
Objective 2 Directions

Objective 2 Overview

In this objective you will develop functions which initialize the memory and
memory management data structures of the simulator, simulate the basic
functions of the CPU, as well as provide more simulation output.

The simulator will initally call your Boot () function that will load programs
from boot . dat that are stored in the format described in intro.doc. Boot () will
also initialize the data structures responsible for managing the simulated memory
and will call Get _I nst r () repeatedly to read instructions from boot . dat and
will store them in the simulated memory. Finally, Boot () will call
Di spl ay_pgm() for each program in boot . dat to output it to si mout .

After Boot () has completed XPGM() will be called which simulates a context
switch and then calls Cpu() . Cpu() sets the memory address register (MAR) to
the value passed to it by XPGM() , this will be 0 initially. Cpu() then calls Fet ch()

to get the next instruction to execute from memory. Fet ch() calls Mu() to
determine the physical location in memory of the requested instruction and uses
the result to return the instruction to Cpu() . Cpu() then handles the instruction
accordingly depending on the operation. This entire cycle then repeats until there
are no more simulation events.

Important variables and data types

MEMMAP:
defined in si mul at or . c is a pointer to 2 * MAXSEGMENTS variables
of type st r uct segment _t ype (defined in osdef s. h). User memory is
MEMAP[0] . . . MEMMAP[MAXSEGMENTS − 1] , the rest is reserved for the
OS. Each segment_type has fields for the segment length in instructions
(segl en) and the base address (membase) in memory where the segment
begins.

MEM:
defined in si mul at or . c is a pointer to MEMSI ZE variables of type
st r uct i nst r _t ype (defined in osdef s. h).

Boot

voi d Boot (voi d)

This function is called from si mul at or . c and reads from boot . dat and
initializes the memory and memory management data structures. The programs
from boot.dat represent the OS and are loaded into the upper half of

MEMMAP.

Directions:
1. Read the file boot . dat whose file pointer is PROGM_FI LE[BOOT] and whose

format is given in intro.doc. You will have to check for PROGRAM on the first
line and read in the number of programs in the file. Then read in each
segment and store the access bits and number of instructions.

2. With the program and segment data initialize MEMMAP starting at segment
MAXSEGMENTS. The size of MEMMAP is 2 * MAXSEGMENTS. The first half is
reserved for user memory, while the upper half is reserved for the OS.

3. Call Get _I nst r () repeatedly to read instructions from boot . dat and update
Tot al Fr ee and Fr eeMem based on the number of instructions read from
boot . dat .

4. Call Di spl ay_pgm() to display each program.

Get_Instr

voi d Get _I nst r (i nt pgmi d, st r uct i nst r _t ype * i nst r)

This function reads the next instruction from f i l e (f p) into instr. The external
file (fp) is PROGM_FILE[pgmid]. The format of the file is a series of
statements of the form: OPCODE x y z where the form and type of the
operands (x,y,z) depend on OPCODE. Each instruction starts on a new line. There
is more information in intro.doc on the format of boot.dat.

Directions:
1. Read the instructions from boot . dat (PROGM_FI LE[BOOT]).
2. Convert the instruction to its opcode by using the lookup table opi dt ab

which is defined in si mul at or . c if the instruction is not a device. If it
is a device look up its opcode in the devi d field of the devt abl e.

3. After determining the opcode set the operand as described in intro.doc.
Each instruction has a field for the opcode and operand. The operand
field is a C union and depending on the opcode, only certain fields will
be used in the operand. The addr ess field is used for REQ and JUMP

instructions, the count field is used for SKI P instructions, the bur st

field is used for SI O, WI O, and END instructions, and the byt es field is
used for device instructions. The data structures are show below:

st r uct i nst r _t ype {
unsi gned char opcode;
uni on oper nd_t ype oper and;

} ;

uni on oper nd_t ype {
 st r uct addr _t ype addr ess;

unsi gned i nt count ;
unsi gned l ong bur st ;
unsi gned l ong byt es;

 } ;

Cpu

voi d Cpu(voi d)

This function simulates the basic functions of a CPU. It fetches instructions from
emory and handles them accordingly.

Directions:
1. Follow the instructions given in obj 2. c in the comments surrounding

the Cpu() function.

XPGM

voi d XPGM(st r uct st at e_t ype * st at e)

This function simulates a priveleged instruction causing a context switch.

Directions:
1. Follow the instructions given in obj 2. c in the comments surrounding

XPGM() function.

Mu

i nt Mu(voi d)

This function simulates the address translation hardware of the memory unit.

Directions:
1. Follow the instructions given in obj 2. c in the comments surrounding

the Mu() function.

SetMAR

voi d Set Mar (st r uct addr _t ype * addr)

This function sets a global variable MAR representing the memory address
register.

Directions:
1. Follow the instructions given in obj 2. c in the comments surrounding

Set Mar () function.

Fetch

i nt Fet ch(st r uct i nst r _t ype * i nst r)

This function will try and fetch an instruction from memory and store it in instr.

Directions:
1. Follow the instructions given in obj 2. c in the comments surrounding

Fet ch() function

Read

i nt Read(st r uct i nst r _t ype * i nst r)

This function is identical to Fetch()

Display_pgm

voi d Di spl ay_pgm(st r uct segment _t ype * segt ab, i nt numseg,
st r uct pcb_t ype * pcb)

This function outputs a program to simout.

Directions:
1. Follow the instructions given in obj 2. c in the comments surrounding

Di spl ay_pgm() function.
2. Be sure to print the process and program names as "BOOT" in Objective

2 since pcb will always be null.

