
1

OSSIM OSSIM –– Objective 2Objective 2
OverviewOverview

Develop functions which initialize the memory and memory Develop functions which initialize the memory and memory
management data structures of the simulatormanagement data structures of the simulator

simulate the basic functions of the CPU, as well as provide moresimulate the basic functions of the CPU, as well as provide more
simulation output. simulation output.

Boot:Boot:
The simulator will The simulator will initallyinitally call your Boot() function that will load call your Boot() function that will load
programs from programs from boot.datboot.dat that are stored in the format described in that are stored in the format described in intro.docintro.doc. .
Boot() will also initialize the data structures responsible for Boot() will also initialize the data structures responsible for managing the managing the
simulated memory and will call simulated memory and will call Get_InstrGet_Instr() repeatedly to read instructions () repeatedly to read instructions
from from boot.datboot.dat and will store them in the simulated memory. and will store them in the simulated memory.
Finally, Boot() will call Finally, Boot() will call Display_pgmDisplay_pgm() for each program in () for each program in boot.datboot.dat to to
output it to output it to simoutsimout. .

OSSIM OSSIM –– Objective 2Objective 2
OverviewOverview

After Boot() has completed XPGM() will be called which After Boot() has completed XPGM() will be called which
simulates a context switch and then calls simulates a context switch and then calls CpuCpu(). ().
CpuCpu() sets the memory address register (MAR) to the value () sets the memory address register (MAR) to the value
passed to it by XPGM(), this will be 0 initially. passed to it by XPGM(), this will be 0 initially.
CpuCpu() then calls Fetch() to get the next instruction to () then calls Fetch() to get the next instruction to
execute from memory. execute from memory.
Fetch() calls Fetch() calls MuMu() to determine the physical location in () to determine the physical location in
memory of the requested instruction and uses the result to memory of the requested instruction and uses the result to
return the instruction to return the instruction to CpuCpu(). ().
CpuCpu() then handles the instruction accordingly depending () then handles the instruction accordingly depending
on the operation. This entire cycle then repeats until there on the operation. This entire cycle then repeats until there
are no more simulation events.are no more simulation events.

2

OSSIM OSSIM –– Objective 2Objective 2

Important VariablesImportant Variables
MEMMAPMEMMAP

A pointer to 2* MAXSEGMENTS of type A pointer to 2* MAXSEGMENTS of type structstruct segment_typesegment_type
User memoryUser memory

MEMMAP[0] ... MEMMAP[MAXSEGMENTS MEMMAP[0] ... MEMMAP[MAXSEGMENTS -- 1]1]

Kernel MemoryKernel Memory
MEMMAP[MAXSEGMENTS] ... MEMMAP[2 * MAXSEGMENTS MEMMAP[MAXSEGMENTS] ... MEMMAP[2 * MAXSEGMENTS -- 1]1]

Each Each segment_typesegment_type
segment length in instructions (segment length in instructions (seglenseglen))
the base address (the base address (membasemembase) in memory where the segment) in memory where the segment
begins.begins.

OSSIM OSSIM –– Objective 2Objective 2

Important VariablesImportant Variables
MEMMEM

A pointer to MEMSIZE array of data types of type A pointer to MEMSIZE array of data types of type
structstruct instr_typeinstr_type (defined in (defined in osdefs.hosdefs.h).).

3

OSSIM OSSIM –– Objective 2Objective 2

void void Boot(voidBoot(void))

This function is called from This function is called from simulator.csimulator.c and reads and reads
from from boot.datboot.dat and initializes the memory and and initializes the memory and
memory management data structures. memory management data structures.

The programs from The programs from boot.datboot.dat represent the OS and represent the OS and
are loaded into the upper half of MEMMAP.are loaded into the upper half of MEMMAP.

OSSIM OSSIM –– Objective 2Objective 2
Directions:Directions:

Read the file Read the file boot.datboot.dat whose file pointer is PROGM_FILE[BOOT] whose file pointer is PROGM_FILE[BOOT]
and whose format is given in and whose format is given in intro.docintro.doc. You will have to check for . You will have to check for
PROGRAM on the first line and read in the number of programs in PROGRAM on the first line and read in the number of programs in the the
file. Then read in each segment and store the access bits and nufile. Then read in each segment and store the access bits and number mber
of instructions.of instructions.
With the program and segment data initialize MEMMAP starting at With the program and segment data initialize MEMMAP starting at
segment MAXSEGMENTS. The size of MEMMAP is 2 * segment MAXSEGMENTS. The size of MEMMAP is 2 *
MAXSEGMENTS. The first half is reserved for user memory, while MAXSEGMENTS. The first half is reserved for user memory, while
the upper half is reserved for the OS.the upper half is reserved for the OS.
Call Call Get_InstrGet_Instr() repeatedly to read instructions from () repeatedly to read instructions from boot.datboot.dat and and
update update TotalFreeTotalFree and and FreeMemFreeMem based on the number of instructions based on the number of instructions
read from read from boot.datboot.dat..
Call Call Display_pgmDisplay_pgm() to display each program.() to display each program.

4

OSSIM OSSIM –– Objective 2Objective 2

void void Get_Instr(intGet_Instr(int pgmidpgmid, , structstruct instr_typeinstr_type **instrinstr))

This function reads the next instruction from file (This function reads the next instruction from file (fpfp) into) into
instrinstr. .
The external file (The external file (fpfp) is) is PROGM_FILE[pgmidPROGM_FILE[pgmid].].
The format of the file is a series of statements of the form: The format of the file is a series of statements of the form:
OPCODE x y z where the form and type of the operands OPCODE x y z where the form and type of the operands
((x,y,zx,y,z) depend on OPCODE.) depend on OPCODE.
Each instruction starts on a new line. There is more Each instruction starts on a new line. There is more
information in information in intro.docintro.doc on the format of on the format of boot.datboot.dat..

OSSIM OSSIM –– Objective 2Objective 2
Directions:Directions:

Read the instructions from Read the instructions from boot.datboot.dat (PROGM_FILE[BOOT]).(PROGM_FILE[BOOT]).
Convert the instruction to its Convert the instruction to its opcodeopcode by using the lookup table by using the lookup table opidtabopidtab
which is defined in which is defined in simulator.csimulator.c if the instruction is not a device. if the instruction is not a device.

If it is a device look up its If it is a device look up its opcodeopcode in the in the deviddevid field of the field of the devtabledevtable..
After determining the After determining the opcodeopcode set the operand as described in set the operand as described in intro.docintro.doc..
Each instruction has a field for the Each instruction has a field for the opcodeopcode and operand. and operand.
The operand field is a C union and depending on the The operand field is a C union and depending on the opcodeopcode, only , only
certain fields will be used in the operand. certain fields will be used in the operand.

The address field is used for REQ and JUMP instructions The address field is used for REQ and JUMP instructions
The count field is used for SKIP instructionsThe count field is used for SKIP instructions
The burst field is used for SIO, WIO, and END instructions, and The burst field is used for SIO, WIO, and END instructions, and
The bytes field is used for device instructions. The bytes field is used for device instructions.

5

OSSIM OSSIM –– Objective 1Objective 1
Data structuresData structures

structstruct instr_typeinstr_type {{
unsigned char unsigned char opcodeopcode;;
union union opernd_typeopernd_type operand;operand;

};};

union union opernd_typeopernd_type {{
structstruct addr_typeaddr_type address;address;
unsigned unsigned intint count;count;
unsigned long burst;unsigned long burst;
unsigned long bytes;unsigned long bytes;

};};

OSSIM OSSIM –– Objective 1Objective 1
void void Cpu(voidCpu(void))

This function simulates the basic functions of a CPU. This function simulates the basic functions of a CPU.
It fetches instructions from memory and handles them It fetches instructions from memory and handles them
accordingly.accordingly.

DirectionsDirections
1.1. SetMAR(&CPU.pcSetMAR(&CPU.pc))
2.2. Fetch(&IREGFetch(&IREG););

If Fetch() returns negative, a FAULT has occurred. In this If Fetch() returns negative, a FAULT has occurred. In this
case, CPU() returns. Otherwise, continue.case, CPU() returns. Otherwise, continue.

6

OSSIM OSSIM –– Objective 1Objective 1
Directions:Directions:
3.3. Decode IREG and execute the instructionDecode IREG and execute the instruction

SIO, WIO, and END instructions: compute the SIO, WIO, and END instructions: compute the deltaTdeltaT defined by the operand, add to CLOCK to defined by the operand, add to CLOCK to
get future event time, and add this new event to the event list.get future event time, and add this new event to the event list. Increment Increment CPU.pc.offsetCPU.pc.offset by 2 and by 2 and
return return
FOR SKIP, evaluate the operand. If the operand of IREG changes,FOR SKIP, evaluate the operand. If the operand of IREG changes, you must update MEM by a you must update MEM by a
call to Write() with the modified IREG. Increment call to Write() with the modified IREG. Increment CPU.pc.offsetCPU.pc.offset by 2 if the next instruction is by 2 if the next instruction is
to be skipped and repeat from step (1).to be skipped and repeat from step (1).

Otherwise, Fetch() the JUMP instruction at CPU.pc.offset+1. ExecOtherwise, Fetch() the JUMP instruction at CPU.pc.offset+1. Execute the JUMP by placing its ute the JUMP by placing its
operand in operand in CPU.pcCPU.pc and repeat from step (1).and repeat from step (1).

NOTE: you will find the function NOTE: you will find the function Burst_timeBurst_time() in SIMLATOR.C of use when converting from CPU () in SIMLATOR.C of use when converting from CPU
cycles to simulation time. cycles to simulation time.

NOTE: For OBJECTIVE 2 you should use a special agent code (0) toNOTE: For OBJECTIVE 2 you should use a special agent code (0) to identify the BOOT program. identify the BOOT program.
For all other OBJECTIVES the agent code should be: For all other OBJECTIVES the agent code should be: CPU.actvpcbCPU.actvpcb-->termnl+1. >termnl+1.

OSSIM OSSIM –– Objective 2Objective 2

void void SetMar(structSetMar(struct addr_typeaddr_type **addraddr))
This function sets a global variable MAR This function sets a global variable MAR
representing the memory address registerrepresenting the memory address register..

Directions:Directions:
Set the MAR with the value of (Set the MAR with the value of (addraddr) and return.) and return.

This function must be called to define the This function must be called to define the
logical MEM address of the next Fetch(), logical MEM address of the next Fetch(),
Read(), or Write() operation on memory.Read(), or Write() operation on memory.

7

OSSIM OSSIM –– Objective 2Objective 2
intint Fetch(structFetch(struct instr_typeinstr_type **instrinstr))

This function will try and fetch an instruction from This function will try and fetch an instruction from
memory and store it in memory and store it in instrinstr..

Directions:Directions:
This function calls This function calls MuMu() to validate and map the logical () to validate and map the logical
address in MAR to a physical address. address in MAR to a physical address. MuMu() will return a () will return a
negative value if some kind of FAULT was generated. negative value if some kind of FAULT was generated.
In this case, Fetch() returns In this case, Fetch() returns --1. 1.
If If MuMu() returns a non() returns a non--negative value, say x, then Fetch negative value, say x, then Fetch
sets *sets *instrinstr = = MEM[xMEM[x] and returns +1.] and returns +1.

OSSIM OSSIM –– Objective 2Objective 2

intint Mu(voidMu(void))
This function simulates the address translation This function simulates the address translation
hardware of the memory unit.hardware of the memory unit.
It uses the contents of MAR = [s, d] as the It uses the contents of MAR = [s, d] as the
logical address to be translated to a physical logical address to be translated to a physical
address, x.address, x.

8

OSSIM OSSIM –– Objective 2Objective 2
Directions:Directions:

First compute the effective entry in MEMMAP.First compute the effective entry in MEMMAP.
Set SEG = s + Set SEG = s + CPU.modeCPU.mode*MAXSEGMENTS. *MAXSEGMENTS.
This forces the upper half of the MEMMAP to be used if This forces the upper half of the MEMMAP to be used if CPU.modeCPU.mode == 1 == 1
((priviledgedpriviledged mode) and the lower half if mode) and the lower half if CPU.modeCPU.mode != 1 (user mode). != 1 (user mode).

If If MEMMAP[SEG].accbitsMEMMAP[SEG].accbits == 0x00, then generate an SEGFAULT event at == 0x00, then generate an SEGFAULT event at
the current CLOCK time and add it to the the current CLOCK time and add it to the event_listevent_list using using Add_eventAdd_event(). ().
return return --1. 1.

use Agent = use Agent = CPU.actvpcbCPU.actvpcb-->termnl+1. (agent = 0 for objective 2) >termnl+1. (agent = 0 for objective 2)

If If MEMMAP[SEG].seglenMEMMAP[SEG].seglen <= d, then generate an ADRFAULT event at the <= d, then generate an ADRFAULT event at the
current CLOCK time and add it to the current CLOCK time and add it to the event_listevent_list. return . return --1.1.

use Agent = use Agent = CPU.actvpcbCPU.actvpcb-->termnl+1. (agent = 0 for >termnl+1. (agent = 0 for objective 2)objective 2)

return x = return x = MEMMAP[SEG].membaseMEMMAP[SEG].membase + d. + d.

OSSIM OSSIM –– Objective 2Objective 2

void void XPGM(structXPGM(struct state_typestate_type *state)*state)
This function simulates a privileged instruction causing a This function simulates a privileged instruction causing a
context switch.context switch.

Directions:Directions:
switch placing a user program in execution. It does this by switch placing a user program in execution. It does this by
copying (statecopying (state-->mode) into >mode) into CPU.modeCPU.mode and (stateand (state-->pc) >pc)
into into CPU.pcCPU.pc. .
After the state of the CPU has been redefined, the CPU After the state of the CPU has been redefined, the CPU
resumes execution at resumes execution at CPU.pcCPU.pc ---- this is implemented by this is implemented by
simply calling the function, simply calling the function, CpuCpu(). ().

9

OSSIM OSSIM –– Objective 2Objective 2
intint Read(structRead(struct instr_typeinstr_type **instrinstr))

This function is identical to Fetch()This function is identical to Fetch()
DirectionsDirections

This function calls This function calls MuMu() to validate and map the logical address in MAR to () to validate and map the logical address in MAR to
a physical address. a physical address. MuMu() will return a negative value if some kind of () will return a negative value if some kind of
FAULT was generated. In this case, Read() returns FAULT was generated. In this case, Read() returns --1. 1.
If If MuMu() returns a non() returns a non--negative value, say x, then Read sets *negative value, say x, then Read sets *instrinstr = = MEM[xMEM[x]]
and returns +1. and returns +1.

intint Write(structWrite(struct instr_typeinstr_type **instrinstr))
This function is similar to FetchThis function is similar to Fetch

DirectionsDirections
This function calls This function calls MuMu() to validate and map the logical address in MAR to a () to validate and map the logical address in MAR to a
physical address. physical address. MuMu() will return a negative value if some kind of FAULT () will return a negative value if some kind of FAULT
was generated. In this case, Write() returns was generated. In this case, Write() returns --11
If If MuMu() returns a non() returns a non--negative value, say x, then Write sets negative value, say x, then Write sets MEM[xMEM[x] = *] = *instrinstr
and returns +1. and returns +1.

OSSIM OSSIM –– Objective 2Objective 2
void void Display_pgm(structDisplay_pgm(struct segment_typesegment_type **segtabsegtab, , intint numsegnumseg, ,
structstruct pcb_typepcb_type **pcbpcb))

This function outputs a program to This function outputs a program to simoutsimout..
Use this function after every program load. Use this function after every program load. */*/
Use Use segtabsegtab, segment table * to locate each segment. Use the , segment table * to locate each segment. Use the
provided sample output in provided sample output in intro.docintro.doc as an example of the format of as an example of the format of
the dump and what information should be output. the dump and what information should be output.

Note: Note: Be sure to print the process and program names as Be sure to print the process and program names as
"BOOT" in Objective 2 since "BOOT" in Objective 2 since pcbpcb will always be null.will always be null.

