
1

Protection in the Hydra
Operating System

Ellis Cohen and David Jefferson

Carnegie-Mellon University

Presented By : Farhan Saleem Khan

Overview

Introduction

Protection Philosophy adopted by Hydra

Objects, Capabilities and LNE’s

Protection Problems
Mutual Suspicion

Modification

Limiting Propagation of Capabilities

Conclusion

2

Introduction – Protection Problem

Sharing of information : possibility of malicious and accidental disclosure
of information.

Solution : Restrict the behavior of possible computation.

Definition: A protection problem is simply a description of some class of
restricted behavior.

How: System provides mechanisms for restricting the access on certain
information.

Hydra

Protection must be integral part of operating system.

Hydra

Set of protection mechanisms

Flexible enough to support wide range of security policies.

Capability based mechanism.

3

Protection Philosophy

Not specific security policy implemented.

Provides a set of mechanisms with which a large set of policies can be
constructed.

Five philosophical principles.

1) Information can be divided into distinct objects for purpose of protection.
Group information together into a uniform data structure called as object.

Provides protection at object level.

Example:
Group information in the form of file objects and set protections at individual
file-level.

Protection Philosophy (cont …)

2) Objects are distinguished by type
Each object is of a particular type, which remains constant.

Provides certain objects and their respective procedure.
Procedure, Process, Semaphore etc …

Also provides mechanism for creating new objects and their respective
operations that can manipulate them.

3) Access to objects is controlled by capabilities
A capability contains a large number of access rights which determine how
the object named by the capability can be accessed.

May be passed from one user to another.

Objects do not have single owner.

All holders of capabilities for an object share control of it in proportion to
their rights.

4

Protection Philosophy (cont …)

4) Each program should execute with the smallest set of access rights
necessary

Protection domain is that set of capabilities which may be exercised by an
executing procedure.

It changes with each procedure call.

Procedures have access to “own” objects, inaccessible to users with only
execution right.

Each call to a procedure executes in a new environment determined by
Procedures “owns”

Capabilities passed as arguments by the caller.

5) Knowledge about the representation and implementation of operations
for each type of object should be hidden in module called subsystems.

Each type of objects and their associated procedures comprises a subsystem.

Users can’t access objects directly.

Objects can be manipulated through procedures of that subsystem.

Objects

A data structure representing an instance of a resource, either virtual or
physical.

Three-tuple : < unique-name , type , representation >
Unique-name distinguishes it from all other objects.

Type defines the nature of the resource
DEVICE, DIRECTORY, PROCESS, SEMAPHORE etc …

Representation = ???

5

Capabilities

Contains
name of the particular object and

set of access rights which determine how the object can be accessed.

C-list, a linearly numbered list of capabilities (associated with every executing

program).

The representations of capabilities and rights are manipulated only by the
hydra Operating System impossible to forge a capability or
gain access to an object without having capability for it.

Rights

A capability contains names of an object and set of rights to that object.

Rights list is implemented as a bit vector of 24.
16 generic rights

8 auxiliary rights

Each bit : presence or absence of a right (operation).

Not all generic rights applicable for all Types.
CALLRTS (call-right): makes sense for objects of type Procedure, but not for
other objects …

WRITERTS (write-rights): makes sense for File type, not for Process,
Semaphore etc …

6

Local Name Space (LNE)

C-list not an attribute of executing program alone.

Any object may contain a C-list

Two important effects.
Executing program may be represented as a TYPE of OBJECT.

This type is called Local Name Space.

New objects can be defined in terms of existing objects.
For Example: File Directory which contains both a list of files and a semaphore
which provides mutual exclusion on the file directory.

An object also contains a Data-part, a block of storage holding relevant
information.

For Example: The data-part might be used to hold the string names of the files.

C-list + Data-part representation of object

Generic Operations

All objects have common underlying structure
C-list and Data-part

Hydra provides a type-independent, generic operations for manipulations
of these objects.

Kernel calls or k-calls (trap to the kernel).

Getdata
Provides access to the data-part of object.

Arguments:
Path to a capability for the object whose data-part is to be read.

Parameters to specify what part to be read (offset and length)

Destination address in caller address space

Putdata
To write into data-part

Addata
Append data onto the end of the data-part

Manipulation
of data-part

7

Generic Operations (cont …)

Similar operations for manipulating C-list.

Load
Reading a C-list entry

Store
Writing on a C-list entry

Append
Append a capability to a C-list

Delete
Removes a capability from the C-list

Capability is replaced with capability of a special type NULL.

Copy
For copying data-part and C-list of an object into another object.

Manipulation
of C-list

Generic Operations (cont …)

Generic operations implemented indivisibly.
Two processes can’t operate on the same object simultaneously.

This is also insured in multiprocessor environment.

Mutual exclusion of composite operations requires some sort of
synchronization, such as semaphores.

8

Procedures

An object serving as an abstraction of ordinary procedures

May take capabilities as arguments.

May return capability as result.

Call (cProc , return-Slot , p 1 , mask 1 , … , p n , mask n)

cProc : capability of the procedure to be called

return-Slot : Slot in the C-list where cProc can return a capability

p1 : capability to argument 1

Mask1 : mask to restrict the rights in the capability passed

Sharing

Object / capability structure permits sharing

Sharing of information

User-1 and User-2 both have capability for some object Comm-1
User-1 stores some information in Comm-1 data-part

User-2 retrieves it

Sharing of rights

User-1 and User-2 both have capability for some object Comm-1

User-1 has rights to read and write some specific file and wishes to grant
User-2 read access only.

User-1 stores file capability in Comm-1 allowing only read access

User-2 accesses the file using capability stored Comm-1

9

Sharing (cont …)

Protection Problems

Mutual Suspicion

Modification

Limiting Propagation of Capabilities

10

Mutual Suspicion

Caller
One user (caller) calls a utility procedure (callee) belonging to another user or
kernel.

Risk of malicious access to caller data by the callee procedure. (delete files, etc …)

Callee
Utility procedure or kernel procedure (callee) is called by many users (callers).

It manipulates certain private files or data structures.

Callee needs some guarantee that, callers never access these sensitive data
structures.

These two problems are together called Mutual Suspicion.

Problem Definition
“The Caller of a hydra procedure needs a guarantee that the callee is not
granted access to any of his objects, excepts those for which capabilities are
explicitly passed as parameters.

The callee needs a guarantee that the caller can’t gain access to private data
of callee, except when the callee explicitly allows it”.

Mutual Suspicion (cont …)

Protection for Callee
Every procedure can only operate objects whose capabilities are present in it
C-list.

Procedure may have “own” capabilities. So keep sensitive and private data in
own capabilities and doesn’t return it back to caller.

Protection for Caller
A procedure can’t access capabilities in LNEes

deeper in the process stack, the only capabilities

accessed by callee are its “own” or those passed

by caller explicitly.

LNE of Callee

LNE of Caller

LNE …

LNE: Starting
Procedure

…

11

Modification

“User often want guarantee that an object passed as an argument to a
procedure will not be modified as a result of the call.”

Hydra solves this problem by using MDFYRTS.
Each Hydra k-call that modifies an object requires a capability but MDFYRTS
as well.

Thus to store a capability in an object, one must have a capability for the
object with both STORTS and MDFYRTS.

To solve modification problem, hydra enforces that MDFYRTS can never be
gained through amplification.

So user passes a capability to callee procedure restricting MDFYRTS, there is
no way that the procedure can modify the data-file.

Limited Propagation of Capabilities

“A user wishes to allow
another user to access an
object but wants to
guarantee that the other
user can’t share access with
a third user.”

Hydra solves this problem
by capability right ENVRTS.

A capability may only be
stored in an object if the
capability contains
ENVRTS.

12

Conclusion

Hydra has solved lots of interesting
protection problem by extending the
interpretation of rights.

Rather than implementing few
sophisticated protection policies,
providing generic mechanisms helps in
solving bigger set of protection problems.

Questions ???

