
1

Multics.

Charles Ahern
Scott Roffman

Topics

• What is Multics?
• Brief History
• Notable Features of Multics
• Influence on Other Systems
• Review
• Sources



2

MULTiplexed Information and 
Computing Service

• Multics is a timesharing OS begun in 1965 
and used until 2000.

• Primary usage was with a mainframe and 
multiple terminals.

• CPUs, memory, I/O controllers, disk drives 
could be added or removed while the 
system is running

MULTiplexed Information and 
Computing Service

• Designed to run 24/7
• Changed the idea of 

the computer from 
being a tool for 
scientists to a reliable 
and powerful resource 
for a large number of 
people

“Multics keeps it up longer”



3

Brief History

• Joint project between MIT, Bell Labs, and GE
• Bell labs withdrew in 1969
• GE Sold its computer business to Honeywell in 

1970 who sold Multics as a commercial product

Features

• High-level language implementation
• On-line reconfiguration
• Large virtual memory with segments, 

paging, and generalized addresses
• First hierarchical file system
• Dynamic linking and function call by name
• Shared memory multiprocessor
• Security and rings



4

Language Implementation

• Written in PL/I language
• In 1965 this was a new proposal by IBM
• Only a small part of the OS was written in 

assembly
• Writing an OS in a high-level language 

was a radical idea at the time

Virtual Memory

• Divided into as many as 214 segments
• Each segment has as many as 218 36-bit 

words
• Each segment is a logical unit of 

information with attributes for length and 
access privilege



5

Types of Segments

• 2 Main types of segments
– Procedure

• Intended to be accessed for an instruction fetch
• Normally cannot write to a procedure segment
• Reading may be prohibited if in use

– Data
• Contains no instructions
• May or may not be write protected

Directory Structure
• Multics (at least in this era; pre-1981) does not 

speak of "opening" files. Multics supports a call 
to "initiate" a segment that maps onto an entire 
file. 

• Hierarchical arrangement of directories that 
associates at least one symbolic name (perhaps 
many) with each segment.

• The term "file" and "segment" are often used 
interchangeably as a result of this one-to-one 
binding. 



6

Standard Processor Registers

• The PC Is the 
Program Counter

• X0 through X7 are the 
Index Registers.

• A is the Accumulator 
register

• Q is the quotient 
register

PC PBR

DBR

Processor Registers

AP

BP

SP

LP

Q
A

X0
X1

X7
...

Base Pair Registers

PC PBR

DBR

Processor Registers

AP

BP

SP

LP

Q
A

X0
X1

X7
...

• AP, BP, LP, and SP are 
the 4 base pointer 
registers
– Argument Pointer
– Base Pointer
– Linkage Pointer
– Stack Pointer

• They each hold a 
complete generalized 
address and are named 
according to their function 
in Multics.



7

Other Registers

The PBR is the 
Procedure Base 
Register.  It contains 
the segment number 
of the procedure in 
execution (think of it 
as your process’s 
unique id).

PC PBR

DBR

Processor Registers

AP

BP

SP

LP

Q
A

X0
X1

X7
...

Other Registers

The DBR is the 
Descriptor Base 
Register.  It points to 
the descriptor table 
for your process, 
which tells your 
process its security 
rights for each 
segment it is using 
and a pointer to each 
of them.

PC PBR

DBR

Processor Registers

AP

BP

SP

LP

Q
A

X0
X1

X7
...



8

Addressing

• Multics uses a 
“Generalized 
Address”

• It is calculated 
differently depending 
on if the CPU is 
attempting to read an 
instruction or data

Segment # Word #
Generalized Address

Creation of the Instruction Fetch 
Generalized Address

PC

PBR

DBR

Other Stuff

Processor Registers
Segment # Word #

Generalized Address



9

Creation of Data-Access Generalized Address

Segment # Word #

Generalized Address

Segment # Word #

+

+
Base Register

Segment
Tag ModeAddress Operation

Index reg.

Instruction Format

External
Flag

= True

PCB

= False

Segment # Word #
Generalized Address

Protection Mode
and Reference

DBR

Current Process’s
Descriptor Segment

Referenced
Information Segment

X Y

X Y



10

Generalized Address Benefits

• Reallocation of the processor to a new 
process requires little more than swapping 
out the DBR.

• The Generalized address allows access to 
a word without knowing it’s physical 
location in memory

Inter-segment Linking

• Allows for the ability to share procedure 
and data information and the power to 
construct complex procedures by building 
on previous work.

• Location Independent Addresses are 
essential to performing these tasks. 



11

Inter-segment Linking 
Requirements

1. Procedure segments must be pure.
– Execution must not cause a single word of 

their own content to be modified.
2. It must be possible for a procedure to call 

a routine by its symbolic name.
– Without prior arrangements.

3. Segments of procedures must be 
invariant to the recompilation of other 
segments.

Requirement 1

• Requires that a segment be callable even 
if no position in the descriptor segment of 
the process has been reserved for the 
segment.

• Making the segment known to the process 
is done by assigning a position in the 
descriptor segment (a segment number) 
when the process first makes reference to 
the segment, by its symbolic name.



12

Linkage Data

• Consider a procedure segment P that 
makes reference to a word at location x 
within data segment D.

• Ex.  OPR <D> | [x]
– The <> indicate that D is the reference name
– The [] indicate that x is a symbolic address 

within an external segment

OPR <D> | [x]

• Here we see the inter 
segment reference to 
x in D from procedure 
P.

• But to maintain the 
Third requirement we 
need segment p to be 
invariant to 
recompilation of D.

P

D

X



13

OPR <D> | [x]

• In order to adhere to requirement 3 and 2, 
we create a linkage section that contains 
all external references of procedure P.

• Each different process gets its own linkage 
section for each procedure it calls.
– In our case there is an Lα, that would contain 

the reference to the actual location of x in D at 
the present time.

OPR <D> | [x]

• its stands for indirect to segment
• Before the link is established, it must verified, (lead to a 

trap, ft) and then search for the symbolic address <D> | [x]

*

P
D

X

ITS

Lα

* Indicates
Indirect Addressing



14

Linkage pointer
• The linkage pointer is a 

generalized address that 
resides in a dedicated 
base register (lp).

• The displacement k is 
determined by the coding 
of P and is invariant with 
respect to the process 
using P.

*

P

ft

Lα

Linkage section for P

K

LP

<D> | [x]

lp k OPR 1 *

Procedure Call and Returns

• Conventions for four aspects of sub routine 
calling
– Transmission of arguments
– Arranging for return of control
– Saving and restoring processor state
– Allocating Private storage for called procedure

• The argument pointer (ap) (at procedure entry) 
contains the generalized address of the list of 
arguments for the called procedure 



15

Linkage Mechanism for procedure Entry

• The mechanism required for an external procedure call from 
procedure P to segment Q at entry point e.

• The solid lines indicate the individual steps taken through 
indirect addressing. 

• The dashed lines indicate resulting flow of control.

P

lp k TRA *

Call
<Q>|[e]

LPp

its

Linkage Section
for P

e

Q

LPq

its

Linkage Section
for Q

y

LPq lp
TRA y, *

Executing call to external 
procedure

• The procedures base register and 
program counter are saved in the stack 
segment by the caller, pointer to by stack 
pointer (sp)

• Return from the called procedure can be 
effected by restoring the caller’s machine 
conditions from the stack segment.



16

Unix and Multics

• Dennis Ritchie and Ken Thompson, 
creators of Unix, originally worked with 
Bell Labs on the Multics project

• When Bell Labs pulled out in 1969, Ken 
and Dennis began a the Unix Project

• The title “Unix” is a parody of Multics, “One 
of whatever Multics was many of.”

Conclusion

• High-level language implementation
• 24/7 “Computing Service”
• Security and rings
• Large virtual memory with segments
• Generalized Addresses
• Dynamic linking and function call by name



17

References
R. Daley, and J. Dennis, “Virtual Memory, Processes and 

Sharing in MULTICS” Communications of the ACM. Vol. 
II. Number 5. pp. 306-312. May, 1968.

A. Silberschatz , P. Galvin, and G. Gagne, "operating 
System Concepts" John Wiley & Sons, 7th Edition, 2005 

Paul Green, “Multics Virtual Memory – Tutorial and 
Reflections”
ftp://ftp.stratus.com/pub/vos/multics/pg/mvm.html

http://www.multicians.org/


