OSSIM — Objective 2

s Overview

m Develop functiens which initialize the: memory and memary.
management data structures of the simulator

= simulate the basic functions of the! CPU; as welllas provide more
simulation eutput.

= Boot:
Thessimulator will initally call'your Boot() function that willllead|
pregrams;from boet.dat that are stered ini the fermat describediin intre.dec.
Boot() will also initialize the data structures responsible for managing|the
simulated memory and will call'Get_Instr() repeatedly to read'instructions
from boot.dat and will store them: in the simulated memory.
Finally, Boot() will call' Display._pgm() for each program in boot.dat to
output it to simout.

OSSIM — Objective 2

m Overview.

m After Boot() has completed XPGM() will be called which
simulates a context switchiandithen calls Cpu().

Cpu() sets the memory address register (MAR) to the value
passed to it by XPGM(), this will be O initially.

Cpu() theni calls Fetch() te get the next instruction to
execute firom memory.

Fetch() calls Mu() to determine the physical location in
memory of the requested instruction and uses the result to
return the instruction to Cpu().

Cpu() then handles the instruction accordingly depending
on the operation. This entire cycle then repeats until there
are no more simulation events.

OSSIM — Objective 2

n Important Variables

s MEMMAR

A pointer te 2* MAXSEGMENTS of: type struct segment._type
User memory.

= MEMMAPJO] ... MEMMAR]MAXSEGMENTS) - 1]
Kernel Memaory.

u MEMMAP[IMAXSEGMENTS] ... MEMMAP[2* MAXSEGMENTS - 1]
Each segment_type

m segment length in instructions (seglen)

m the base address (membase) inimemory where the segment
begins.

OSSIM — Objective 2

s Important VVariables
= MEM

A pointer to MEMSIZE array of data types ofi type
struct instr_type (defined' in osdefs.h).

OSSIM — Objective 2

m Vvoid Boot(void)

m [his functioniis called from simulator.c and reads

from boot.dat and initializes the memory and
memory management data structures.

m The programs from boot.dat represent the OS and

are loaded into the upper half of MEMMAP.

OSSIM — Objective 2

m Directions:

Read the file boot.dat: whose file pointer isPROGM| FILE[BOOT]
andiwhose format is given in intre.doc. You willfhave toicheck for
PROGRAM on the'first line and read! inithe number of pregrams inithe
file. Theniread|ineach segment and store the access bits andinumber
offInstructiens.

Withithe programi and segment data initialize MEMIMAP: starting| at
segment MAXSEGMENTS. The sizeiof MEMMAP: is 2 *
MAXSEGMENTS. The first halfiis reserved for user memony, while
the upper halfi is reserved for the OS.

CalllGet_Instr() repeatedly to read instructions from: boot.dat and
update TotalFree and FreeMem based on the number of instructions
read from boot.dat.

Calll Display._pgm() to display each program.

OSSIM — Objective 2

m Void Get_Instr(int pgmid, struct instr_type *instr)

m [his functioni reads the next instruction frem file (fp) into
fnstr.

m [he external file (fp) 1s PROGM_FILE[pgmid].

m The format of the file is a series of statements of the form:
OPCODE x y z where the form and type of the operands
(x,y,2) depend on OPCODE.

m Each instruction starts on a new line. There is more
information in intro.doc on the format of boot.dat.

OSSIM — Objective 2

Directions:
Read the instructions from boot.dat (PROGM_FILE[BOOT]).
Convert the instruction to its opcode by using the lookup table opidtab
whichi is defined in simulator.c if'the instruction is not a device.

I it is a device look up: its opcede in the devidifield of the deviable.
After determining the opcode set the operand asidescribed!iniintro.doc.
Each instruction has a field fior the epcode and operand.

Tihe eperand field is a € unioniand depending|on the opcode, only,
certain fields will be used in the operand.

The address field is used for REQ and JUMP! instructions

The count field is used for SKIP instructions

The burst field is used for SIO, WIO, and END! instructions, and

The bytes field is used for device instructions.

OSSIM — Objective 1

Data structures

u struct instr_type {
unsigned char opcode;
union opernd._type operand;

5

u union epernd._type {
struct addr_type address;
unsigned int. count;
unsigned long burst;
unsigned long bytes;

OSSIM — Objective 1

n Vvoid Cpu(void)
m This function simulates the basic functions of a CPU.

m It fetches instructions from memory and handles them
accordingly.

= Directions
1. SetMAR(&CPU.pc)

2. Fetch(&IREG);

If Feteh() returns negative, a FAULT has occurred. In this
case, CPU() returns. Otherwise, continue.

OSSIM — Objective 1

« Directions:
3. Decode IREG and execute the instruction

S10, WIO, and END: instructions: compute the deltall defined by the operand, add to CLLOCK to
get future event time, and add this new event to the event list. Increment CPU.pc.offset by 2 and
return

FOR SKIP, evaluate the operand. If the operand of IREG changes, you must update MEM by a
call to Write() with the modified IREG. Increment CPU.pc.offset by 2 if the next instruction is
to be skipped and repeat from step (1).

Otherwise, Fetch() the JUMP instruction at CPU.pc.offset+1. Execute the JUMP by placing its
operand iniCPU.pc and repeat fromstep (1).

OSSIM — Objective 2

m Vvoid SetMar(struct addr_type *addr)

m This function sets a global variable MAR
representing the memory address register.

s Directions:
m Set the MAR with the value off (addr) and return.

m This function must be called to define the
logical MEM address of the next Fetch(),
Read(), or Write() operation on memory.

OSSIM — Objective 2

= Int Fetch(struct instr_type *instr)

m This function will try and fetch an instruction from
memory and store it in instr.

s Directions:

m This function calls Mu() to validate and map the logical
address in MAR to a physical address. Mu() will return a

negative value ifisome kind of FAULT was generated.
In this case, Fetch() returns -1.

I Mu() returns a non-negative value, say X, then Fetch
sets *instr = MEM[x] and returns +1.

OSSIM — Objective 2

m Int Mu(void)
This function simulates the address translation
hardware of the memory unit.

It uses the contents off MAR' = [s, d] as the

logical address to be translated to a physical
address, x.

OSSIM — Objective 2

Directions:
" First compute the effective entry in MEMMAP.
Set SEG = s + CPU.mode*MAXSEGMENTS.

This forces the upper halfi of the MEMMAP to be used!if CPU.mode == 1
(priviledged mode) and! the lower half iff CPU.mode != 1 (user mode).

It MEMMAR[SEG].acchits == 0x00, then generateran SEGEAULT event at
the current CLLOCK time and addiit te the event_list using Add_event().
return-1.

use Agent = CPU.actvpch->termnl+1. (agent = 0/far ebjective 2)

Iff MEMMAP[SEG].seglen <= d, then generatelan ADREAULT event at the
current CLOCK time andiadd/it to the event_list. return -1.

use Agent = CPU.actvpch->termnl+1. (agent = 0 for objective 2)

return x = MEMMAP[SEG].membase + d.

OSSIM — Objective 2

m void XPGM(struct state_type *state)
m This function simulates a privileged instruction causing a
context switch.

= Directions:

m Switchiplacing a user program in execution. It does this by
copying (state->mode) into CPU.mode and (state->pc)
into CPU.pc.

m After the state ofi the CPU has been redefined, the CPU
resumes execution at CPU.pc -- this is implemented by
simply calling the function, Cpu().

OSSIM — Objective 2

int Read(struct instr_type *instr)
" This functionis identical to Fetch()
Directions

" Tihis function callsiMu() toivalidate and mapithe logicall address infMAR' to
a physical address. Mu()will return a negative value if some kind of
FAUILT was generated. In this case, Read() returnns -1.

If:Mu() returnsia non-negative value, say X, then Readisets *instr= MEM]x]
and returns +1.

int Wiite(struct instr_type *instr)
n This function is similar to) Fetch
Directions

" This function calls Mu() to validate analmapithe logical address in MAR to a
physicalladdress, Mu()will return a negative value ifisome kind of FAULT
was generated. Inithis case, Write() returns -1

I Mu() returns a non-negative value, say X, then Write sets MEM[X] = *instr
and returns +1.

OSSIM — Objective 2

void Display_pgm(struct segment_type *segtab, int numseg,
struct pch_type *pch)

This function outputs a program to simout.

Use this function afiter every program load. */

Use segtah, segment table * to locate each segment. Use the
provided sample output in intre.doc asian example of the format of
the'dump and what information sheuld be eutput.

Note: Be sure to print the process and program names as
“BOOT™ in Objective 2 since peh will always be null.

