
COP 5611: Operating
Systems Design Principles

Presentation by:
Fahd Rafi
Saad Ali

Software Interrupts
Chapter 13

Software Interrupts

• Method to interrupt user mode operation
by other processes or due to error

• Software Interrupt – Signal
• 20 software interrupts in UNIX
• 0 is no interrupt
• u.u_signal[n] specifies action on interrupt n

u.u_signal[n]

• Structure u lies in user.h
• It is the per process data area which is

swapped out along with process
• Always contains data for the currently

running process

u.u_signal[n]

• Operation to be performed on signal

SIGKIL

• n=9
• Distinguished from other interrupts and

process always terminates on SIGKIL
• Supposed to remain ‘0’ until the end of

process

User Setup

• User can set up the action to be taken for
any signal using the ‘signal()’ system call.
signal(2,1) // sets u_signal[2]=1;
(meaning it will be ignored due to odd number)

• u_signal[SIGKIL] cannot be modified

Causing Interrupt

• Set “p_sig” in process “proc” entry to
interrupt number;
– For example: p->p_sig=SIGINT;

• Since only one p_sig is provided, only one
and most recent signal can be maintained.

Handling Interrupt

• The interrupt is always handled when the
target process becomes active
– Interrupts must wait till process becomes

active
• If user-mode action is to be performed, the

user mode stack is used

Tracing

• Tracing is implemented using software
interrupts.
– SIGTRC

• Parent can monitor the progress of a child
process

Implementation
• Specify signal action:

– ssig() – Specify action for signal
• Send signal:

– kill() – Send signal to some process
• Other functions:

– psignal() – Send signal to a process
– signal() – Send signal to all processes from a terminal
– issig() – To check if there is an outstanding interrupt
– psig() – To implement action when issig returns true
– core() – When core dump is indicated for a terminating process
– grow() – To grow stack size when needed
– exit() – Terminates the currently active process
– ptrace() – Implements ptrace system call
– stop() – To stop a process for debugging
– procxmt() – Child carries out certain operations for parent when stopped

Code

ssig()

kill()

psignal()

issig()

psig ()

Pipes – Chapter 21

“Pipe.c”

Pipes

• Used for creating Pipes

– Pipe is a FIFO character list

– One group of processes write other read

– Intercommunication

Pipe.c

• Global Variable
– PIPSIZ (4096)

• Functions
– pipe()
– readp()
– writep()
– plock()
– prele()

Structures
INODE – Focus of all file activities – Unique inode for each file

Structure .. File
• One file structure is allocated for each pipe call. It holds read write pointers
associated with each open file/pipe

FPIPE
FWRITE
FREAD

Structures

Pipe System Call

• Allocate an inode for the root device
• Allocate a file table entry
• Remember file table entry in ‘r’ and

allocate another file table entry
• Return user file identification in R0 and R1
• Complete the entries in ‘file’ and ‘inode’

structure.

Pipe - Code
System Call

Allocate an unused ‘inode’ on
‘rootdev’

Allocates a user file descriptor and
file structure. File descriptor is
copied into user register R0

Decrements the reference count
of an ‘inode’ structure

Save the new file descriptor

Allocates a user file descriptor
and file structure. File descriptor
is again copied into user
register R0

Set pointer to file structure of
read open file to NULL

Register R1 = Write File Descriptor
Register R0 = Read File Descriptor

Make inode pointer of both
structures equal to same inode

Function – readp

• Two offsets are required:
• For read
• For write (write offset = filesize)

• Pass a file pointer to readp Extract
inode pointer from the file structure

• Lock the pipe
• Check if both reader and writer side of

pipe is active: If not error
• Read and unlock the pipe

Readp - Code

Extract inode pointer

Pass a pointer of file structure from which has
a pointer to inode of the pipe

Lock the inode

If offset becomes equal to size
of the inode than reset

Wake up blocked writer

Raise the flag that I
want to read and go to
sleep

Readp – Code .. Cont’d

If every thing is fine than read and return:

Readp – Code .. Cont’d

Function – writep()

• Lock the pipe
• Check if both reader and writer side of

pipe is active: If not error
• If pipe is full wait for reader to consume

characters
• Write desired number of bytes

Writep - Code

Receive the signal
that there are no
more readers

Size reaches
default size – no
more writes can be
done

No more bytes to
write - return

Writep - Code

Writep - Code

Function – plock()

• Locks a pipe before writing or reading

• If already locked:
• Set the want bit
• Sleep

• Otherwise:
• Set the lock flag

Plock - Code

Pass pointer of inode that we
want to lock

Give up the processor till a wake
up occurs on ip, at which the
process enters the scheduling
queue at priority PIPE.

Set the IWANT bit

Function – prele()

• Unlocks the pipe after writing or reading

• If WANT bit is on:
• Wakeup

Prele - Code

Wake up all
processes waiting
on this inode

End

