
The Nucleus of a
Multiprogramming
System

Luke Levesque
COP 5611

Outline

Introduction
Nucleus Hardware
Nucleus
Message passing
Processes
Process Hierarchy
Summary

Introduction

Per Brinch Hansen of A/S Regnecentralen describes a new
"OS" in development known as the Nucleus.
Designers of system wanted flexibility.
Wanted to break free of rigid OS structure.

More control.
Run multiple OSes or change OS easily.

Created system 'nucleus' that can be extended with an
OS.

Provides base functions.

Runs on RC 4000 computer.

The RC4000

RC 4000 is a 24bit system originally designed for real-time
control (chemical plants, etc.) in ~1967.
Has at least 16k-32k words of RAM.
Supports a clock, TTYs, paper tape in/out, printer,
magnetic tape, and a drum or disk.
No real virtual memory since made for real-time use.

Processes can be swapped.

Each word in RAM has a protection bit that must be set,
so process creation/deletion and memory allocation are
costly compared to other systems.

RC 4000 Pictures

RC 4000 Pictures

System Nucleus

Multiprogramming and process communication handled
by nucleus.

Not considered it's own process.
Provides only basic services.

Semaphores are not considered reliable enough.
Bad programs could cause deadlocks.

Instead, processes send messages to each other.
Nucleus provides the buffering and delivery services
throughout system.
Each process has it's own queue (like MPI).

Message Operations
send message (recv, msg, buf)

Copies message into available buffer and puts it in queue of receiver.
Process then continues and may check status by looking at buffer.

wait message (sender, msg, buf)
Causes process to sleep until a message arrives. The arguments are
then filled in and the buffer is ready to be filled with an answer.

send answer (result, answer, buf)
Copies answer to a message into a buffer (allocated from wait
message) and puts it in the queue of a original sender.

wait answer (result, answer, buf)
Causes process to sleep until an answer is present in the buffer
referenced. The buffer is copied into answer and then freed. Result
indicates if answer was a dummy or not.

Messages

The primitives listed force a process to answer messages in a FCFS
manner.
Once a message has been received from a process(es), it can use
the buffer to service requests from them in any order.

Did not know about process previously.
Can delay sending an answer (service in any order).

When a process is terminated, it's messages remain in queues.
Answers to them go to null and the buffer freed.
When a process with messages in it's queue terminates, dummy
answers are sent out automatically to those waiting.
The system checks buffers when sending to avoid processes
interfering with each other's messages.

Messages

Finite pool of message buffers introduces
resource problem.

Nucleus limits how many messages a process
may send.
Answers always use existing buffer to conserve
resources.

Message Example

The consumer/producer problem described in
class could be implemented without any
semaphores using three processes:

Producer process messages buffer process with
items.
Buffer process adds items to queue and removes
them to pass on to consumer process.
Consumer process messages buffer to get new
items.

Message Example
Producer

LOOP
create item in temporary memory
send message() // Sends item to buffer
wait answer()
If error in answer, retry or exit

END LOOP

Buffer
LOOP

wait message() // Wait for request from producer or consumer
if message from producer

Put item in queue
send answer() // Indicates success / failure of queue insertion

else
Get item from queue
send answer() // sends next item to consumer

END LOOP

Message Example

Consumer
LOOP

send message() // To buffer, make request
wait answer() // Has item in message buffer
Process item

END LOOP

Very simplified version!
Real version would have more error handling, better
support for empty/full queue, ability to end processes, etc.

Processes
Two major types of processes:
Internal Process

The execution of a program in memory.
Has a unique name for reference by other processes.
What we typically think of for a process.

External Process
Very similar to device drivers.
Interfaces with outside world.
Disks, terminals, real time clock, etc.

A 'document' is accessed within these (files, registers, etc).
Document is the external process, basically.

Also has a unique name.
Created on request by an internal process.

External Processes

Nucleus considers element within device (document) the external
process.

Nucleus contains code that works as a device driver.

Internal processes use messages to communicate with external
processes.

Actually communicating with Nucleus device drivers as well.
An internal process could be made as a 'go between' (or a complete
replacement) with an external process if complex access methods or
scheduling is required.

Done by giving the internal process the same name.
Internal processes would instead message the 'go between' internal
process.

Internal processes can reserve or release external processes to
insure exclusivity to documents.

Files, terminals, etc.

TTYs only external process that can initiate a message (all others
send answers only).
Examples:

Individual files can be made external processes.
Messages to the clock process can synchronize (delay) processes.
Wait for an answer from a tape unit to know when a tape is
mounted.

Could kick off a tape process.
TTYs are documents.

External Processes

Internal Processes

Created on request by other internal processes.
Procedure: Create, load, start, remove (when
done).
Process can be stopped (suspended). Messages
or answers received are queued up.
Internal processes are arranged in a hierarchy.

Process Hierarchy

All internal processes are in a tree-like hierarchy.
Parents can create, load, start and terminate children.

Nucleus provides only basic services for process
control (does NOT include loading).

Parents control resource allocation of children.
Parents can swap child processes in and out.

stop(A); output(A); input(B); start(B);

Parents own all resources of children.

Process Hierarchy

S

A B

1 2 3 4 5

S is a basic OS started by the nucleus.
A and B can be 'real' operating systems.
1,2 and 3,4,5 are children of OSes A and B.

Process Hierarchy

TTYs message S to have it start OSes (A and B).
A and B are really just programs.
The tree can extend as far as needed and can have more parents
('sub-operating systems'), etc.

S (nucleus) has no strategy for resource allocation and scheduling.
Operating systems will fill in these gaps.
Parents allocate and reclaim resources of children as needed.
S has round robin scheduling for all ACTIVE processes in the tree.

Parents control children's CPU time by starting and stopping
them.

All processes can send messages and answers to each other
anywhere in the tree.

Process Hierarchy Rules

Process can allocate a subset of resources to
children.
Process can only start, stop, and remove child
processes.

Removal of process returns resources to parent.

S owns all resources.

Development of new OSes

The nucleus is helpful in creating new operating systems
because

New OSes are created and ran just like any other
program. Multiple OSes can be running at once.
OSes can be written in a high level language.
OSes can be replaced dynamically. Useful for testing,
upgrades, etc.
Standard user programs can be ran under different OSes
unmodified if there is an agreement on communications
between the parent and children.

Summary and Questions

Nucleus, using a process hierarchy, allows for multiple
operating systems to be ran simultaneously via
multiprogramming.

Parents own resources of children.

Internal processes are standard programs, while external
processes represent physical devices and files.
P() and V() are replaced by message passing.
Designed to increase flexibility of a computer system.

Core functions in Nucleus (Kernel), while everything else
in processes.

Per Brinch Hansen, The Nucleus of a
Multiprogramming System. Communications of the
ACM 13(4), April 1970, Pp. 238-w241, 250.
P. Brinch Hansen, The RC 4000 real-time control
system at Pulawy, BIT 7, 4 (1967), 279-288.
RC4000 Pictures: http://www.prg.dtu.dk

References

