The Nucleus of a

Multiprogramming
System
0 Luke Levesque
NI COP 561 |

Outline

m|ntroduction
mNucleus Hardware
=Nucleus

mMessage passing
mProcesses
mProcess Hierarchy

=Summary

Introduction

mPer Brinch Hansen of A/S Regnecentralen describes a new
"OS" in development known as the Nucleus.

mDesigners of system wanted flexibility.
=Woanted to break free of rigid OS structure.
» More control.
> Run multiple OSes or change OS easily.

=Created system 'nucleus’ that can be extended with an
OS.

» Provides base functions.
=Runs on RC 4000 computer.

The RC4000

=RC 4000 is a 24bit system originally designed for real-time
control (chemical plants, etc.) in ~1967.

mHas at least |16k-32k words of RAM.

mSupports a clock, TTYs, paper tape in/out, printer,
magnetic tape, and a drum or disk.

=No real virtual memory since made for real-time use.
» Processes can be swapped.

mEach word in RAM has a protection bit that must be set,
so process creation/deletion and memory allocation are

costly compared to other systems.

RC 4000 Pictures

RC 4000 Pictures

System Nucleus

mMultiprogramming and process communication handled
by nucleus.

> Not considered it's own process.
> Provides only basic services.

mSemaphores are not considered reliable enough.
» Bad programs could cause deadlocks.

m|nstead, processes send messages to each other.

> Nucleus provides the buffering and delivery services
throughout system.

» Each process has it's own queue (like MPI).

Message Operations

msend message (recv, msg, buf)

» Copies message into available buffer and puts it in queue of receiver.
Process then continues and may check status by looking at buffer.

mwait message (sender, msg, buf)
» Causes process to sleep until a message arrives. The arguments are
then filled in and the buffer is ready to be filled with an answer.
msend answer (result, answer, buf)
» Copies answer to a message into a buffer (allocated from wait
message) and puts it in the queue of a original sender.
mwait answer (result, answer, buf)

» Causes process to sleep until an answer is present in the buffer
referenced. The buffer is copied into answer and then freed. Result

indicates if answer was a dummy or not.
u u u | | u u u u

Messages

= The primitives listed force a process to answer messages in a FCFS
manner.

mOnce a message has been received from a process(es), it can use
the buffer to service requests from them in any order.
» Did not know about process previously.
» Can delay sending an answer (service in any order).

mWhen a process is terminated, it's messages remain in queues.
Answers to them go to null and the buffer freed.

=When a process with messages in it's queue terminates, dummy
answers are sent out automatically to those waiting.

= The system checks buffers when sending to avoid processes

interfering with each other's messages. I

Messages

=Finite pool of message buffers introduces
resource problem.

> Nucleus limits how many messages a process
may send.

» Answers always use existing buffer to conserve
resources.

Message Example

= The consumer/producer problem described in
class could be implemented without any
semaphores using three processes:

» Producer process messages buffer process with
items.

~ Buffer process adds items to queue and removes
them to pass on to consumer process.

» Consumer process messages buffer to get new

items.

Message Example

mProducer
» LOOP
e create item in temporary memory

e send message() // Sends item to buffer
e wait answer ()
e If error in answer, retry or exit
» END LOOP
mBuffer
» LOOP
e wait message() // Wait for request from producer or consumer
o if message from producer
¢ Put item in queue
¢ send answer() // Indicates success / failure of queue insertion
o else
¢ Get item from queue
¢ send answer() // sends next item to consumer

» END LOOP

A

Message Example

=Consumer
» LOOP
e send message() // To buffer, make request
e wait answer() // Has item in message buffer
e Process item
- END LOOP

=Very simplified version!

» Real version would have more error handling, better
support for empty/full queue, ability to end processes, etc.

Processes

= Two major types of processes:
=Internal Process
» The execution of a program in memory.
» Has a unique name for reference by other processes.
» What we typically think of for a process.
mExternal Process
» Very similar to device drivers.
> Interfaces with outside world.
» Disks, terminals, real time clock, etc.

e A 'document’ is accessed within these (files, registers, etc).

A

e Document is the external process, basically.
» Also has a unique name.

» Created on request by an internal process.
u | | u u u u u |

External Processes

mNucleus considers element within device (document) the external
process.

» Nucleus contains code that works as a device driver.

m|nternal processes use messages to communicate with external
processes.

» Actually communicating with Nucleus device drivers as well.

» An internal process could be made as a 'go between' (or a complete
replacement) with an external process if complex access methods or
scheduling is required.

e Done by giving the internal process the same name.

» Internal processes would instead message the 'go between' internal

process.

External Processes

mInternal processes can reserve or release external processes to
insure exclusivity to documents.
> Files, terminals, etc.
= TTYs only external process that can initiate a message (all others
send answers only).
mExamples:
» Individual files can be made external processes.
» Messages to the clock process can synchronize (delay) processes.

» Wait for an answer from a tape unit to know when a tape is
mounted.

e Could kick off a tape process.

» TTYs are documents.
n ™ n] [] [[] =

Internal Processes

=Created on request by other internal processes.

mProcedure: Create, load, start, remove (when
done).

mProcess can be stopped (suspended). Messages
or answers received are queued up.

mInternal processes are arranged in a hierarchy.

Process Hierarchy

mAll internal processes are in a tree-like hierarchy.
» Parents can create, load, start and terminate children.

e Nucleus provides only basic services for process
control (does NOT include loading).

» Parents control resource allocation of children.
e Parents can swap child processes in and out.

¢ stop(A); output(A); input(B); start(B);

e Parents own all resources of children.

Process Hierarchy

=S is a basic OS started by the nucleus.
=A and B can be 'real' operating systems.
= |,2 and 3,4,5 are children of OSes A and B.

Process Hierarchy

= TTYs message S to have it start OSes (A and B).
> A and B are really just programs.
» The tree can extend as far as needed and can have more parents
(‘'sub-operating systems'), etc.
=S (nucleus) has no strategy for resource allocation and scheduling.
» Operating systems will fill in these gaps.
> Parents allocate and reclaim resources of children as needed.
» S has round robin scheduling for all ACTIVE processes in the tree.

e Parents control children's CPU time by starting and stopping
them.

» All processes can send messages and answers to each other

anywhere in the tree.

Process Hierarchy Rules

mProcess can allocate a subset of resources to
children.

mProcess can only start, stop, and remove child
processes.

» Removal of process returns resources to parent.

=S owns all resources.

Development of new OSes

mThe nucleus is helpful in creating new operating systems
because

» New OSes are created and ran just like any other
program. Multiple OSes can be running at once.

» OSes can be written in a high level language.

> OSes can be replaced dynamically. Useful for testing,
upgrades, etc.

» Standard user programs can be ran under different OSes
unmodified if there is an agreement on communications

between the parent and children.

Summary and Questions

=Nucleus, using a process hierarchy, allows for multiple
operating systems to be ran simultaneously via
multiprogramming.
> Parents own resources of children.

m|nternal processes are standard programs, while external
processes represent physical devices and files.

=P() and V() are replaced by message passing.
mDesigned to increase flexibility of a computer system.
» Core functions in Nucleus (Kernel), while everything else

in processes.
u u u | | u u u u ‘
V E = = "= = =] E =

References

mPer Brinch Hansen, The Nucleus of a

Multiprogramming System. Communications of the
ACM 13(4), April 1970, Pp. 238-w241, 250.

=P. Brinch Hansen, The RC 4000 real-time control
system at Pulawy, BIT 7, 4 (1967), 279-288.

mRC4000 Pictures: http://www.prg.dtu.dk

