
1

The Structure of “THE” –
Multiprogramming System

Edsger W. Dijkstra

Presented by:
Slobodan Stipic
Martin Dimitrov

Inspiring Quote

Be aware of the fact that experience does by
no means automatically lead to wisdom and
understanding; in other words, make
conscious effort to learn as much as
possible from your previous experiences.

2

Overview

• Introduction
• EL X8 - the tool
• New operating system ideas

– Storage allocation (paging, virtual memory)
– Processor allocation and synchronization

(semaphores)
– Layered architecture (six layers)
– Proof of correctness of the system

• Summary

Introduction

• Developed in 1968 by Dijkstra
• Goal:

– Reduction in turnaround time for programs of short
duration

– Economic use of peripheral devices
– Automatic control of backing store and CPU
– Flexibility of general purpose computer needed, not the

capacity or power.

3

The Tool
• EL X8

– Core memory cycle time 2.5 µsec, 27 bits, 32K
– Drum of 512K words, 1024 words per track, revolution

time 40 msec
– An indirect addressing (suited for stack

implementation)
– A sound control of interrupts and peripherals
– Peripherals: 3 paper tape readers, 3 paper tape

punchers, 2 teleprinters, 1 plotter, 1 line printer
– Absence of number of unnecessary features

New Operating System Ideas

• Storage allocation (paging, virtual memory)
• Processor allocation and synchronization

(semaphores)
• Layered architecture (six layers)
• Proof of correctness of the system

4

Storage allocation

• Large uniform virtual store
– Segments - logical unit

• Main store and drum store
– Pages - physical unit
– Main page table and drum page table

Segment replacement

• Number of segments limited only by the size of
the drum

• LRU
• Implemented entirely by software

5

Physical memory

• Drum store
– 512 tracks (1024 words/track)

• 2 pages
– 2 states per page

• Main store
– 48K words (about 70 pages for user programs)

• 4 states per page: free, in use, incoming,
victim

Main store page states

• Free - forms a stack
• In use - if altered then needs to be written to the drum,

otherwise discarded.
• Incoming - in transition from “free” to in “use”
• Victim – only one at any time

6

Processor allocation and
synchronization

• System as a society of cooperating processes
• Semaphores-explicit mutual synchronization

– Private semaphore
• Range: 1,0,-1

– Mutual exclusion semaphores
• Range: 1 to n-1

Private Semaphores
Process 1
P(mutex)

If resource available then
V(private semaphore)

V(mutex)
P(private semaphore)

Process 2
P(mutex)

Release resource
V(private semaphore)

V(mutex)

7

Layered Architecture

• Level 0 - processor allocation and synchronization
• Level 1 – segment controller
• Level 2 – message interpreter
• Level 3 – I/O services
• Level 4 – user programs
• Level 5 - operator

Level 0 – Processor allocation
and synchronization

• Processor allocation and synchronization
• Timer interrupt
• Priority rule
• Abstracts number of shared processors

8

Level 1 – Segment Controller

• Drum storage management
• Presents storage interface in terms of segments

Level 2 – Message interpreter

• Handles keyboard and output printer
• Communication between operator and higher level

processes
• Justification for the placement of message

interpreter in the Level 2 of the hierarchy

9

Level 3 – I/O Service

• Buffered input/output
• Processes associated with the peripherals are a

level above the message interpreter
• Mutual synchronization for resources provided to

the higher levels

Level 4 & Level 5

• Level 4 consists of user programs
• Level 5 – user programs are invoked by the

operator

10

Proving the harmonious cooperation

• Society of cooperating processes
• Explicitly synchronized using semaphores
• Eliminates time dependent phenomena

“So effectively structured that at each stage of the
testing procedure the number of relevant test
cases will be so small that he can try them all.”

Proving the harmonious cooperation

• Notion of “homing position” and “unstable
situation”

• Proof outline:
– Process performing a task can generate only a

finite number of tasks
– System cannot be at rest if there are still

pending tasks
– All processes will eventually be in homing

position (no deadlock)

11

Summary

• Storage allocation (paging, virtual memory)
• Processor allocation and synchronization (semaphores)
• Layered architecture (six layers)
• Proof of correctness of the system

“The resulting system is guaranteed to be
flawless.”

- Dijkstra

References

• E. W. Dijkstra, “The structure of the THE –
multiprogramming system, “Communications of the
ACM, vol II, number 5, pp. 341-346, May 1968

• R. M. McKeag & R. Wilson, “Studies in Operating
System,” Academic Press, pp. 145-184, 1976

