
COP 4710: Database Systems (Day 18) Page 1 Mark Llewellyn

COP 4710: Database Systems
Spring 2004

-Day 18 – March 15, 2004 –
Introduction to SQL – Part 2

COP 4710: Database Systems
Spring 2004

-Day 18 – March 15, 2004 –
Introduction to SQL – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2004

COP 4710: Database Systems (Day 18) Page 2 Mark Llewellyn

An Example Database

COP 4710: Database Systems (Day 18) Page 3 Mark Llewellyn

Special Operators in SQL
• ANSI standard SQL allows the use of special operators in

conjunction with the WHERE clause. These special
operators (see Day 17, page26) include:

BETWEEN – Used to check whether an attribute value is within a
range.

IS NULL – Used to determine if an attribute value is null.
LIKE – Used to match an attribute value to a string pattern. Many

wildcard options are available.
IN – Used to determine if an attribute value is within a list of values.
EXISTS – Used to determine if a subquery returns an empty set or

not.

COP 4710: Database Systems (Day 18) Page 4 Mark Llewellyn

The BETWEEN Special Operator
• Suppose that we want to see a listing for all products whose

prices are between $50 and $100. The BETWEEN operator
can be used for this query expression.

• If your RDBMS does not support BETWEEN you would
need to express this query as:

SELECT *

FROM PRODUCT

WHERE P_PRICE BETWEEN 50.00 AND 100.00;

SELECT *

FROM PRODUCT

WHERE P_PRICE > 50.00 AND P_PRICE < 100.00;

COP 4710: Database Systems (Day 18) Page 5 Mark Llewellyn

The IS NULL Special Operator
• Suppose that we want to see a listing for all products that do

not currently have a vendor assigned, i.e., V_CODE = null.
The null entries could be found with the following query
expression.

• NOTE: SQL uses a special operator for testing for nulls.
You cannot use a condition such as V_CODE = NULL. The
reason is that NULL is technically not a “value”, but a
special property of an attribute that represents precisely the
absence of any value at all.

SELECT P_CODE, P_DESCRIPT, V_CODE

FROM PRODUCT

WHERE V_CODE IS NULL;

COP 4710: Database Systems (Day 18) Page 6 Mark Llewellyn

The LIKE Special Operator
• The LIKE special operator is used in conjunction with

wildcards to find patterns within string attributes.

• Standard SQL allows you to use the percent sign (%) and
underscore (_) wildcard characters to make matches when
the entire string is not known.

% means any and all following characters are eligible.

‘M%’ includes Mark, Marci, M-234x, etc.

_ means any one character may be substituted for the underscore.

‘_07-345-887_’ includes 407-345-8871, 007-345-8875

• Note: Access uses * instead of % and ? instead of _. Oracle
searches are case-sensitive, Access searches are not.

COP 4710: Database Systems (Day 18) Page 7 Mark Llewellyn

The LIKE Special Operator (cont.)

• Suppose that we would like to find all the VENDOR rows
for contacts whose last names begin with Smith.

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE

FROM VENDOR

WHERE V_CONTACT LIKE ‘Smith%’;

Access wildcard

COP 4710: Database Systems (Day 18) Page 8 Mark Llewellyn

The IN Special Operator
• Many queries that would seem to require the use of the

logical OR operator can be more easily handled with the help
of the special operator IN.

• For example the query:

can be handled more efficiently with:

SELECT *

FROM PRODUCT

WHERE V_CODE = 21344 OR V_CODE = 24288;

SELECT *

FROM PRODUCT

WHERE V_CODE IN (21344, 24288);

COP 4710: Database Systems (Day 18) Page 9 Mark Llewellyn

The IN Special Operator (cont.)

• The IN operator is especially valuable when it is used in conjunction with
subqueries.

• For example, suppose you want to list the V_CODE and V_NAME of
only those vendors that actually provide products. In this case, you could
use a subquery within the IN operator to automatically generate the value
list. The query expression would be:

• We’ll look more closely at the IN operator later when we deal more in
depth with subqueries.

SELECT V_CODE, V_NAME

FROM VENDOR

WHERE V_CODE IN (SELECT V_CODE

FROM PRODUCT);

COP 4710: Database Systems (Day 18) Page 10 Mark Llewellyn

The EXISTS Special Operator
• The EXISTS operator can be sued whenever there is a

requirement to execute a command based on the result of
another query. That is, if a subquery returns any rows, then
run the main query, otherwise, don’t. We’ll see this operator
in more detail when we look at subqueries in more depth.

• For example, suppose we want a listing of vendors, but only
if there are products to order. The following query will
accomplish our task.

SELECT *

FROM VENDOR

WHERE EXISTS (SELECT *

FROM PRODUCT

WHERE P_ONHAND <= P_MIN);

COP 4710: Database Systems (Day 18) Page 11 Mark Llewellyn

Advanced DDL Commands in SQL

• In the notes for Day 17 we covered the basics of table
creation in SQL, including inserting, deleting, and updating
rows in tables.

• Now we’ll look at the SQL commands to alter a table’s
structure, by changing attribute characteristics and by adding
columns. We’ll also see how to add data into new or
modified columns. We’ll also see how to copy tables or
parts of tables as well as deleting entire tables.

COP 4710: Database Systems (Day 18) Page 12 Mark Llewellyn

The ALTER Command
• All changes in the table structure are made using the ALTER

command, followed by a keyword that produces the specific
change you want to make.

• There are three options for the keyword: ADD, MODIFY,
and DROP.

– ADD enables you to add a column to a table.

– MODIFY enables you to change a column’s characteristics.

– DROP allows you to delete a column from a table Most RDBMSs do
not allow you to delete a column from a table, unless that column
does not contain any values, because such an action may delete
crucial data that are used by other tables.

COP 4710: Database Systems (Day 18) Page 13 Mark Llewellyn

The ALTER Command (cont.)

• The basic syntax of the ALTER command is:

• The ALTER TABLE command can also be used to add table
constraints. In that case the syntax would be as follows:

ALTER TABLE tablename

{ADD | MODIFY} (columnname datatype

[{ADD | MODIFY} columnname datatype]);

ALTER TABLE tablename

ADD constraint [ADD constraint];

COP 4710: Database Systems (Day 18) Page 14 Mark Llewellyn

The ALTER Command (cont.)

• You can also use the ALTER TABLE command to remove a
column or table constraint. The basic syntax of this form of
the ALTER command is:

• Notice that when removing a constraint, you need to specify
the name given to the constraint. This is one reason why it is
always advisable to name the constraints in the CREATE
TABLE or ALTER TABLE statements.

ALTER TABLE tablename

DROP { PRIMARY KEY |

COLUMN columnname |

CONSTRAINT constraintname } ;

COP 4710: Database Systems (Day 18) Page 15 Mark Llewellyn

Changing a Column’s Data Type
• You can also use the ALTER TABLE command to change the data type

of a column.

• For example, suppose we wanted to change the data type of V_CODE
attribute in the PRODUCT table from integer to character. The following
SQL command would accomplish this task:

• Most RDBMSs doe not allow you to change the data type of an attribute
unless the column to be changed is empty. For example, if we issued the
SQL command above on the database we’ve been using and error
message would be generated because the V_CODE column already
contains data. The reason for the error is simple. The V_CODE attribute
in PRODUCT references the V_CODE attribute in VENDOR. If the data
types don’t match, there is a referential integrity violation, thus triggering
the error message. If the V_CODE column in PRODUCT was empty
and the foreign key reference was not specified during the PRODUCT
table’s creation, then the SQL command above would execute properly.

ALTER TABLE PRODUCT

MODFIY (V_CODE CHAR(5));

COP 4710: Database Systems (Day 18) Page 16 Mark Llewellyn

Changing a Column’s Data Characteristics
• If the column to be changes already contains data, you can

make any changes in the column’s characteristics if those
changes do not alter the data type.

• For example, if we wanted to increase the width of the
P_PRICE column from 8 digits to 9 digits, we would need to
issue the following command:

• Many RDBMSs place restrictions on the types of changes to
column characteristics that can occur. For example, Oracle
will allow you to widen a column but will not allow you to
narrow a column.

ALTER TABLE PRODUCT

MODFIY (P_PRICE DECIMAL(9,2));

COP 4710: Database Systems (Day 18) Page 17 Mark Llewellyn

Adding a Column to a Table
• You can alter an existing table by adding one or more

columns.

• For example, suppose that we want to add a column to the
PRODUCT table called P_SALECODE that will allow us to
decide if products that have been in inventory for a certain
length of time should be placed on sale. Let’s assume that
the P_SALECODE entries will be 1, 2, or 3, and we’re not
going to do arithmetic on the column so we’ll make it a
character.

ALTER TABLE PRODUCT

ADD (P_SALECODE CHAR(1));

COP 4710: Database Systems (Day 18) Page 18 Mark Llewellyn

Adding a Column to a Table (cont.)

• When adding a column, be careful not to include the NOT
NULL clause for the new column. Doing so will cause an
error message because when adding a new column to a table
that already has rows, the existing rows will default to a
value of null for the new column. Therefore, it is not
possible to add the NOT NULL clause for this new column.

• You can add the NOT NULL clause to the table structure
after all the data for the new column has been entered and the
column no longer contains nulls.

COP 4710: Database Systems (Day 18) Page 19 Mark Llewellyn

Deleting a Column from a Table
• Occasionally, you may want to modify a table by deleting a

column.

• Suppose that we want to delete the V_ORDER attribute from
the VENDOR table. To accomplish this task we would use
the following SQL command:

• As before, some RDBMSs will impose restrictions on the
deletion of an attribute. For example, most RDBMSs will
not allow you to delete attributes that are involved in foreign
key relationships, nor may you delete an attribute of a table
that contains only that one attribute.

ALTER TABLE VENDOR

DROP COLUMN V_ORDER;

COP 4710: Database Systems (Day 18) Page 20 Mark Llewellyn

Advanced Data Updates
• To make data entries in an existing row’s columns, SQL uses

the UPDATE command. The UPDATE command only
updates data in existing rows.

• For example, to enter the P_SALECODE value of ‘2’ in the
fourth row of the PRODUCT_2 table, we need to use the
UPDATE command in conjunction with the primary key
value for that row. The following command produces this
effect with the before and after results shown on the next
page.

UPDATE PRODUCT_2

SET P_SALECODE = ‘2’

WHERE P_CODE = ‘1546-QQ2’;

COP 4710: Database Systems (Day 18) Page 21 Mark Llewellyn

Advanced Data Updates (cont.)

P_SALECODE value before update

COP 4710: Database Systems (Day 18) Page 22 Mark Llewellyn

Advanced Data Updates (cont.)

P_SALECODE value after update

COP 4710: Database Systems (Day 18) Page 23 Mark Llewellyn

Advanced Data Updates (cont.)

• Subsequent data can be entered in the same fashion, defining
each entry location by its primary key (P_CODE) and its
column location (P_SALECODE).

• The table on the previous page, also reflects the execution of
the following SQL command:

UPDATE PRODUCT_2

SET P_SALECODE = ‘1’

WHERE P_CODE IN (‘2232/QWE’, ‘2232/QTY’);

COP 4710: Database Systems (Day 18) Page 24 Mark Llewellyn

Advanced Data Updates (cont.)

• Although the UPDATE sequences we’ve just seen allow you
to enter values into specified table cells, the process is very
cumbersome. Fortunately, there may be better method.

• If a relationship can be established between entries and the
existing columns, that relationship may be used to assign
values to their appropriate slots.

• For example, suppose that we want to place sales codes based
on the P_INDATE into the table using the following rule:

• If P_INDATE is before December 25, 2003, then P_SALECODE = 2

• If P_INDATE between Jan. 16 and Feb 10, 2004, then P_SALECODE = 1

COP 4710: Database Systems (Day 18) Page 25 Mark Llewellyn

Advanced Data Updates (cont.)

• Given the rule from the previous page and using the PRODUCT
table to effect the update, the following two command sequences
will make all the appropriate updates to the P_SALECODE in the
PRODUCT table. The effect of these two updates on the
PRODUCT table is shown on the next page.
UPDATE PRODUCT

SET P_SALECODE = ‘2’

WHERE P_INDATE < ’25-Dec-2003’;

UPDATE PRODUCT

SET P_SALECODE = ‘1’

WHERE P_INDATE >= ’16-Jan-2004’

AND P_INDATE <= ’10-Feb-2004’;

COP 4710: Database Systems (Day 18) Page 26 Mark Llewellyn

Advanced Data Updates (cont.)

COP 4710: Database Systems (Day 18) Page 27 Mark Llewellyn

Advanced Data Updates (cont.)

• The arithmetic operators are particularly useful in data
updates.

• For example, if the quantity on hand in the PRODUCT table
has dropped below the minimum desirable value, you’ll order
more of the product. Suppose that we’ve ordered 20 more
units of product 2232/QWE. When the 20 units arrive, we’ll
need to add them to the inventory in the following manner:

UPDATE PRODUCT

SET P_ONHAND = P_ONHAND + 20

WHERE P__CODE = ‘2232/QWE/;

COP 4710: Database Systems (Day 18) Page 28 Mark Llewellyn

Advanced Data Updates (cont.)

• Suppose that you want to add 10 percent to the price of all
products that have current prices below $50. This can be
accomplished with the following command.

UPDATE PRODUCT

SET P_PRICE = P_PRICE * 1.10

WHERE P__PRICE < 50.00;

COP 4710: Database Systems (Day 18) Page 29 Mark Llewellyn

Copying Parts of Tables

• Although the database should be properly designed before it is
implemented, there are times when it may be necessary to break up
a table structure into several component parts (smaller tables).

• SQL allows for the copying of the contents of selected table
columns so that the data in those columns need not be reentered
manually into the newly created table(s).

• Suppose, for example, that we want to copy the P_CODE,
P_DESCRIPT, and P_PRICE columns from the PRODUCT table to
a new table named PART.

• First, we’ll need to create the PART table as shown on the next
page.

UPDATE PRODUCT

SET P_PRICE = P_PRICE * 1.10

WHERE P__PRICE < 50.00;

COP 4710: Database Systems (Day 18) Page 30 Mark Llewellyn

Copying Parts of Tables (cont.)

• Note that the PART column names need not be identical to those in
the original table, and that the new table need not have the same
number of columns as the original table.

– In this case, the first column in the PART table is PART_CODE, rather
than the original P_CODE found in the PRODUCT table. And the
PART table contains only three columns, rather than the seven columns
found in the PRODUCT table.

– However, column characteristics must match: you cannot copy a
character-based attribute into a numeric structure, and vice versa.

CREATE TABLE PART (

PART_CODE CHAR(8) NOT NULL UNIQUE,

PART_DESCRIPT CHAR(35),

PART_PRICE DECIMAL(8,2),

PRIMARY KEY (PART_CODE));

COP 4710: Database Systems (Day 18) Page 31 Mark Llewellyn

Copying Parts of Tables (cont.)

• Next, we need to add the rows to the new PART table using the
PRODUCT table rows. To do this we’ll need to use the INSERT
command.

• Recall, the basic syntax of this command:

• The target-columnlist is requires if the source-columnlist doesn’t match all
of the attribute names and characteristics f the target table (including the
order of the columns!). Otherwise, you do not need to specify the target-
columnlist.

– In our example, we will need to specify the target-columnlist since we are
changing the names of one or more of the columns.

INSERT INTO target_tablename [(target_columnlist)]

SELECT source_columnlist

FROM source-tablename;

COP 4710: Database Systems (Day 18) Page 32 Mark Llewellyn

Copying Parts of Tables (cont.)

• To effect the desired update, we need to issue the following
INSERT command:

• The contents of the updated PARTS table can be viewed with
the following query:

• The results are shown on the next page.

INSERT INTO PART (PART_CODE, PART_DESCRIPT, PART_PRICE)

SELECT P_CODE, P_DESCRIPT, P_PRICE

FROM PRODUCT;

SELECT *

FROM PART;

COP 4710: Database Systems (Day 18) Page 33 Mark Llewellyn

Copying Parts of Tables (cont.)

Results of copying
parts of a table with
renaming of the
columns.

COP 4710: Database Systems (Day 18) Page 34 Mark Llewellyn

Adding Primary and Foreign Key Designations

• Although we were able to create a new table based on an
existing table in the previous example, the process is not
without its problems. Primarily, the new PART table was
created without the inclusion of the integrity rules of the table
on which it was based. In particular, there is no primary key
designated for the table shown on the previous page.

• To define the primary key for this table we need to use the
ALTER command as shown below:

ALTER TABLE PRODUCT

ADD PRIMARY KEY (P_CODE);

COP 4710: Database Systems (Day 18) Page 35 Mark Llewellyn

Adding Primary and Foreign Key Designations
(cont.)

• Quite aside from the fact that the integrity rules are not
automatically transferred to a new table that derives its data
from one or more other tables, there are several other
scenarios that would leave you without entity and referential
integrity enforcement.

• For example, you might have simply forgotten to define the
primary and foreign keys when you created the tables.

• The integrity rules can be reestablished via the ALTER
command as shown below:

ALTER TABLE PRODUCT
ADD PRIMARY KEY(P_CODE)
ADD FOREIGN KEY(V_CODE) REFERENCES VENDOR;

COP 4710: Database Systems (Day 18) Page 36 Mark Llewellyn

Deleting a Table From the Database

• A table can be deleted from the database through the DROP
command as shown below:

• A table can only be dropped from a database if it is not
participating as the “1” side of any relationships. If you
attempt to delete such a table, the RDMS will issue an error
message to indicate that a foreign key integrity violation has
occurred.

DROP TABLE PRODUCT

