
1

Chapter 9 and 10
Hardware Interrupts and Trap Routine

COP 5611
Presented by:

Aasavari Bhave, Manjula Babaladi
March 24, 2005

Outline
• Introduction
• Interrupt Vector and Trap Vector
• Flow of Control
• Interrupt Priority
• Rules for Interrupt Handlers
• Sources of Interrupts and Traps
• Assembler Routine

– Trap
– Clock Interrupt
– System call

• Summary
• References

2

Introduction
• Hardware Interrupt :

– Controllers of peripheral devices interrupt CPU for
some operating system service.

– This is caused by an event external to CPU.
– Handled by a priority based scheme.

• Traps :
– Result of unexpected internal CPU events like

hardware or power failures.
– A user mode program can explicitly use trap as part of

a system call.
– Ranked top priority.

• Both are essentially handled using similar software
technique.

Device Interrupt Processor

• Set “interrupted gate” on the processor,
• Processor checks the gate between each

instructions.
• If set, it invokes the Kernel entering

mechanism.

3

Interrupt vector

55RK disk drive220

44line printer200

66Programmable
clock

104

66line clock100

44paper tape output074

44paper tape input070

44teletype output064

44teletype input060

Process
Priority

Interrupt
Priority

Peripheral
Device

Vector
Location

0502 br4 = 200

0503 br5 = 240

0504 br6 = 300

/ interrupt vector

0526 klin; br4

0527 klou; br4

0530 pcin; br4

0531 pcou; br6

0534 kwlp; br6

0535 kwlp; br6

0541 lpou; br4

0544 rkio; br5

Note: Interrupt priority and Process priority can be
different

Trap Vector

7Segmentation violation250

7Floating point error244

7Programmed interrupt240

711/70 parity114

7Trap instruction/ system entry034

7Emulator trap030

7Power failure024

7iot020

7bpt-trace014

7Illegal instruction010

7Bus timeout004

Process
Priority

Trap typeVector
Location

0505 br7 = 340

0511 / trap vectors

0512 trap; br7+0

0513 trap; br7+1

0514 trap; br7+2

0515 trap; br7+3

0516 trap; br7+4

0517 trap; br7+5

0518 trap; br7+6

0538 trap; br7+7

0547 trap; br7+7

0548 trap; br7+8

0549 trap; br7+9

4

File “low.s”

• At every Unix installation, a file “low.s” is
generated by “mkconf” program which
gives a list of actual peripherals present.

• Low.s has a call to 2 different entry points
in the assembly code in file “m40.s” per
interrupt or trap.

• The file “m40.s” is involved with handling
interrupts and traps.

Processor Status Word

•Every process is associated with a Processor Priority.

•The processor priority for the interrupt handler is
determined from the 7..5 bits of PSW.

5

Flow of Control
• Algorithm for handling interrupts

Input : none
Output : none
{

Save (push) current context layer;
- CPU saves PSW and PC in the internal registers

Determine interrupt source;
Find interrupt vector;

- PC and PSW are reloaded from vector location for the
event that causes the switch

- push the internal registers into the newly created stack
Call interrupt handler;
Restore (pop) previous context layer;

- “rtt” instruction reloads PC and PSW from the kernel
stack

}

Process Priority

• Every interrupt is associated with an interrupt priority
which ranges from 0..7, 7 being the highest.

• Interrupt priority is determined by the hardware.
• The processor priority for any handler can be changed

any time by O.S. but the interrupt priority is hard to
change.

• Note - PDP11 has Unibus hardware which does not
support interrupt priorities from 0..3.

6

Interrupt Priority Cnt’d
• Unix initialization for Interrupt Handler

– Processor priority = Interrupt priority

Handling Interrupt
P.P. = X

New Interrupt I.P. = Y

Y > X
Yes No

New
Interrupt
handled.

New interrupt
is delayed

Interrupt Priority Cnt’d

• If Processor priority < Interrupt priority,
system is compelled to handle new
interrupt of the same priority before
completion of the current interrupt.

• For only the clock interrupt, the Processor
priority is lower than the Interrupt priority
as the next clock interrupt cannot wait for
completion of the current clock interrupt.

7

Interrupt Priority Cnt’d
• During interrupt handling the processor priority

may be raised to protect integrity of certain
operations.

• While interrupt handler deals with a shared data
structure, its priority is increased to 7 to avoid
any interference.

• Similarly processor priority can be decreased
using “spl” procedures [lines 1293..1315]

Rules for Interrupt Handlers

• System performance must not be degraded
– Current interrupt cannot delay other interrupts

excessively.
– Current interrupt must not be preempted due

to other interrupt frequently.
• Every process that is interrupted, must

have a mechanism to wake up the process
which was waiting on that interrupt.

8

Rules for Interrupt Handlers Cnt’d

• The handler should make references to the
“u” structure in the process waiting for it
rather than “u” structure in current process.

• Interrupt handler should not call sleep(), as
the process thus suspended, will be
prevented to continue its execution.

Sources of Interrupts/Traps

• “main” calls “fuibyte” or “fuiword”
repeatedly until a negative value is
returned. This value is returned in r0.

• Clock generates an interrupt every clock
tick.

• Process #1 is about to execute a “trap”
instruction as part of the system call on
“exec”.

9

“fuiword” routine

0845 _fuiword
0846 mov 2(sp), r1 // fuiword argument on

// the stack moved to r1

0847 _fuword
0848 jsr pc, gword // call to gword
0849 rts pc
0850
0851 gword:
0852 mov PS, -(sp) // PSW saved on stack
0853 bis $340, PS // priority = 7
0854 mov nofault, -(sp)

0855 mov $err, nofault
0856 mfpi (r1) // fetch word from user space

r1

Return main

Return to 0849

PSW

Nofault address

r0 = mfpi return value

sp
sp
sp
sp
sp

fuiword normal return

r1
Return main

0857 mov (sp)+, r0 // the value is transferred from the stack to r0
0858 br 1f

0875 1 :
0876 mov (sp)+, nofault // the previous values of “nofault”

0877 mov (sp)+, PS // and PS are restored
0878 rts pc // return via line 0849

mfpi return value

Nofault address

PSW

Return 0849

sp

10

fuiword abort
0856 mfpi (r1) // mfpi instruction aborted. PC = 0857, trap via

// vector location 4 will occur
0512 trap; br7 + 0 //New PC = 0512, Present mode = kernel mode

// Previous mode = kernel mode , Priority = 7
//--
0755 trap:
0756 mov PS, -4(sp) // Save PSW beyond the current “top of stack”
0757 tst nofault // “nofault” <- err non zero
0758 bne 1f
0759 mov SSR0, ssr
0760 mov SSR2, ssr + 4
0761 mov $11, SSR0
0762 jsrr0, call; _trap
0763 / no return

0764 1:
0765 mov $1, SSR0 // Reinitalise the MMU
0766 mov nofault, (sp) // overwrites return addr of gword with nofault = err
0767 rtt // returns to first word of “err” and not to “gword”
0880 err: // restores “nofault” and PS. Skips the return to “fuiword”
0881 mov (sp)+, nofault /
0882 mov (sp)+, PS /
0883 tst (sp)+ /
0884 mov $-1, r0 // r0 -> -1 and returns directly to the calling routine
0885 rts pc
0849 rts pc

r1

Return main

PSW

Nofault address

PS

Return to 0857

Return to 0849

Nofault = 0880
sp
sp

sp
sp
sp

Clock Interrupt
PC = address of location labeled “kwlp”(0568)
PSW -> present mode = kernel mode

previous mode = kernel or user mode
Priority =6

0570 kwlp: jsr r0, call; _clock // This instruction is a subroutine “call” via r0
r0 = address of *(_clock()) in clock.c.

0776 call:
0777 mov PS, -(sp) // Copy PS onto the stack
0778 1:
0779 mov r1, -(sp) // copy r1 onto the stack
0780 mfpi sp // copy SP for previous user address space onto the stack
0781 mov 4(sp), -(sp) // Copy the copy of PS onto the stack
0782 bic $!37, (sp) // Mask all but lower 5 bits of PSW.
0783 bit $30000, PS // Test if the previous mode is kernel or user
0784 beq 1f // If Previous mode is kernel mode, branch is not taken

IF Previous Mode = Kernel Mode :
0798 bis $30000, PS // set previous mode = user mode
0799 jsr pc, *(r0)+ // call to subroutine _clock in clock.s - 3725
0800 cmp (sp)+, (sp)+ // PSW and copy of SP deleted
0801 2:
0802 mov (sp)+, r1 // Restore r1
0803 tst (sp)+
0804 mov (sp)+, r0 // restore r0
0805 rtt // return to previous kernel mode routine.

PSW

Copy of r1

Copy of SP

Copy of PSW

Return from _clock

r0sp
sp
sp
sp

sp

sp

11

Clock Interrupt Cnt’d

If Previous Mode = User Mode
0785 jsr pc , *(r0)+ // call to _clock in clock.c
0786 2:
0787 bis $340,PS // priority = 7
0788 tstb _runrun //checks to see if a higher priority process is ready to run

0789 beq 2f
0790 bic $340,PS // priority = 0
0791 jsr pc,_swtch //Allow higher priority process to proceed
0792 br 2b // repeat the test

User Program Traps
0518 trap; br7+6. // PSW = br7 + 6, PC = trap

0755 trap:
0756 mov PS, -4(sp) // Save PSW to stack
0757 tst nofault //nofault = 0, branch not taken
0758 bne 1f
0759 mov SSR0, ssr //memory management status stored
0760 mov SSR2, ssr + 4
0761 mov $1, SSR0
0762 jsr r0, call1; _trap // save r0, pc = call1 r0 = address of

// memory location that contains “_trap”

0771 call1:
0772 tst -(sp) // SP adjust to point to location copy of PS
0773 bic $340, PS // CPU priority = 0
0774 br 1f // branch to second instruction of “call”

PSW

PC

New PSW

sp
saved r0sp

sp

12

User Program Traps Cnt’d
// Code shared with interrupt processing
0776 call:
0777 mov PS, -(sp)
0778 1:
0779 mov r1, -(sp)
0780 mfpi sp // Copy the SP for the previous

// address space onto the stack
0781 mov 4(sp), -(sp)
0782 bic $!37, (sp) // mask new PSW

0783 bit $30000, PS
0784 beq 1f
0785 jsr pc, *(r0)+

SP from previous
mode

r1

PSW

PC

New PSW
saved r0

sp New PSW & !037

sp

User Program Traps Cnt’d
jsr r5, csv

1421 mov r5, r0
1422 mov sp, r5
1423 mov r4, -(sp)
1424 mov r3, -(sp)
1425 mov r2, -(sp)
1426 jsr pc, (r0)

2693 trap(dev, sp, r1, nps, r0, pc, ps)

2754 callp = &sysent[fuiword(pc-2) &077];
// Kernel retrieves bottom 6 bits of the word that
contains user trap instruction and uses as index into
sysent

0787 bis $340, PS // Kernel returns and checks if
// other thread should run

0794 tst (sp)+ // remove saved new PSW & !037

Sp from previous mode

r1

PSW

PC

New PSW

saved r0

sp

Return address PC (0787)

r5

r4

r3
r2

cret

New PSW & !037sp

sp

13

Summary
• Hardware interrupts are events caused by peripheral devices.
• Traps are highest priority interrupts caused by hardware failure or explicit system

calls in user programs.
• Hardware interrupts and traps are handled with similar mechanism by Unix.
• Interrupts / Traps handling leads to saving context, PC + PSW on the active stack

and start the interrupt process routine and subsequently involves retrieving back the
PC + PSW before process resumes.

• Processor priority of interrupt handlers is increased at runtime to preserve operational
integrity.

• Processor priority for clock interrupts can be decreased for handling frequent clock
interrupts.

• Low.s lists all the hardware interrupts and trap types and has calls to code 0777 -0805.
• The code 0755 – 0805 in “m40.s” handles the hardware and trap and routes the

interrupt / trap to be processed by the particular service routine.
• Knowledge of assembly and stack operation is extremely useful in understanding

interrupt and trap handling.

References
• John Lions,”Chapter 1..10, Lions’ Commentary on Unix, 6th edition”

• M. J. Bach. “The Design of the UNIX Operating System” Prentice-
Hall, 1987

• MIT Open Course Ware , http://ocw.mit.edu/OcwWeb/Electrical-Engineering-
and-Computer-Science/6828Fall2003/LectureNotes/detail/lec7.htm

• “Processor Handbook, PDP 11/40”, Copyright @1972, DEC.

14

