
COP 4710: Database Systems (Day 21) Page 1 Mark Llewellyn ©

COP 4710: Database Systems
Spring 2004

-Day 21 – March 24, 2004 –
Query Processing and Optimization

COP 4710: Database Systems
Spring 2004

-Day 21 – March 24, 2004 –
Query Processing and Optimization

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2004

COP 4710: Database Systems (Day 21) Page 2 Mark Llewellyn ©

Query Processing and Optimization

• A query expresses in a high-level language like SQL must
first be scanned, parsed, and validated.

• Once the above steps are completed, an internal
representation of the query is created. Typically this is either
a tree or graph structure, called a query tree or query graph.

• Using the query tree or query graph the RDBMS must devise
an execution strategy for retrieving the results from the
internal files.

• For all but the most simple queries, several different
execution strategies are possible. The process of choosing a
suitable execution strategy is called query optimization.

COP 4710: Database Systems (Day 21) Page 3 Mark Llewellyn ©

The Steps in Query Processing

Scanning, Parsing, and Validation

query in a high-level language

intermediate form of the query

Query Optimizer

execution plan

Query Code Generator

code to execute query

Runt-time Database Processor query results

COP 4710: Database Systems (Day 21) Page 4 Mark Llewellyn ©

Query Optimization
• The term query optimization may be somewhat misleading.

Typically, no attempt is made to achieve an optimal query
execution strategy overall – merely a reasonably efficient
strategy.

• Finding an optimal strategy is usually too time consuming
except for very simple queries and for these it usually doesn’t
matter.

• Queries may be “hand-tuned” for optimal performance, but
this is rare.

• Each RDBMS will typically maintain a number of general
database access algorithms that implement basic relational
operations such as select and join. Hybrid combinations of
relational operations also typically exist.

COP 4710: Database Systems (Day 21) Page 5 Mark Llewellyn ©

Query Optimization (cont.)

• Only execution strategies that can be implemented by the
DBMS access algorithms and which apply to the particular
database in question can be considered by the query
optimizer.

• There are two basic techniques that can be applied to query
optimization:

1. Heuristic rules: these are rules that will typically reorder the
operations in the query tree for a particular execution strategy.

2. Systematical estimation: the cost of various execution strategies are
systematically estimated and the plan with the least “cost” is chosen.
What constitutes cost can also vary. It could be a monetary cost, or it
could be a cost in terms of time or other factors.

• Most query optimizers use a combination of both techniques.

COP 4710: Database Systems (Day 21) Page 6 Mark Llewellyn ©

Query Trees

• A query tree is a tree representation of a relational algebra
expression which represents the operand relations as leaf
nodes and the relational algebra operators as internal nodes.

• Execution of the query tree consists of executing and internal
node operation whenever its operands are available and then
replacing that internal node by the virtual relation which
results from the execution of the operation.

• Execution terminates when the root node is executed and the
resulting relation is produced.

• This technique is similar to what many compilers do for
3GLs like C.

COP 4710: Database Systems (Day 21) Page 7 Mark Llewellyn ©

Query Tree Example
• Consider the query: “list the supplier numbers for suppliers who supply a

red part.” (this one should be really familiar by now!!)

• In relational algebra we have:

• The corresponding query tree is:

()()()()Pspj 'red'color#p#s =∗ σππ

πs#

*

πp#

σcolor = red

P

SPJ

COP 4710: Database Systems (Day 21) Page 8 Mark Llewellyn ©

Query Trees
• There are usually several different ways to generate a

relational algebra expression for a query. This should be
quite obvious by now after doing the homework for the
course.

• Since several different relational algebra expressions are
possible for a given query, so too are there multiple query
trees possible for the same query.

• The next page shows several different relational algebra
expressions for a given query and the following couple of
pages illustrate the possible query trees.

COP 4710: Database Systems (Day 21) Page 9 Mark Llewellyn ©

Query Expressions
• Query: list the names of those suppliers who ship both part

numbers P1 and P2.

exp #1:

exp #2:

exp #3:

exp #4:

()()()()() ()()()()()spjsspjs 2P#p#sname1P#p#sname == ∗∩∗ σππσππ

()()() ()()()()()spjspjs 2P#p#s1P#p#sname == ∩∗ σπσππ

() ()()()()()()1spjspj1spjspjs 2P#p.1spj1P#p.spj#sname ×∗ == σσππ

()()()()()()1spjspjs #p.1spj,#p.spj,#s.1spl,#s.spj#s.1spj#s.spj2P#p.1spj1P#p.spjname ×∗ === πσσσπ

COP 4710: Database Systems (Day 21) Page 10 Mark Llewellyn ©

Corresponding Query Trees
∩

*

πname

σp# = P1

SPJ

πname

S πs#

*

S πs#

σp# = P2

SPJ

Query tree for
exp #1

σp# = P2

∩

*

πname

σp# = P1

SPJ

S

πs#
πs#

SPJ

Query tree for
exp #2

COP 4710: Database Systems (Day 21) Page 11 Mark Llewellyn ©

Corresponding Query Trees

*

πname

σp# = P1

SPJ

S

×

σp# = P2

SPJ1

Query tree for
exp #3

σspj.s# = spj1.s#

*

πname

σspj.# = P1

SPJ

S

×

σspj1.p# = P2

SPJ1

Query tree for
exp #4

σspj.s# = spj1.s#

πspj.s#, spj1.

spj.p#, spj1.p#

COP 4710: Database Systems (Day 21) Page 12 Mark Llewellyn ©

Corresponding Query Trees

σp# = P2

∩

*

πname

σp# = P1

SPJ

S

πs#
πs#

SPJ

Original query
tree for exp #2

∩

*

πname

σp# = P1

SPJ

S πs#
πs#

SPJ

Modified query
tree for exp #2 –
the table into the
join is smaller.

σp# = P2

πs#, name

COP 4710: Database Systems (Day 21) Page 13 Mark Llewellyn ©

Basic Query Execution Algorithms
• For each operation (relational algebra operation, plus others)

as well as combinations of operations, the DBMS will
maintain one or more algorithms to execute the operation.

• Certain algorithms will apply to particular storage structures
and access paths and thus can only be utilized if the
underlying files involved in the operation include these
access paths.

• Typically, the access paths will involve indices and/or hash
tables, although other hybrid access paths are also possible.

• In the next few pages will examine some of these query
execution strategies for the basic relational algebra
operations.

COP 4710: Database Systems (Day 21) Page 14 Mark Llewellyn ©

Algorithms for Selection Operations
• There are many different options for Select operations based on the

availability of access paths, indices, etc.

• Search algorithms for Select operations are one of two types:

– index scans: search is directed from an index structure.

– file scans: records are selected directly from the file structure.

• (FS1-linear search): Heap files typically are searched with a linear search
algorithm.

• (FS2-binary search): Sequential files are typically searched with a binary
or jump type of search algorithm.

• (IS3-primary index or hash key to extract single record): In these cases
the selection condition involves an equality comparison on a key attribute
for which a primary index has been created (or a hash key can be used.)

COP 4710: Database Systems (Day 21) Page 15 Mark Llewellyn ©

Algorithms for Selection Operations (cont.)

• (IS4-primary index or hash key to extract multiple records): In these
cases the selection condition involves a non-equality based comparison
(<, <=, >, >=) on a key attribute for which a primary index has been
created. The primary index is used to find the record which satisfies the
equality condition and then based upon this record, all other preceding (<
or <=) or subsequent (> or >=) records are retrieved from the ordered file.

• (IS5-clustering index to extract multiple records): In these cases the
selection condition involves an equality comparison on a non-key
attribute which has a clustering index (a secondary index). The clustering
index is used to retrieve all records which satisfy the selection condition.

• (IS6 – secondary index, B+ tree): A selection condition with an equality
comparison, a secondary index can be used to retrieve a single record if
the indexing field is a key or to retrieve multiple records if the indexing
field is not a key. Secondary indices can also be used for any of the
comparison operators, not just equality.

COP 4710: Database Systems (Day 21) Page 16 Mark Llewellyn ©

Algorithms for Conjunctive Selections

• Conjunctive selections are selection conditions in which
several conditions are logically AND’ed together.

• For simple (non-conjunctive) selection conditions,
optimization basically means that you check for the
existence of an access path on the attribute involved in the
condition and use it if available, otherwise a linear search is
performed.

• Query optimization for selection is most useful for
conjunctive conditions whenever more than one of the
participating attributes has an access path.

• The optimizer should choose the access path that retrieves
the fewest records in the most efficient manner.

COP 4710: Database Systems (Day 21) Page 17 Mark Llewellyn ©

Algorithms for Conjunctive Selections (cont.)

• The overriding concern when choosing between multiple
simple conditions in a conjunctive select condition is the
selectivity of each condition.

• Selectivity is defined as:

• The smaller the selectivity the fewer the tuples the condition
selects.

• Thus the optimizer should schedule the conjunctive selection
comparisons so that the smallest selectivity conditions are
applied first followed by the higher and higher selectivity
values so that the last condition applied has the highest
selectivity value.

relationtheinrecordsof#
conditionthesatisfywhichrecordsof#

ySelectivit =

COP 4710: Database Systems (Day 21) Page 18 Mark Llewellyn ©

Algorithms for Conjunctive Selections (cont.)

• Usually, exact selectivity values for all conditions are not available.
However, the DBMS will maintain estimates for most if not all types of
conditions and these estimates will be used by the optimizer.

• For example:

– The selectivity of an equality condition on a key attribute of a relation r(R) is:

– The selectivity of an equality condition on an attribute with n distinct values
can be estimated by:

Assuming that the records are evenly distributed across the n distinct values,
a total of |r(R)|/n records would satisfy an equality condition on this attribute.

)R(r
1

n
1

)R(r
n

)R(r

=









COP 4710: Database Systems (Day 21) Page 19 Mark Llewellyn ©

Algorithms for Conjunctive Selections (cont.)

• (IS7-conjunctive selection): If an attribute is involved in any single
simple condition in the conjunctive selection has an access path that
permits the use of any of FS2 through IS6, use that condition to retrieve
the records, then check if each retrieved record satisfies the remaining
simple conditions in the conjunctive condition.

• (IS8-conjunctive selection using a composite index): If two or more
attributes are involved in an equality condition and a composite index (or
hash structure) exists for the combined fields – use the composite index
directly.

• (IS9-conjunctive selection by intersection of record pointers): If
secondary indices are available on any or all of the attributes involved in
an equality comparison (assuming that the indices use record pointer and
not block pointers), then each index is used to retrieve the record pointers
that satisfy the individual simple conditions. The intersection of these
record pointers is the set of tuples that satisfy the conjunction.

