
COP 4710: Database Systems (Day 20) Page 1 Mark Llewellyn ©

COP 4710: Database Systems
Spring 2004

-Day 20 – March 22, 2004 –
Introduction to SQL – Part 4

COP 4710: Database Systems
Spring 2004

-Day 20 – March 22, 2004 –
Introduction to SQL – Part 4

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2004

COP 4710: Database Systems (Day 20) Page 2 Mark Llewellyn ©

An Example Database

COP 4710: Database Systems (Day 20) Page 3 Mark Llewellyn ©

SQL Join Operations

• The SQL join operations merge rows from two tables and
returns the rows that:

1. Have common values in common columns (natural join) or,

2. Meet a given join condition (equality or inequality) or,

3. Have common values in common columns or have no matching
values (outer join).

• We’ve already examined the basic form of an SQL join
which occurs when two tables are listed in the FROM clause
and the WHERE clause specifies the join condition.

• An example of this basic form of the join is shown on the
next page.

COP 4710: Database Systems (Day 20) Page 4 Mark Llewellyn ©

SQL Join Operations (cont.)

• The FROM clause indicates which tables are to be joined. If
three or more tables are specified, the join operation takes
place two tables at a time, starting from left to right.

• The join condition is specified in the WHERE clause. In the
example, a natural join is effected on the attribute V_CODE.

• The SQL join syntax shown above is sometimes referred to
as an “old-style” join.

• The tables on pages 16 and 17, summarize the SQL join
operations.

SELECT P_CODE, P_DESCRIPT, P_PRICE, V_NAME

FROM PRODUCT, VENDOR

WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

COP 4710: Database Systems (Day 20) Page 5 Mark Llewellyn ©

SQL Cross Join Operation

• A cross join in SQL is equivalent to a Cartesian
product in standard relational algebra. The cross
join syntax is:

SELECT column-list

FROM table1, table2;

SELECT column-list

FROM table1 CROSS JOIN table2;

old style syntax

new style syntax

COP 4710: Database Systems (Day 20) Page 6 Mark Llewellyn ©

SQL Natural Join Operation

• The natural join syntax is:

• The natural join will perform the following tasks:

– Determine the common attribute(s) by looking for
attributes with identical names and compatible data types.

– Select only the rows with common values in the common
attribute(s).

– If there are no common attributes, return the cross join of
the two tables.

SELECT column-list

FROM table1 NATURAL JOIN table2;
new style syntax

COP 4710: Database Systems (Day 20) Page 7 Mark Llewellyn ©

SQL Natural Join Operation (cont.)

• The syntax for the old-style natural join is:

• One important difference between the natural join
and the “old-style” syntax is that the natural join
does not require the use of a table qualifier for the
common attributes. The two SELECT statements
shown on the next page are equivalent.

SELECT column-list

FROM table1, table2

WHERE table1.C1 = table2.C2;

old style syntax

COP 4710: Database Systems (Day 20) Page 8 Mark Llewellyn ©

SQL Natural Join Operation (cont.)

SELECT CUS_NUM, CUS_LNAME,

INV_NUMBER, INV_DATE

FROM CUSTOMER, INVOICE

WHERE CUSTOMER.CUS_NUM = INVOICE. CUS_NUM;

old style
syntax

SELECT CUS_NUM, CUS_LNAME,

INV_NUMBER, INV_DATE

FROM CUSTOMER NATURAL JOIN INVOICE;

old style
syntax

COP 4710: Database Systems (Day 20) Page 9 Mark Llewellyn ©

Join With Using Clause

• A second way to express a join is through the
USING keyword. This query will return only the
rows with matching values in the column indicated
in the USING clause. The column listed in the
USING clause must appear in both tables.

• The syntax is:

SELECT column-list

FROM table1 JOIN table2 USING (common-column);

old style syntax

COP 4710: Database Systems (Day 20) Page 10 Mark Llewellyn ©

Join With Using Clause (cont.)

• An example:

• As was the case with the natural join command, the
JOIN USING does not required the use of qualified
names (qualified table names). In fact, Oracle 9i
will return an error if you specify the table name in
the USING clause.

SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS,

LINE_PRICE

FROM INVOICE JOIN LINE USING (INV_NUMBER)

JOIN PRODUCT USING (P_CODE);

COP 4710: Database Systems (Day 20) Page 11 Mark Llewellyn ©

Join On Clause

• Both the NATURAL JOIN and the JOIN USING commands
use common attribute names in joining tables.

• Another way to express a join when the tables have no
common attribute names is to use the JOIN ON operand.
This query will return only the rows that meet the indicated
condition. The join condition will typically include an
equality comparison expression of two columns. The
columns may or may not share the same name, but must
obviously have comparable data types.

• The syntax is:
SELECT column-list

FROM table1 JOIN table2 ON join-condition;

COP 4710: Database Systems (Day 20) Page 12 Mark Llewellyn ©

Join On Clause (cont.)

• An example:

• Notice in the example query, that unlike the NATURAL
JOIN and the JOIN USING operation, the JOIN ON clause
requires the use of table qualifiers for the common attributes.
If you do not specify the table qualifier you will get a
“column ambiguously defined” error message.

• Keep in mind that the JOIN ON syntax allows you to
perform a join even when the tables do not share a common
attribute name.

SELECT INVOICE.INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE

FROM INVOICE JOIN LINE ON INVOICE.INV_NUMBER = LINE.INV_NUMBER

JOIN PRODUCT ON LINE.P_CODE = PRODUCT.P_CODE;

COP 4710: Database Systems (Day 20) Page 13 Mark Llewellyn ©

Join On Clause (cont.)

• For example, to general a list of all employees with
the manager’s name you can use the recursive query
shown below which utilizes the JOIN ON clause.

SELECT E.EMP_MGR, M.EMP_LNAME, E.EMP_NUM, E.EMP_LNAME

FROM EMP E JOIN EMP M ON E.EMP_MGR = M.EMP_NUM

ORDER BY E.EMP_MGR;

COP 4710: Database Systems (Day 20) Page 14 Mark Llewellyn ©

Outer Joins
• We saw the forms for the LEFT OUTER JOIN and the

RIGHT OUTER JOIN in the previous set of notes.

• There is also a FULL OUTER JOIN operation in SQL. A
full outer join returns not only the rows matching the join
condition (that is, rows with matching values in the common
column(s)), but also all the rows with unmatched values in
either side table.

• The syntax of a full outer join is:

SELECT column-list

FROM table1 FULL [OUTER] JOIN table2 ON join-condition;

COP 4710: Database Systems (Day 20) Page 15 Mark Llewellyn ©

Outer Joins (cont.)

• The following example will list the product code,
vendor code, and vendor name for all products and
include all the product rows (products without
matching vendors) and also all vendor rows
(vendors without matching products):

SELECT P_CODE, VENDOR.V_CODE, V_NAME

FROM VENDOR FULL OUTER JOIN PRODUCT

ON VENDOR.V_CODE = PRODUCT.V_CODE;

COP 4710: Database Systems (Day 20) Page 16 Mark Llewellyn ©

Summary of SQL JOIN Operations

Returns only the rows that meet the join condition
indicated in the ON clause.

SELECT *
FROM T1 JOIN T2

ON T1.C1 = T2.C1

JOIN ON

Returns only the rows with matching values in the
columns indicated in the USING clause.

SELECT *
FROM T1 JOIN T2 USING
(C1)

JOIN USING

Returns only the rows with matching values in the
matching columns. The matching columns must
have the same names and similar data types.

SELECT *
FROM T1 NATURAL JOIN
T2

NATURAL
JOIN

Returns only the rows that meet the join condition in
the WHERE clause – old style. Only rows with
matching values are selected.

SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1

Old Style
JOIN

Inner

New style. Returns the Cartesian product of T1 and
T2.

SELECT *
FROM T1 CROSS JOIN T2;

Old style. Returns the Cartesian product of T1 and
T2

SELECT *
FROM T1, T2;

CROSS
JOIN

Cross

DescriptionSQL Syntax ExampleJoin TypeJoin
Classification

COP 4710: Database Systems (Day 20) Page 17 Mark Llewellyn ©

Summary of SQL JOIN Operations
(cont.)

Returns rows with matching values and includes all
rows from both tables (T1 and T2) with unmatched
values.

SELECT *
FROM T1 FULL OUTER
JOIN T2
ON T1.C1= T2.C1

FULL JOIN

Returns rows with matching values and includes all
rows from the right table (T2) with unmatched
values.

SELECT *
FROM T1 RIGHT OUTER
JOIN T2
ON T1.C1= T2.C1

RIGHT JOIN

Returns rows with matching values and includes all
rows from the left table (T1) with unmatched values.

SELECT *
FROM T1 LEFT OUTER
JOIN T2
ON T1.C1= T2.C1

LEFT JOINOuter

DescriptionSQL Syntax ExampleJoin TypeJoin
Classification

COP 4710: Database Systems (Day 20) Page 18 Mark Llewellyn ©

Subqueries and Correlated Queries
• The use of joins allows a RDBMS go get information from

two or more tables. The data from the tables is processed
simultaneously.

• It is often necessary to process data based on other processed
data. Suppose, for example, that you want to generate a list
of vendors who provide products. (Recall that not all
vendors in the VENDOR table have provided products –
some of them are only potential vendors.)

• The following query will accomplish our task:
SELECT V_CODE, V_NAME

FROM VENDOR

WHERE V_CODE NOT IN (SELECT V_CODE FROM PRODUCT);

COP 4710: Database Systems (Day 20) Page 19 Mark Llewellyn ©

Subqueries and Correlated Queries (cont.)

• A subquery is a query (SELECT statement) inside a query.

• A subquery is normally expressed inside parentheses.

• The first query in the SQL statement is known as the outer
query.

• The second query in the SQL statement is known as the inner
query.

• The inner query is executed first.

• The output of the inner query is used as the input for the
outer query.

• The entire SQL statement is sometimes referred to as a
nested query.

COP 4710: Database Systems (Day 20) Page 20 Mark Llewellyn ©

Subqueries and Correlated Queries (cont.)

• A subquery can return:

1. One single value (one column and one row). This subquery can be
used anywhere a single value is expected. For example, in the right
side of a comparison expression.

2. A list of values (one column and multiple rows). This type of
subquery can be used anywhere a list of values is expected. For
example, when using the IN clause.

3. A virtual table (multi-column, multi-row set of values). This type of
subquery can be used anywhere a table is expected. For example, in
the FROM clause.

4. No value at all, i.e., NULL. In such cases, the output of the outer
query may result in an error or null empty set, depending on where
the subquery is used (in a comparison, an expression, or a table set).

COP 4710: Database Systems (Day 20) Page 21 Mark Llewellyn ©

WHERE Subqueries
• The most common type of subquery uses an inner SELECT

subquery on the right hand side of a WHERE comparison
expression.

• For example, to find all products with a price greater than or
equal to the average product price, the following query
would be needed:

SELECT P_CODE, P_PRICE

FROM PRODUCT

WHERE P_PRICE >= (SELECT AVG(P_PRICE)

FROM PRODUCT);

COP 4710: Database Systems (Day 20) Page 22 Mark Llewellyn ©

WHERE Subqueries (cont.)

• Subqueries can also be used in combination with joins.

• The query below lists all the customers that ordered the
product “Claw hammer”.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME

FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

JOIN LINE USING (INV_NUMBER)

JOIN PRODUCT USING (P_CODE)

WHERE P_CODE = (SELECT P_CODE

FROM PRODUCT

WHERE P_DESCRIPT = “Claw hammer”);

COP 4710: Database Systems (Day 20) Page 23 Mark Llewellyn ©

WHERE Subqueries (cont.)

• Notice that the previous query could have been written as:

• However, what would happen if two or more product
descriptions contain the string “Claw hammer”?

– You would get an error message because only a single
value is expected on the right hand side of this expression.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME

FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

JOIN LINE USING (INV_NUMBER)

JOIN PRODUCT USING (P_CODE)

WHERE P_DESCRIPT = ‘Claw hammer’);

COP 4710: Database Systems (Day 20) Page 24 Mark Llewellyn ©

IN Subqueries
• To handle the problem we just saw, the IN operand must be

used.

• The query below lists all the customers that ordered any kind
of hammer or saw.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME

FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

JOIN LINE USING (INV_NUMBER)

JOIN PRODUCT USING (P_CODE)

WHERE P_CODE IN (SELECT P_CODE

FROM PRODUCT

WHERE P_DESCRIPT LIKE ‘%hammer%’

OR P_DESCRIPT LIKE ‘%saw%’);

COP 4710: Database Systems (Day 20) Page 25 Mark Llewellyn ©

HAVING Subqueries
• It is also possible to use subqueries with a HAVING clause.

• Recall that the HAVING clause is used to restrict the output
of a GROUP BY query by applying a conditional criteria to
the grouped rows.

• For example, the following query will list all products with
the total quantity sold greater than the average quantity sold.

SELECT DISTINCT P_CODE, SUM(LINE_UNITS)

FROM LINE

GROUP BY P_CODE

HAVING SUM(LINE_UNITS) > (SELECT AVG(LINE_UNITS)

FROM LINE);

COP 4710: Database Systems (Day 20) Page 26 Mark Llewellyn ©

Multi-row Subquery Operators: ANY and ALL
• The IN subquery uses an equality operator; that is, it only

selects those rows that match at least one of the values in the
list. What happens if you need to do an inequality
comparison of one value to a list of values?

• For example, suppose you want to know what products have
a product cost that is greater than all individual product costs
for products provided by vendors from Florida.

SELECT P_CODE, P_ONHAND*P_PRICE

FROM PRODUCT

WHERE P_ONHAND*P_PRICE > ALL (SELECT P_ONHAND*P_PRICE

FROM PRODUCT

WHERE V_CODE IN (SELECT V_CODE

FROM VENDOR

WHERE V_STATE= ‘FL’));

COP 4710: Database Systems (Day 20) Page 27 Mark Llewellyn ©

FROM Subqueries
• In all of the cases of subqueries we’ve seen so far, the subquery was part

of a conditional expression and it always appeared on the right hand side
of an expression. This is the case for WHERE, HAVING, and IN
subqueries as well as for the ANY and ALL operators.

• Recall that the FROM clause specifies the table(s) from which the data
will be drawn. Because the output of a SELECT statement is another
table (or more precisely, a “virtual table”), you could use a SELECT
subquery in the FROM clause.

• For example, suppose that you want to know all customers who have
purchased products 13-Q2/P2 and 23109-HB. Since all product
purchases are stored in the LINE table, it is easy to find out who
purchased any given product just by searching the P_CODE attribute in
the LINE table. However, in this case, you want to know all customers
who purchased both, not just one.

• The query on the next page accomplishes this task.

COP 4710: Database Systems (Day 20) Page 28 Mark Llewellyn ©

FROM Subqueries (cont.)

SELECT DISTINCT CUSTOMER.CUS_CODE, CUSTOMER.LNAME

FROM CUSTOMER, (SELECT INVOICE.CUS_CODE

FROM INVOICE NATURAL JOIN LINE

WHERE P_CODE = ’13-Q2/P2’) CP1,

(SELECT INVOICE.CUS_CODE

FROM INVOICE NATURAL JOIN LINE

WHERE P_CODE = ‘23109-HB’) CP2

WHERE CUSTOMER.CUS_CODE = CP1.CUS_CODE

AND CP1.CUS_CODE = CP2.CUS_CODE;

