
1

The Design and Implementation
of a Log-Structured File System

By
Christian Diercks

and
Rajarshi Chakraborty

Outline
Introduction & History
Existing File System Problems
Log Structured File Systems
File Location and Reading
Free Space Management
Segment Cleaning
Simulation results for Sprite LFS
Crash Recovery
Experience with Sprite LFS
Related Work
Conclusion

2

Current tech trends

CPU- disk gap increases
No major improvements in transfer rate
No major improvements in access time
Exponential increase size of main
memory

Technology Trends

Applications tend to become I/O bound!

3

Solution
Decouple disk bound applications from I/O

Cache file data in main memory
Decrease synchronous operations

Memory is cheap
Increasing the cache helps for read type
operations
But what happens with the write
performance?

Write operations
Data needs to be flushed out to disk for
safety reasons

Disk performance becomes dominated by write
operations
Executing writes as soon as they occur reduces
traffic, but less than 5% of the potential
bandwidth is used for new data

The rest of time is spent seeking

4

Existing File System Problems

Two General problems:
1. Data is spread around the disk in a way

that causes too many small accesses
2. Write Synchronously - The application

has to wait for a write to complete
– Metadata is written synchronously
– Small file workload make synchronously

metadata writes dominating

Key Points of LFS

Use file cache to buffer a sequence of
file system changes

Write the changes to disk sequentially
in a single disk write operation

5

Log-Structured File Systems
Small file performance can be improved

Just write everything together to the disk
sequentially in a single disk write operation

Log structured file system converts many small
synchronous random writes into large
asynchronous sequential transfers.

Nearly 100% of raw disk BW can be utilized

Two Major issues need to be addressed

How to retrieve information
From the log?

How to manage the free
Space on disk so that large

Extends of free space
Are always available for

Writing new data?

6

On Disk Data Structures

LogDirectory change
log

FixedCheckpoint region
FixedSuperblock

LogSegment usage
table

LogSegment summary
LogIndirect block
LogI-node Map
LogI-node

LocationData Structure

Logical structure of file

Indexed structure is the same as FFS

metadata

inode

block ptr
block ptr

block ptr
block ptr
block ptr

…

data

block

index

block

directory entry

file name inode number

Location of
inodes is

fixed in FFS

7

How to locate and read a File?
Designer Goal

Match read performance of Unix FFS by
using index structures in the log to allow
random access

I-node maps
Used to find disk location of Inode
Kept in cache to avoid many disk accesses
Maps are divided into blocks that are written
to segments on disk (Checkpoint)

Inode Map and Segment usage Tab.

Inode map Segment usage table

checkpoint region

inode map block ptrs

inode0
inode1

…

checkpoint region

segment usage table ptrs

segment0
segment1

…

Location of
checkpoint
region is

fixed

8

Read and Write Operation

Read a block
Inode map block ptr -> inode map block -> inode -> data
block

Write a block
Data block, inode, inode map block, segment usage table
block

Update inode map table ptr, segment summary block,
segment usage table

Current segment

in memory

used not used

In memory Same as FFS

Layout of disk LFS vs. FFS
Example of creating 2 files in different directories

Disk

Disk

Log

Inode Directory Data Inode map

LFS

FFS

dir1 dir2

file1 file2

dir1 dir2file1 file2
Location of

inodes is not
fixed in LFS

9

Free Space Management
What to do when log wraps around on disk?

By this time earlier data is likely quite fragmented.
Possibly data “earlier” on the log is not valid at this point (not “live”!)
and can be discarded.
By consolidating such data, the LFS is able to continue logging.

From this point on two solutions to this problem:
Threading: do not touch “live” data – copy new data on the areas of the
log that are “dead” at this point.
Potential problem: excessive fragmentation.
Plus: easy to conceptualize and do (just thread all live areas together).

Copy Live Data: bring live data together in the log
This implies that some Garbage Collection takes place
GC may become expensive (due to overheads).
Long-lived files may get copied many times.

Threading/Copy and Compact

Threaded Log Copy and Compact

Old log endNew log endOld log end New log end

10

Segmented Logs in LFS

LFS uses both threading and copying
Keep write long/large

Disk divided into large fixed-size extents called segments.
Any given segment always written sequentially start to end.

Live data must be copied out before its rewritten
Log is threaded segment by segment.

Segments are fixed and large size extents:
Segment sizes are chosen large enough so that overhead for seek is
small.
They yield a high fraction of disk bandwidth (even with some seeks in
between).

Segment writes contain:
Data for multiple files.
I-node related information
Directory data and I-node changes
I-node map (where to find the I-nodes for the files).

Segments
Segment : unit of writing and cleaning

512KB ~ 1024KB

segment 0 segment 1 … segment n

Disk : consists of segments + checkpoint region

…

checkpoint region

Segment summary block

Contains each block’s identity : <inode number, offset>

Used to check validness of each block

11

Segment Summary Block

This block contains:
Each piece of information in the segment is
identified (file number, offset, etc.)

Summary Block is written after every partial
segment write

Helps in deciding the block’s liveness

There is no free-list or bitmap in LFS.

Multi Log Writing

12

Cleaning of Segments
Process of copying live data out of a segment is called cleaning.

To free up segments, copy live data from several segments to a new one (ie,
pack live data together).

Read a number of segments into memory
Identify live data
Write live data back to a smaller number of clean segments.
Mark read segments as clean.

Various issues:
How to identify “live” objects in a segment?
How to identify file and offset of each live block?
How to update that file’s I-node with new location of live blocks?

Cleaning of Segments
Segment Cleaning Questions:
When to clean?
How many segments to clean?
Which segment to clean?

Most fragmented?
How should live data be sorted when written out?

Enhance locality of future reads?
Age sort?
Sprite LFS starts cleaning segments when the number of
clean segments falls below a threshold (a few tens).
Cleans a few tens at a time until the number of clean
segments surpasses another threshold.

13

Cleaning of Segments cont.

Write Cost
Write cost: measure how busy the disk is per byte of new data written

Used to compare cleaning policies.
Includes segment cleaning overhead
Ignore rotational latency – look just at number of bytes
1.00 is perfect – no cleaning overhead
10 means that 1/10 of disk time is spent writing new data

Write cost is estimated as:
(total bytes read and written)/(new data written)
(read segs + write segs + write new) / (new data written)

If average utilization of live data in segments is u:
Read N segments
Write N*u old data
Leaves space N*(1-u) of new data
Assumes segment must be read in entirety to recover live data. If (u==0) then no
need to read segment and the write cost is 1.

14

Write Cost as Function of u

Need utilization below .8 or .5
NOT overall disk utilization; rather, fraction of live blocks in segments
that need to be cleaned.
Performance can be improved by reducing disk utilization:

Less of disk in use : lower write cost
More of disk in use: higher write cost.

Best: Bimodal distribution. Mostly full segments; work with cleaning
mostly empty ones.

Write Cost as Function of u

15

Simulation Results
Analyze different cleaning policies under
controlled conditions
FS – Fixed number of 4-KB files
Every step overwrites a file with new data

Access patterns to overwrite files:

Uniform : Equal probability of being selected
Hot-and-cold : 10% “hot” files selected 90% of
the time, 90% “cold” files selected 10% of the
time; HOT=>short-lived data & COLD=>long-
lived data
Equal chance of selection within each group

Simulation Results (Contd.)

Fixed overall disk capacity utilization
No read traffic – only “write” for
simulation
Exhaust clean segments Clean
segments till a threshold
Experiments run till the write cost
stabilized

16

Initial simulation results
Greedy policies for
both Uniform and Hot-
and-Cold
Uniform – least-
utilized segments
cleaned
Uniform – no sorting
of live data in the
selected segment
Hot-and-Cold – sorts
live data by age in the
selected segment

Initial simulation results

Locality & better
grouping give
worse performance
than no-locality
system

Hot-and-cold with
95%-5% => worse
performance

17

Segment utilization with greedy
cleaner

Only least utilized of all
segments is cleaned

Utilization of every
segment drops to the
cleaning threshold

Drop in utilization of the
cold segments is slow

More segments clustered
around the cleaning point
for “locality” than in
“non-locality” based
simulation

Cost-Benefit Policy

The cleaner now chooses the segment with the
highest benefit-to-cost ratio to clean
Benefit: (1)free space reclaimed (2)amt. of time to
stay free
u = utilization of segment

Free space: 1-u
Time: Age of the youngest block
Cost = 1 read cost + u writing cost (1+u)

18

Cost-benefit vs Greedy

Bimodal: cleans
cold at 75% (u)
and hot at 15% (u)

90% of writes for
hot means mostly
hot segments are
cleaned

Why choose cost-benefit policy?

50% less write cost
than greedy policy
Even outperforms
the best possible
Unix FFS at high
disk capacity
utilization
Gets better with
increasing locality

19

Segment usage table

Supports cost-benefit
Values are set when the segment is written
Segment reused only when # of live bytes = 0
Blocks of this table kept in the checkpoint regions (which
is used in crash-recovery)

Number of live bytes in
the segment

Age of the youngest
block in the segment

Segment-usage table record for each segment

Crash recovery

Traditional Unix FS must scan ALL
metadata for restoring consistency after
reboot – takes a lot of time with increasing
storage size

LFS – last operation at the end of the log
(also used in other FS and databases) –
quicker crash recovery

1. Checkpoint
2. Roll-forward

20

Checkpoints

Position in the log – FS is consistent
& complete
2-phase process to create a
checkpoint
1. Write all modified info to the log
2. Checkpoint region – fixed position on

disk; checkpoint region -> all blocks in
inode map & segment usage table,
current time & last segment written

3. 2 checkpoint regions

Checkpoints (Contd.)
Reboot computer

Read checkpoint region

Initialize memory data structures

•Two checkpoint regions to handle crash during
checkpoint operations

•Checkpoint time is in the last block of the region

•System uses the most recent time; time for the failed
checkpoint is not recorded

21

Creation of a checkpoint

1. Periodic intervals
2. File system is unmounted
3. System is shutdown

Controlling recovery time (Contd.)

Longer interval => less checkpoint
overhead, more recovery time
Shorter interval => less recovery
time, costlier normal ops
Alternative: Checkpoint after a
certain amount of new data written

22

Roll-forward

Scanning BEYOND the last checkpoint to
recover max. data
Use information from segment summary
blocks for recovery
If found new inode in Segment Summary
block -> update the inode map (read from
checkpoint) -> new data block on the FS
Data blocks without new copy of inode =>
incomplete version on disk => ignored by
FS

Roll-forward (Contd.)

Adjusting utilization in the segment
usage table to incorporate live data
after roll-forward (utilization after
checkpoint = 0 initially)
Adjusting utilization of deleted &
overwritten segments
Restoring consistency between
directory entries & inodes

23

Restoring consistency between
directories and inodes

1. Special log record for each directory
change – Directory operation log
<operation code, location of dir. entry, contents, new ref. count for
inode in the entry>

2. Log entry exists but no inode/directory
block => update and append the
directories, etc to the log and create a new
checkpoint

3. Checkpoint represents consistency
between directory operation log and inodes
/directory blocks in the log

Implementation of Sprite LFS

Began in late-1989 and operational
by mid-1990!
Implemented for the Sprite Network
OS – installed in 5 partitions and
used by 30 users
Roll-forward not implemented yet
Short checkpoint interval – 30 sec
Data after last checkpoint discarded
after reboot

24

Sprite LFS vs. Unix FFS

fsck codeRecovery code

Bitmap / layout
policies makes it as
complex as segment
cleaner

No bitmap / layout
policies required
implemented

No segment cleaner
implemented

Additional complexity
for implementing
segment cleaner

Sprite LFS Unix FFS

Micro-benchmarks: small files
Best-case performance – no
cleaning
Sprite LFS vs. SunOS 4.0.3
(based on Unix FFS)
Sprite LFS: segment size =
1MB, block size = 4 KB
SunOS: block size = 8KB

Sprite kept disk 17% busy
while saturating CPU;
SunOS saturated disk 85%
- only 1.2% of potential
disk bandwidth used for
new data – Sprite WINS!

25

Micro-benchmarks: large files

Sequential rereading requires seeks in Sprite,
hence its performance is lower than SunOS
Traditional FS – logical locality (assumed access
pattern)
Log-structured FS – temporal locality (group recent
created/modified data)

Cleaning overheads

Collected over a 4-month period

Better performance than predicted
through simulation – low write cost
range

Segment utilization of /user6
partition

Large number of fully utilized and
totally empty segments

26

Crash recovery time

Code can time recovery of various crash
scenarios
Less data written between checkpoints =>
less recovery time
Also dependent on number of files written
between checkpoints

Related Work
Previously implemented on write-once
media – no reclaiming of log
Segment cleaning Ξ garbage collection in
programming languages
One block <-> one file: garbage identifying
algo. is simpler
Database use write-ahead logging for crash
recovery
Similar to group commit in database
systems

27

Conclusion
The motivation for designing a new log-
structured file system
Design and architecture of the Sprite LFS –
including issues like free space
management and segment cleaning
Simulation-based study to choose the right
design for implementation
Implementation-based study and
comparison to prove the superiority of
Sprite LFS over traditional FFS

Reference

Rosenblum, M. and Ousterhout, J. K.
“The Design and Implementation of a
Log-Structured File System” ACM
transaction on Computer Systems,
Vol 10, No. 1, February 1992, pp. 26-
52
Rosenblum, M. “The Design and
Implementation of a Log-Structured
File System”

28

