are required
- To operate on the data structure a read capability access type needs to be supplied
- Before CR(7), CR(6) can be overwritten, their old values need to be preserved for return instructions

Process Dump Stack

- Each process is associated with a segment called “Process dump stack”
- Process dump stack contains two parts
 - Stack area for preservation of CR(6), CR(7), and IAR values during a call instruction
 - A dump area in which remaining register values can be preserved on interrupt or context change
Structure of a Process

- Central capability segment of the process defines a number of segments which contain general information about the process.
- A process which creates another is supplied with an enter type capability.

Structure of a Process

- Central Capability segment of the process defines a number of segments which contain general information about the process.
- One of the segments defined is the process dump stack.
Structure of a Process

Structure of the System

- Many processes simultaneously
- Virtual processor for each process
- CPU scheduler
- Change Process instruction
- Providing complete control from one process to another by change process instructions
- Dump stack preserves old process information
Conclusion

- Plessey 250 uses capabilities to simplify MP
- Capabilities aid software error detection
 - Each process possesses capability for only those segments needed for its function
- The Plessey System 250 combines hardware and software support to provide a uniform view of system resources

Reference

- http://www.informatic.uni-ulm.de/rs/projecte/monads/capabilitiesE.html