
1

COP 4600

Objective # 3

So far………..

Obj#1 : read “logon.dat” and
created our event list.

Obj#2 : function Boot() called.
“boot.dat” was read. Kernel loaded and
MEMMAP initialized.

2

main()

Scan Event List

Interrupt() –

• get next event

• Update Simulation
clock – ‘CLOCK’

(OBJ # 1)

Interrupt_Handler()

• Saves state of
interrupted program

• Gives control to
Service Routine

(Simulator.c)

Objective # 3

Interrupt_Handler() Logon_Service()

Creates a PCB Read “Script.dat”

Allocate memory And Load Program from

user’s script ……………………

3

Logon_Service()

Get_Script() Next_pgm()

Dealloc_pgm Get_Memory Loader

Dealloc_seg

Merge_seg

Get_InstrAllocate_seg Compact_mem

I

II

III

IV

V

LEVEL - I
Logon_Service() :

[Allocates and Initializes the PCB for LOGON events]

• PCB stored in “termtable” (array of pointers to
PCB’s)

• Initialize PCB .

• Call Get_Script (PCB) // LEVEL II

{ Initialize the process script and pgmid }

• Call Next_pgm (PCB) // LEVEL II

{ Allocate and Load the next program from script }

4

LEVEL - II

Get_Script() :

[Reads a script from “script.dat”]

Open “script.dat” file
Read script till LOGOFF encountered
Load script to PCB -> script[……]

This gives us the list of programs a user will execute

LEVEL - II

Next_pgm() :

[Makes a transition to the next program in the script if possible]
if (pcb->pgmid >= 0 && pcb->firstrb == NULL)

Dealloc_pgm() // LEVEL III
if (pcb->pgmid != NULL)

return
if (pcb->[++pcb->pgmid] == LOGOFF

print to *.out
return

Get_memory() // LEVEL III { New Segment Table built }
Loader() // LEVEL III { Load program into MEM }
Assign Current PCB “R” Ready Status

5

LEVEL - III

Get_Memory() :
[Allocates Segment Table and sets up information for each

segment]
Eg: editor.dat

Open “editor.dat” and read the number of Segments
Allocate a Segment Table
Initialize each segment { acc bits , length etc as we did in
Boot() }
Allocate memory in MEM for each segments code.
{ This is done by calling

Base = Alloc_seg(); // LEVEL IV
if(base < 0)

compact_mem(); // LEVEL IV – OBJ#6 }

LEVEL - III

Loader() :
[Reads editor.dat for instruction and

loads each instruction into MEM]
Call Get_Instr() {OBJ #2} to get
opcodes and operand.
Call Display_pgm() to echo to *.out

6

LEVEL - III

Dealloc_pgm() :
[Frees all allocated segments for the current

program and then frees the segment table]

Call Dealloc_seg() for each segment in the
pcb->segtable;
free(pcb->segtable)

LEVEL - IV

Dealloc_seg() :
[Return a segment to the free list]

Incase there are two adjacent segments in the free list
……call Merge_Seg()

7

LEVEL - IV

Alloc_seg() :

[Searches the Free memory list for free memory
segments in MEM for a segment with a length equal
to that requested]

Return index in MEM incase enough memory found.
Update Other Memory Parameters (eg: TotalFree)

LEVEL - V

Merge_seg() :
[Scans Memory list and if it finds two adjacent memory

blocks it merges them into one]

