Objective 2 Directions

Objective 2 Overview

In this objective you will develop functions which initialize the memory and
memory management data structures of the smulator, smulate the basic
functions of the CPU, as well as provide more simulation output.

The smulator will initally call your Boot () function that will load programs
from boot . dat that are stored in the format described in intro.doc. Boot () will
aso initialize the data structures responsible for managing the ssmulated memory
and will call Get _I nstr () repeatedly to read instructions from boot . dat and
will store them in the ssmulated memory. Finally, Boot () will cal

Di spl ay_pgn() for each program in boot . dat to output it to si nout .

After Boot () has completed xPG\V) will be caled which ssimulatesa context
switch and then calls Cpu() . Cpu() setsthe memory addressregister (MAR) to
the value passed to it by XPGW) , thiswill be O initially. Cpu() then callsFet ch()
to get the next instruction to execute from memory. Fet ch() calsmi() to
determine the physical location in memory of the requested instruction and uses
the result to return the instruction to Cpu() . Cpu() then handles the instruction
accordingly depending on the operation. This entire cycle then repeats until there
are no more simulation events.

Important variables and data types

Boot

MEMVAP:
defined insi mul at or. c isapointer to2 * MAXSEGVENTS variables
of typestruct segment _type (definedin osdefs. h). User memory is
MEMAP[0] ... MEMVAP[MAXSEGMENTS - 1], therest isreserved for the
OS. Each segment_type has fields for the segment Iength in instructions
(segl en) and the base address (nenbase) in memory where the segment
begins.

VEM
defined insi mul at or. ¢ isapointer to MEMSI ZE variables of type
struct instr_type (definedin osdefs. h).

voi d Boot (voi d)

Thisfunction is called fromsi mul at or . ¢ and reads from boot . dat and
initializes the memory and memory management data structures. The programs
fromboot . dat represent the OSand are loaded into the upper half of

MEMVAP.

Directions:

1. Read thefile boot . dat whose file pointer is PROGM FI LE[BOOT] and whose
format is given in intro.doc. Y ou will have to check for PROGRAMON the first
line and read in the number of programsin the file. Then read in each
segment and store the access bits and number of instructions.

2. With the program and segment data initialize VEMVAP starting at segment
MAXSEGMVENTS. The size of MEMVAP iS2 * MAXSEGMENTS. Thefirst half is
reserved for user memory, while the upper half is reserved for the OS.

3. Cal Get _Instr() repeatedly to read instructions from boot . dat and update
Tot al Free and Fr eeMembased on the number of instructions read from
boot . dat .

4. Cdl Di spl ay_pgm() to display each program.

Get_Instr

void Get_Instr(int pgmd, struct instr_type *instr)

This function reads the next instruction fromfil e (fp) intoi nstr. The external
file (fp) ISPROGM FI LE[pgmi d] . The format of thefileis a series of
statements of theform: OPCODE x y =z wherethe formand type of the
operands (X,y,2) depend on OPCODE. Each instruction starts on a new line. There
ismore information in intro.doc on the format of boot.dat.

Directions:

1. Read the instructions from boot . dat (PROGM_FI LE[BOOT]).

2. Convert the instruction to its opcode by using the lookup table opi dt ab
which isdefined in si mul at or. ¢ if theinstruction is not adevice. If it
isadevice look up its opcode in the devi d field of the devt abl e.

3. After determining the opcode set the operand as described in intro.doc.
Each ingtruction has afield for the opcode and operand. The operand
field isa C union and depending on the opcode, only certain fields will
be used in the operand. The addr ess field is used for REQand Juwp
instructions, the count field isused for SKI P instructions, the bur st
field isused for SI O, W O, and END instructions, and the byt es fidld is
used for device instructions. The data structures are show below:

struct instr_type {
unsi gned char opcode;
uni on opernd_type operand;

uni on opernd_type {
struct addr_type address;
unsi gned i nt count ;
unsi gned | ong bur st ;
unsi gned | ong byt es;

Cpu

voi d Cpu(void)

This function simulates the basic functions of a CPU. It fetches instructions from
emory and handles them accordingly.

Directions:
1. Follow theinstructions given in obj 2. ¢ in the comments surrounding
the Cpu() function.

XPGM

void XPGV[struct state_type *state)

This function simulates a priveleged instruction causing a context switch.

Directions:
1. Follow theinstructions given in obj 2. ¢ in the comments surrounding
XPGW) function.

Mu
i nt Mu(void)
This function simulates the address trandation hardware of the memory unit.
Directions:
1. Follow theinstructions given in obj 2. ¢ in the comments surrounding
the mu() function.
SetMAR

voi d Set Mar(struct addr_type *addr)

This function sets a global variable MAR representing the memory address
register.

Directions:

1. Follow theinstructions given in obj 2. ¢ in the comments surrounding
Set Mar () function.

Fetch

int Fetch(struct instr_type *instr)

This function will try and fetch an instruction from memory and storeitini nstr.

Directions:
1. Follow theinstructions given in obj 2. ¢ in the comments surrounding
Fet ch() function

Read
int Read(struct instr_type *instr)
Thisfunction isidentical to Fetch()
Display_pgm

voi d Di splay_pgm(struct segment_type *segtab, int nunseg,
struct pcb_type *pch)

This function outputs a programto si nout .

Directions:
1. Follow theinstructions given in obj 2. ¢ in the comments surrounding
Di spl ay_pgn() function.
2. Besureto print the process and program names as "BoOT" in Objective
2 since pcb will always be null.

