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Let R = (C, S, Z)
F = {CS →Z, Z→C}
D = {(SZ), (CZ)}

G = F[SZ] ∪ F[CZ] Z = Z ∪ ((Z ∩ Ri)+ ∩ Ri)

Test for each fd in F.
Test for CS→Z

Z = CS, 
= {CS} ∪ ((CS ∩ SZ)+ ∩ SZ)
= {CS} ∪ ((S)+ ∩ SZ)
= {CS} ∪ (S)
= {CS}
= {CS} ∪ ((CS ∩ CZ)+ ∩ CZ)
= {CS} ∪ ((C)+ ∩ CZ)
= {CS} ∪ (C ∩ CZ)
= {CS} ∪ (C)
= {CS} thus, CS →Z is not preserved.

Practice Problem Solution
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Algorithm #1 for Producing a 3NF Decomposition

Algorithm 3NF.1
// input: a relation schema R= (A1, A2, …, An),   a set of fds F, a set of candidate keys K.
// output:  a 3NF decomposition of R, called D, which has the lossless join property and the
//              functional dependencies are preserved.

3NF.1 (R, F, K)
a = 0;
for each fd X → Y in F do

a = a +1;
Ra = XY;

endfor
if [none of the schemes Rb (1 ≤ b ≤ a) contains a candidate key of R] then

a = a + 1;
Ra = any candidate key of R

endif
if [                     ] then   //there are missing attributes 

Ra+1 = 
return D = {R1, R2, ..., Ra+1}

end.

RRa
1b b ≠

=U

Ua
1b bRR

=
−



COP 4710: Database Systems  (Day 12)              Page 4 Mark Llewellyn

Let R = (A, B, C, D, E)
K = {AB, AC}
F = {AB→CDE, AC→BDE, B→C, C→B, C→D, B→E}

Step 1: D = {(ABCDE), (ACBDE), (BC), (CB), (CD), (BE)}

Reduce to: D = {(ABCDE), (BC), (CD), (BE)}

Step 2: Does D contain a candidate key for R?  
Yes, in (ABCDE)

Step 3: Are all the attributes of R contained in D?
Yes.

Return D as: {(ABCDE), (BC), (CD), (BE)}

Example – Using Algorithm 3NF.1
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Algorithm #2 for Producing a 3NF Decomposition

Algorithm 3NF.2
// input: a relation schema R= (A1, A2, …, An),   a set of fds F, a set of candidate keys K.
// output:  a 3NF decomposition of R, called D, which is not guaranteed to have either the
//              lossless join property or to preserve the functional dependencies in F.
//  This algorithm is based on the removal of transitive dependencies.

3NF.2 (R, F, K)
do

if [K → Y → A where A is non-prime and not an element of either K or Y] then
decompose R into:  R1 = {R – A} with K1 = {K} and R2 = {YA} with K2 = {Y}.

repeat until no transitive dependencies exist in any schema
D =  union of all 3NF schemas produced above.
test for lossless join
test for preservation of the functional dependencies

end.
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Let R = (A, B, C, D, E)
K = {AB, AC}
F = {AB→CDE, AC→BDE, B→C, C→B, C→D, B→E}

Step 1: R not in 3NF since AB → C → D
Decompose to:  R1 = (A, B, C, E) with K1 = K = {AB, AC}

R2 = (C, D) with K2 = {C}

Step 2: R2 in 3NF.   R1 not in 3NF since AB → B → E 
Decompose R1 to:  R11 = (A, B, C) with K11= K1 = K = {AB, AC}

R12 = (B, E) with K12 = {B}

Step 3: R2, R11, and R12 are all in 3NF

Step 4: Test for the lossless join property (see next page).

Example – Using Algorithm 3NF.2
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AB→CDE: (1st time: equates nothing)
AC→BDE: (1st time: equates nothing)
B→C: (1st time: equates a3 & b33)
C→B: (1st time: equates a2 & b12)
C→D: (1st time: equates b14, b24, b34) – stop second row becomes all a’s
B→E: (1st time: equates a5, b15, b25)

Decomposition has the lossless join property.

Step 4: Checking for a Lossless Join in the Decomposition

a5a4a3a2b31(BE)

b15a4a3a2a1(ABC)

b15a4a3a2b11(CD)

EDCBA
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Let R = (A, B, C, D, E)
F = {AB→CDE, AC→BDE, B→C, C→B, C→D, B→E}}
D = {(CD), (ABC), (BE)}

G = F[CD] ∪ F[ABC] ∪ F[BE] Z = Z ∪ ((Z ∩ Ri)+ ∩ Ri)
Test for AB→CDE

Z = AB, 
= {AB} ∪ ((AB ∩ CD)+ ∩ CD)
= {AB} ∪ ((∅)+ ∩ CD)
= {AB} ∪ (∅ ∩ CD)
= {AB} ∪ (∅)
= {AB}
= {AB} ∪ ((AB ∩ ABC)+ ∩ ABC)
= {AB} ∪ ((AB)+ ∩ ABC)
= {AB} ∪ (ABCDE ∩ ABC)
= {AB} ∪ (ABC)
= {ABC}
= {ABC} ∪ ((ABC ∩ BE)+ ∩ BE)
= {ABC} ∪ ((B)+ ∩ BE)
= {ABC} ∪ (BCDE ∩ BE)
= {ABC} ∪ (BE)
= {ABCE}

Step 5: Testing the Preservation of the Functional Dependencies
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Test for AB→CDE continues
Z = {ABCE} ∪ ((ABCE ∩ CD)+ ∩ CD)

= {ABCE} ∪ ((C)+ ∩ CD)
= {ABCE} ∪ (CBDE ∩ CD)
= {ABCE} ∪ (CD)
= {ABCDE} thus, AB→CDE is preserved

Test for AC→BDE 
Z = AC

= {AC} ∪ ((AC ∩ CD)+ ∩ CD)
= {AC} ∪ ((C)+ ∩ CD)
= {AC} ∪ (CBDE ∩ CD)
= {AC} ∪ (CD)
= {ACD}
= {ACD} ∪ ((ACD ∩ ABC)+ ∩ ABC)
= {ACD} ∪ ((AC)+ ∩ ABC)
= {ACD} ∪ (ACBDE ∩ ABC)
= {ACD} ∪ (ABC)
= {ABCD}

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)
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Test for AC→BDE continues
Z = {ABCD} ∪ ((ABCD ∩ BE)+ ∩ BE)

= {ABCD} ∪ ((B)+ ∩ BE)
= {ABCD} ∪ (BCDE ∩ BE)
= {ABCD} ∪ (BE)
= {ABCDE} thus, AC→BDE is preserved

Test for B→C 
Z = B

= {B} ∪ ((B ∩ CD)+ ∩ CD)
= {B} ∪ ((C)+ ∩ CD)
= {B} ∪ (CBDE ∩ CD)
= {B} ∪ (CD)
= {BCD} thus B→C is preserved

Test for C→B 
Z = C

= {C} ∪ ((C ∩ CD)+ ∩ CD)
= {C} ∪ ((C)+ ∩ CD)
= {C} ∪ (CBDE ∩ CD)
= {C} ∪ (CD)
= {CD}

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)
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Test for C→B continues
Z = {CD} ∪ ((CD ∩ ABC)+ ∩ ABC)

= {CD} ∪ ((C)+ ∩ ABC)
= {CD} ∪ (CBDE ∩ ABC)
= {CD} ∪ (BC)
= {BCD} thus, C→B is preserved

Test for C→D 
Z = C

= {C} ∪ ((C ∩ CD)+ ∩ CD)
= {C} ∪ ((C)+ ∩ CD)
= {C} ∪ (CBDE ∩ CD)
= {C} ∪ (CD)
= {CD} thus C→D is preserved

Test for B→E 
Z = B

= {B} ∪ ((B ∩ CD)+ ∩ CD)
= {B} ∪ ((∅)+ ∩ CD)
= {B} ∪ (∅)
= {B}

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)
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Test for B→E continues
Z = {B} ∪ ((B ∩ ABC)+ ∩ ABC)

= {B} ∪ ((B)+ ∩ ABC)
= {B} ∪ (BCDE ∩ ABC)
= {BC} ∪ (BC)
= {BC}

Z = {BC}
= {BC} ∪ ((BC ∩ ABC)+ ∩ ABC)
= {BC} ∪ ((C)+ ∩ ABC)
= {BC} ∪ (CBDE ∩ ABC)
= {BC} ∪ (BC)
= {BC}

Z = {BC}
= {BC} ∪ ((BC ∩ BE)+ ∩ BE)
= {BC} ∪ ((B)+ ∩ BE)
= {BC} ∪ (BCDE ∩ BE)
= {BC} ∪ (BE)
= {BCE} thus, B →E is preserved.

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)
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• Why would you use algorithm 3NF.2 rather than 
algorithm 3NF.1 when you know that algorithm 3NF.1 
will guarantee that both the lossless join property and the 
preservation of the functional dependencies?

• The answer is that algorithm 3NF.2 will typically 
produce fewer relational schemas than will algorithm 
3NF.1.  Although both the lossless join and dependency 
preservation properties must be independently tested 
when using algorithm 3NF.2.

Why Use 3NF.2 Rather Than 3NF.1
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Algorithm #3 for Producing a 3NF Decomposition

Algorithm 3NF.3
// input: a relation schema R= (A1, A2, …, An),   a set of fds F.
// output:  a 3NF decomposition of R, called D, which is guaranteed to have both the
//              lossless join property and to preserve the functional dependencies in F.
//  This algorithm is based on the a minimal cover for F (see Day 9 notes page 45).

3NF.3 (R, F)
find a minimal cover for F, call this cover G (see Day 9 page 45 for algorithm)
for each determinant X that appears in G do

create a relation schema { X ∪ A1 ∪ A2 ∪ ... ∪ Am} where Ai (1 ≤ i ≤ m) represents
all the consequents of fds in G with determinant X.

place all remaining attributes, if any, in a single schema.
if none of the schemas  contains a key for R, create an additional schema which 

contains any candidate key for R.
end.
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• Algorithm 3NF.3 is very similar to algorithm 3NF.1, 
differing only in how the schemas of the decomposition 
scheme are created.  

– In algorithm 3NF.1, the schemas are created directly from F.

– In algorithm 3NF.3, the schemas are created from a minimal 
cover for F.

• In general, algorithm 3NF.3 should generate fewer 
relation schemas than algorithm 3NF.1.

Algorithm 3NF.3
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• The algorithm given on page 14 of Day 11 notes for testing the 
preservation of a set of functional dependencies on a decomposition 
scheme is fairly efficient for computation, but somewhat tedious to 
do by hand.

• On the next page is an example solving the same problem that we did 
in the example on page 16 of Day 11, utilizing a different technique 
which is based on the concept of covers.

• Given D, R, and F, if D = {R1, R2, ..., Rn) then 

G = F[R1] ∪ F[R2] ∪ F[R3] ∪ ... ∪ F[Rn] and if every 

functional dependency in F is implied by G, then G covers F.

• The technique is to generate that portion of G+ that allows us to 
know if G covers F.

Another Technique for Testing the 
Preservation of Dependencies
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Let R = (A, B, C, D) 
F = {A→B, B→C, C→D, D→A}

D = {(AB), (BC), (CD)}

G = F[AB] ∪ F[BC] ∪ F[CD]

Projection onto schema (AB)
F[AB] = A+ ∪ B+ ∪ (AB)+

= {ABCD} ∪ {ABCD} ∪ {ABCD}
apply projection: =  {AB} ∪ {AB} ∪ {AB} = {AB}, A→B is covered

Projection onto schema (BC)
F[BC] = B+ ∪ C+ ∪ (BC)+

= {BCDA} ∪ {CDAB} ∪ {BCDA}
apply projection: =  {BC} ∪ {BC} ∪ {BC} = {BC}, C→C is covered

A Hugmongously Big Example Using Different Technique
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Projection onto schema (CD)
F[CD] = C+ ∪ D+ ∪ (CD)+

= {CDAB} ∪ {DABC} ∪ {CDAB}
apply projection: =  {CD} ∪ {CD} ∪ {CD} = {CD}, C→D is covered

• Thus, the projections have covered every functional dependency in F 
except D → A.  So, now the question becomes does G logically 
imply D → A?

• Generate D+(with respect to G) and if A is in this closure the answer 
is yes.

Therefore, G ? D → A

A Hugmongously Big Example Using Different Technique

(cont.)

}A,B,C,D{DG =+
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• Functional dependencies are the most common and important type of 
constraint in relational database design theory.

• However, there are situations in which the constraints that hold on a 
relation cannot be expressed as a functional dependency.

• Multi-valued dependencies are related to 1NF.  Recall that 1NF 
simply means that all attribute values in a relation are atomic, which 
means that a tuple cannot have a set of values for some particular 
attribute.

• If we have a situation in which two or more multi-valued 
independent attributes appear in the same relation schema, then we’ll 
need to repeat every value of one of the attributes with every value of 
the other attribute to keep the relation instance consistent and to 
maintain the independence among the attributes involved.

• Basically, whenever two independent 1:M relationships A:B and A:C 
occur in the same relation, a multi-valued dependency may occur.

Multi-valued Dependencies and Fourth Normal Form
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• Consider the following situation of a N1NF relation.

Multi-valued Dependencies (cont.)

Mercedes E500
Porsche Carrera

Mercedes E320
Ford F350

vehicles

COP 3330
CDA 3103
COT 4810

COP 4710
COP 3502

classes

Kristy

Mark

name



COP 4710: Database Systems  (Day 12)              Page 21 Mark Llewellyn

• Converting the  N1NF relation to a 1NF relation.

Multi-valued Dependencies (cont.)

Porsche CarreraCOP 3330Kristy

Porsche CarreraCDA 3103Kristy

Porsche CarreraCOT 4810Kristy

Mercedes E500COT 4810Kristy

Mercedes E500COP 3330Kristy

Ford F350COP 3502Mark

Ford F350COP 4710Mark

Mercedes E500 

Mercedes E320

Mercedes E320

vehicles

CDA 3103

COP 3502

COP 4710

classes

Kristy

Mark 

Mark

name


