
1

Alexander Aved
Hao Cheng

3/28/2005

Chapter 5
“Two Files”

malloc.c and prf.c

Overview
“Two Files”

– malloc.c – Hao Cheng
• malloc
• mfree

– prf.c – Alex Aved
• Stack organization
• putchar
• Transmitter registers
• printn
• printf
• prdev, deverror, panic

2

malloc.c

• malloc.c is used for memory management.
• Data structure:

– struct map (2515)
List of available resources (memory, disk swap area)

• Two procedures
– malloc(2528)

resources allocation
– mfree(2556)

resources release

• Disjoint free memory regions

Free memory - List

<base address, size, next>

<10, 8, >

<22, 6, >

<32, 10, >

null

3

Kinds of memory resources

• main memory (64 bytes)
• disk swap area (512 bytes)
• separate lists, common interface

map structure

global list variables

function specification

map structure

• array represents list
– first entry with the size of zero

• cast from int to struct map

no pointer

int, not map

16-bit Address -> sizeof(map) = 4bytes

int: 1 word -> sizeof(coremap) = 200bytes

Only 50 list entries

4

memory management rules

• Memory Allocation
– scan the list to find a suitable slot
– First fit, Best fit and Worst fit
– size of slot vs size of request

• = delete the node
• > reduce the size of the node

• Memory Recycle
– create a represented node
– merge if necessary

malloc

sequential scan, bp -> first fit region

update the linked list structure

First fit region = request

5

mfree
sequential scan, 1st region above returned region

merge(returned, following/bp)

bp not 1st list item, merge(preceding, returned)

opposite situation

bp valid
merge(returned, bp)

no any merge
insert new entry

Example Scenario

• Initial list of free core memory resources

• 1st request: malloc(coremap, 6)

????4
??03
32102
2261
1080
AddressSizeEntry

<10, 8, >

<22, 6, >

<32, 10, >

null

6

malloc(coremap, 6)

• 1st request: coremap

????4
??03
32102
2261
1080
AddressSizeEntry

bp->m_size > size

malloc(coremap, 6)

• 1st request:

????4
??03
32102
2261
1080
AddressSizeEntry

a =10

return(10)

bp->m_addr = 16
bp->m_size = 2

????4
??03
32102
2261
1680
AddressSizeEntry

????4
??03
32102
2261
1620
AddressSizeEntry

7

malloc(coremap, 6)

• 2nd request:

????4
??03
32102
2261
1620
AddressSizeEntry

malloc(coremap, 6)

• 2nd request:

????4
??03
32102
2261
1620
AddressSizeEntry

a = 22
bp->m_addr = 28
bp->m_size = 0

8

malloc(coremap, 6)

• 2nd request:

????4
??03
32102
2801
1620
AddressSizeEntry

return(22)

????4
??03
32102
32101
1620
AddressSizeEntry

????4
??03
??02
32101
1620
AddressSizeEntry

mfree(coremap, 4, 24)

• Release resources

????4
??03
??02
32101
1620
AddressSizeEntry

9

mfree(coremap, 4, 24)

bp>mp, but (16 + 2) != 24

24 + 4 != 32

create and insert one entry before bp
a and t act as temporary variables

????4
??03
??02
32101
1620
AddressSizeEntry

mfree(coremap, 6, 18)

• 2nd mfree

????4
??03
32102
2441
1620
AddressSizeEntry

10

mfree(coremap, 6, 18)

????4
??03
32102
2441
1620
AddressSizeEntry

bp>mp, and (16 + 2) = 18

????4
??03
32102
2441
1680
AddressSizeEntry

????4
??03
32102
2441
16120
AddressSizeEntry

????4
??03
??02
32101
16120
AddressSizeEntry

(16 + 8) == 24

mfree(coremap, 6, 10)

• 3rd mfree

????4
??03
??02
32101
16120
AddressSizeEntry

11

mfree(coremap, 6, 10)

????4
????3
??02
32101
16120
AddressSizeEntry

(10 + 6) = 16

bp<mp
????4
????3
??02
32101
10180
AddressSizeEntry

Resources List Initialization

• in main.c

One entry - coremap
address = first block of core memory

size = the whole core memory.
One entry - swapmap

Initially i is 1st block of core memory

12

Usage Example

• Memory allocation.

When fail

Unit of resources

• block – manipulation unit
– example: copyseg (0695)

sob:
r2 = r2 – 1;
if (r2 != 0) goto 1b.

mfpi:
push(r0)

mtpi:
pop(r1)

r2 = 32;
while (r2-- > 0){

mem[r0++] = mem[r1++];
}

13

prf.c

• prf.c contains ‘panic’ and other procedures
which provide a simple mechanism for
displaying initialization messages and
error messages to the operator.

•printf (2340)

•printn (2369)

•putchar (2386)

•panic (2416)

•prdev (2433)

•deverror (2447)

Note: printf & putchar similar to but not same as the versions
invoked by C programs running in user mode.

Calling Relationship Between
Procedures

panic deverror

prdev

printf

printn

putchar

14

PDP11/45 System Console

Alphanumeric VT05 Terminal

15

Device Registers
Device interfaces

KL11 serial line
controller

Console switch
register

“Dummy” struct, used
by putchar() to test if
register pointed to by

SW is 0.

KL11 IO Registers

Receiver Status Register

Receiver Buffer Register

Transmitter Status Register

Transmitter Buffer Register

Can be read or written by any
PDP11 instruction that refers
to their address.

16

The Stack

…

…

…

x1
fmt

x2

…

xc

printf(fmt,x1,x2,x3,x4,x5,x6,x7,x8,x9,xa,xb,xc)

The stack grows
down

The top of the stack

Parameters placed
on the stack in
reverse order.

putchar(c)

• putchar() transmits the character passed
in its parameter to the system console.

17

putchar(c)

ASCII ‘DEL’, 0177,
is Octal for 12710

Transmitter Status Register

NOTE: in “C” code, this register is referred to as “xsr”, in Peripherals
Handbook, referred to as “TSCR”.

18

Transmitter Buffer Register

NOTE: referred to as “xbr” in “C” code.

printn(n, b)

• printn() prints to the console an unsigned
integer n, in base b.

• That is, expresses n as a set of digit
characters according to the radix b.

• E.g., printn(10, 8) results in the following
calls to putchar():
– putchar(49);
– putchar(50);
Which prints to the console the characters “12”

19

printn(n, b)

Note that this is the
ASCII character ‘0’,

48 base 10

Remainder of
n / b

E.g., 1 / 8 = 0 rem 1

Integer divide

printf(fmt,x1,…,x9,xa,xb,xc)

• An unbuffered way for the operating
system to send a message to the system
console.

• Used during initialization & to report
hardware errors or system problems.

• Runs in kernel mode.
• Accepts the following % flags:

– l (ell), d, o and s

20

printf(fmt,x1,…,x9,xa,xb,xc)

Increment ‘adx’ to point to the
next position on the stack

‘x1’ points to a
location on the stack

While not a ‘%’, send the format
string to the console.

Display a number. E.g.,
printf(“ten: %d”, 10)

Display a string. E.g.,
printf(“Today: %s”, “Monday”)

prdev(str, dev)

• The prdev() procedure provides a warning
message when errors are occurring in i/o
operations.

• E.g., the message will look something like
– “message on dev 12/34”

21

prdev(str, dev)

The ‘d_major’ number is an
index into a system table to
select a device driver.
‘d_minor’ is passed as a
parameter to specify a
subdevice attached to a
controller.

deverror(bp, o1, o2)

• This procedure provides a warning
message when errors are occurring in i/o
operations.

• deverror() prints a diagnostic message
from a device driver.
– Parameters:

• bp – device
• o1 – a block number
• o2 – an octal word, e.g., an error status

22

deverror(bp, o1, o2)

E.g., prints “message on dev 12/34”

E.g., prints “bn1234 er567012 3456”

The buffer header

23

panic(s)

• panic() is called from various locations
within the operating system when
circumstances exist such that continued
operation of the system seems
undesirable.
– E.g., certain file system /device driver/etc.

problems.
– Go to http://sunsolve.sun.com/ and search with

keyword ‘panic’ for Solaris examples.

panic(s)

If the console is off, panicstr
contains the argument to the
last call of ‘panic()’

update() is the internal name
for the sync() system call.

update() (1) goes through
the mount table & updates
recently modified ‘super
blocks’, (2) writes out
updated inodes & (3) calls
bflush() which forces to disk
any “delayed write” blocks.

idle() halts the processor but
allows already underway i/o
operations to complete.

24

Summary – “Two Files”

• malloc.c
– Routines to manage memory resources

• malloc
• mfree

• prf.c
– Provides simple mechanism for

displaying initialization and error
messages to the operator

• printf
• printn
• putchar

• panic
• prdev
• deverror

References
• http://tibbitts.freeshell.org/photo/unix/pdp11-002.html

– For console image

• http://www.ba-stuttgart.de/~helbig/os/script/OS.pdf
– Unix V6 OS information

• http://www.bitsavers.org/pdf/Whatsnew.txt
– Additional PDP manuals

• http://wolfram.schneider.org/bsd/7thEdManVol2/
– UNIX V7 manuals

• J Lions, A Commentary on the Sixth Edition UNIX
Operating System

25

Questions?

