
1

Lion’s Commentary on UNIX
Chapter 12

COP 5611: Operating Systems

Presented by: Dahai Guo
Hua Zhang

Outline

• Introduction to traps
• Traps in UNIX
• The trap function
• System calls
• “exec” system call
• Conclusions

2

Introduction to traps (1/2)

• Also called software interrupts
– Bus errors
– Illegal instructions
– Segmentation exceptions
– Floating exceptions
– System calls

Introduction to traps (2/2)

• The operating system
– Captures the trap
– Identifies the trap
– If system calls, performs the requested tasks
– Possibly sends a signal back to the user

program.

3

Traps in UNIX (1/4)

• UNIX divides traps into three classes,
depending on the prior processor mode
and the source of the trap
– Kernel mode
– User mode, not due to a “trap” instruction
– User mode, due to a “trap” instruction

• i.e. System calls

Traps in UNIX (2/4)

• Kernel mode traps
– Unexpected
– Usually caused by a kernel mode bus error
– Examples:

• Reading past EOF, reading a closed file, bad file
pointers

• Referencing a non-existent bus device

4

Traps in UNIX (3/4)

• User mode traps, not due to a “trap”
instruction
– Unexpected
– Regarded as errors for which the operating

system do not provide any handling, but “core
dump”

– Examples: I/O Traps, Trace/BPT Traps,
Floating Exceptions, Segmentation Faults,
Illegal Instructions

Traps in UNIX (4/4)

• User mode traps, due to a “trap”
instruction
– Expected system calls
– User mode programs use “trap” instructions

as part of the “system call” mechanism to call
upon the os for assistance.

– Examples: exec, open, close, time, etc.

5

The trap function (1/6)

• trap(dev,sp,r1,nps,r0,pc,ps)
– dev: the kind of trap that occurred
– sp: stack pointer
– nps: new process status
– r1 and r0: two registers
– pc: program counter
– ps: process status

• The change to any of these parameters
will be reflected to the caller.

dev

psignal(u.u_procp,i); //signal the user program
//i is the number indicating
//a specific type of trap

if(issig())//check if the signal was delivered
psig();

setpri(u.u_procp)//recalculate the priority of
//the user program

From Users:
bpt,iot,emt
fpt from user,
segmentation
exception

printf(“ka6=%o\n”, *ka6);//address of the current
//process data area

printf(“aps=%o\n”, &ps);//stack pointer
printf(“trap type %o\n”, dev);//the trap type #
panic(“trap”);

From kernel:

Will be Discussed Later!

From Users:
system calls

6

• How to decide whether it is from user or
kernel?

2699 if(ps&UMODE==UMODE)

2700 dev=|USER;

2659 #define UMODE 1 /* user-mode bits in PS word */

2662 #define USER 020 /* user-mode flag added to dev */

The trap function (3/6)

The trap function (4/6)

• switch(dev)
– 0+USER: i=SIGBUS
– 1+USER: i=SIGINS
– 2+USER: i=SIGTRC
– 3+USER: i=SIGIOT
– 5+USER: i=SIGEMT
– 6+USER: //system call
– 8+USER: i=SIGFPT
– 9+USER: i=SIGSEG
– default: //from kernel

7

The trap function (5/6)

• Exceptions
– Illegal instruction

• Traps caused by instruction SETD are ignored
1. If(fuiword(pc-2)==SETD && u.u_signal[SIGINS]==0)
2. goto out;

– Floating point exceptions could be from kernel
and the trap function will send a signal to the
user program.

The trap function (6/6)

• Exceptions (cont)
– Segmentation exception

• If the user SP is below the stack segment, grow
the stack automatically.

2811. a=sp;
2812. if(backup(u.u_ar0)==0)
2813. if(grow(a))
2814. goto out;
2815. i=SIGSEG;

8

System Calls (1/11)

10101011……000011

111111

&

000011

arg count System function

0 nullsys (indirect)

0 exit

0 fork

index

0

1

2

2 read

2 write

3

4

2 open

0 close

5

6

0 nosys

0 nosys

62

63

.

.

.

.

.

.

.

.

.

Instruction that
causes a trap.

sysent

System Calls (2/11)

2754. callp=&sysent[fuiword(pc-2)&077];
2755. if(callp==sysent){

//indirect system call
2764. }else{

//direct system call
2769. }

9

System Calls (3/11)

PC

.

.

Indir sys call
.
.

arg2

arg1

trap inst

User Program
Data Area

User Program
Code Segment

Indirect System Call

System Calls (4/11)
2755. if(callp==sysent)
2756. {//indirect system call
2757. a=fuiword(pc); //through pc, finds the addr of the

//instruction that causes the trap
2758. pc+=2; //increments pc
2759. i=fuword(a); //through a, finds the system call
2760. if((i& ~077)!=SYS) //see if this is a system trap
2761. i=077; //if yes, i is nosys which
2762. //is fetal to the user
2762. callp=&sysent[i&077]; //identifies the real system

//call
2763. for(i=0;i<callp->count;i++) //fetches all the parameter
2764. u.u_arg[i]=fuword(a+=2);
2765. }

10

System Calls (5/11)

PC

.

.

arg2

arg1

trap inst

User Program
Code Segment

Direct System Call

System Calls (6/11)

2755. if(callp==sysent){
//indirect system call

2764. }else{//direct system call
2765. for(i=0;i<callp->count;i++){
2766. u.u_arg[i]=fuiword(pc);
2767. pc+=2;
2768. }
2769. }

11

System Calls (7/11)
2771. trap1(callp->call);//performs the requested sys call
2772. if(u.u_intflg) //indicates whether the request has

//been successfully serviced.
2773. u.u_error=EINTR;//EINTR is 100
2774. if(u.u_error<100){
2775. if(u.u_error){
2776. ps=|EBIT;//EBIT is the user error bit
2777. r0=u.u_error;
2778. }
2779. goto out;
2780. }
2781. i=SIGSYS;

System Calls (8/11)
2841. trap1(f)
2842. int (*f) ();
2843. {
2845. u.u_intflg=1;
2846. savu(u.u.QSAV); //saves the programming

//environment
2847. (*f)(); //executes the system call
2848. u.u_intflg=0; //This point is reached only when

//f is executed successfully, instead
//of ending abnormally with u.u_intflg
//still being 1.

2849. }

12

System calls (9/11)

• Parameters which are part of a system call
may be passed from the user program in
different ways:
– Via the special register r0;
– As a set of words embedded in the program

string following the “trap” instruction;
– As a set of words in the program’s data area.

(This is the “indirect” call.)

System calls (10/11)

• Parameters which are part of a system call
may be passed from the user program in
different ways:
– Via the special register r0;
– As a set of words embedded in the program

string following the “trap” instruction;
– As a set of words in the program’s data area.

(This is the “indirect” call.)

13

System calls (11/11)

• In the program, we only see the last two
ways in terms of how parameters are
passed when system calls occur.

exec: SYNOPSIS

• The 11th system call
• SYNOPSIS

sys exec; name; args
name: <...\0>
...
– args: arg1; arg2; ...; 0
– arg1: <...\0>
– ...

14

exec: DESCRIPTION

• DESCRIPTION
– exec overlays the calling process with the named file,

then transfers to the beginning of the core image of
the file.

– The first argument to exec is a pointer to the name of
the file to be executed. The second is the address of
a list of pointers to arguments to be passed to the file.
Conventionally, the first argument is the name of the
file. Each pointer addresses a string terminated by a
null byte.

exec: process address space
• The text segment

– instructions
• The initialized data segment

– initialized static variables.
• The unitialized data segment

– unitialized static variables
• The stack

– dynamic data, like arguments,
return address, local variables

• The heap
– dynamic allocated memory,

like malloc() in c

15

exec: variables

• ip: reference to the inode of the program
file

• c: register for memory copy
• bp: pointer to a temporary buffer
• cp: pointer to the address of bp
• ap: pointer to a argument
• na: number of arguments
• nc: number of bytes of all the arguments

exec: initializing

• Convert the first argument into an “inode” reference
• Limit the number of processes running simultaneously to

avoid deadly waiting
• Allocate temporary buffer to read in arguments
• Check whether the file is executable

– Might be more efficient

16

exec: copy aruguments

exec: read header

• Read 8 bytes into u_arg[0] through u_arg[3]
– u_arg[0]: 407/410/411 (410 -> RO text) (411 -> sep ID)
– u_arg[1]: text size
– u_arg[2]: data size
– u_arg[3]: bss size

• u_segflg: 1 kernel space, 0 user space

17

exec: process header

Start U_arg[0]

1.Add text size to data size
2. set text size to 0

sep=1

407: text area is not protected

411: sep ID

bad
Otherwise: not excutable

U_arg[1], ip

if has a pure text area
&& has been open by other program as data file

410: excutable

exec: memory check

• Check whether text and data size exceed max sizes
• estabur()

– Line 1650
– Set up software prototype segmentation registers to implement

the 3 pseudo text, data, stack segment sizes passed as
arguments

– The argument sep specifies if the text and data+stack segments
are to be separated

18

exec:ready to execute

• At this point the execution of the new program is
irrevocable

• xfree cuts off from its present PURE text if it had one.
• xalloc allocate (if necessary) and link to text area
• expand allocate memory for data+stack

exec: read data

• Read data into user address space
– 020 is the length of the header
– u.u_arg[1] is text size
– if not pure text, u.u_arg[1] was set to 0, in this case

both text and data area are read in
• 3152 truly set up the segmentation registers

19

exec: copy arguments

• Copy information from bp to user space
• R6 is the stack pointer, ap is unsigned integer,

so not negative
• suword and subyte are functions to write a word

or a byte into user address space

exec: copy arguments

argn

...

arg1

-1

address of arg2

...

address of arg1

na

nc bytes

2 bytes

0

.

.

3

2

1
cp

bp

2 bytes

Na*2 bytes

R6 (sp)

ap

c

20

exec: set SUID/SGID

• Set SUID/SGID protections, if not tracing
• SUID/SGID are used in UNIX for a user to run a

program as the program is run by its owner
– eg., allow a normal user to run a script which need

root privilege

exec: clearing

• Clear sigs, regs, and return
– R7 is “pc”, the instruction counter. R7 is set to 0 so

that when returns the next instruction will be executed
is the instruction in user space at address 0

– Remember that address 0 is the text area

21

exec: exit

• Any jump to here would be an error in u
• Release the inode pointer
• Release the buffer
• Wake up anyone waiting at line 3038

Summary

• Introduction of traps
• Traps in UNIX
• The trap function
• exec() system call

22

References
• J. Lions. Lion’s Commentary on UNIX 6th Edition with

Source Code. Peer-to-Peer Communications , 2000.
• K. Thomson, D. M. Ritchie. UNIX programmer’s

manual. AT&T Bell Laboratories, November 1971.
• MIT’s Operating System Engineering course website

http://www.pdos.lcs.mit.edu/6.097/lec/l9.html
• Washington State University’s cs560 course website,

http://www.eecs.wsu.edu/~cs460/cs560/unix.c3.html

