
COP 4710: Database Systems (Day 12) Page 1 Mark Llewellyn

COP 4710: Database Systems
Spring 2004

-Day 12 – February 16, 2004 –
Introduction to Normalization – Part 3

COP 4710: Database Systems
Spring 2004

-Day 12 – February 16, 2004 –
Introduction to Normalization – Part 3

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2004

COP 4710: Database Systems (Day 12) Page 2 Mark Llewellyn

Let R = (C, S, Z)
F = {CS →Z, Z→C}
D = {(SZ), (CZ)}

G = F[SZ] ∪ F[CZ] Z = Z ∪ ((Z ∩ Ri)+ ∩ Ri)

Test for each fd in F.
Test for CS→Z

Z = CS,
= {CS} ∪ ((CS ∩ SZ)+ ∩ SZ)
= {CS} ∪ ((S)+ ∩ SZ)
= {CS} ∪ (S)
= {CS}
= {CS} ∪ ((CS ∩ CZ)+ ∩ CZ)
= {CS} ∪ ((C)+ ∩ CZ)
= {CS} ∪ (C ∩ CZ)
= {CS} ∪ (C)
= {CS} thus, CS →Z is not preserved.

Practice Problem Solution

COP 4710: Database Systems (Day 12) Page 3 Mark Llewellyn

Algorithm #1 for Producing a 3NF Decomposition

Algorithm 3NF.1
// input: a relation schema R= (A1, A2, …, An), a set of fds F, a set of candidate keys K.
// output: a 3NF decomposition of R, called D, which has the lossless join property and the
// functional dependencies are preserved.

3NF.1 (R, F, K)
a = 0;
for each fd X → Y in F do

a = a +1;
Ra = XY;

endfor
if [none of the schemes Rb (1 ≤ b ≤ a) contains a candidate key of R] then

a = a + 1;
Ra = any candidate key of R

endif
if [] then //there are missing attributes

Ra+1 =
return D = {R1, R2, ..., Ra+1}

end.

RRa
1b b ≠

=U

Ua
1b bRR

=
−

COP 4710: Database Systems (Day 12) Page 4 Mark Llewellyn

Let R = (A, B, C, D, E)
K = {AB, AC}
F = {AB→CDE, AC→BDE, B→C, C→B, C→D, B→E}

Step 1: D = {(ABCDE), (ACBDE), (BC), (CB), (CD), (BE)}

Reduce to: D = {(ABCDE), (BC), (CD), (BE)}

Step 2: Does D contain a candidate key for R?
Yes, in (ABCDE)

Step 3: Are all the attributes of R contained in D?
Yes.

Return D as: {(ABCDE), (BC), (CD), (BE)}

Example – Using Algorithm 3NF.1

COP 4710: Database Systems (Day 12) Page 5 Mark Llewellyn

Algorithm #2 for Producing a 3NF Decomposition

Algorithm 3NF.2
// input: a relation schema R= (A1, A2, …, An), a set of fds F, a set of candidate keys K.
// output: a 3NF decomposition of R, called D, which is not guaranteed to have either the
// lossless join property or to preserve the functional dependencies in F.
// This algorithm is based on the removal of transitive dependencies.

3NF.2 (R, F, K)
do

if [K → Y → A where A is non-prime and not an element of either K or Y] then
decompose R into: R1 = {R – A} with K1 = {K} and R2 = {YA} with K2 = {Y}.

repeat until no transitive dependencies exist in any schema
D = union of all 3NF schemas produced above.
test for lossless join
test for preservation of the functional dependencies

end.

COP 4710: Database Systems (Day 12) Page 6 Mark Llewellyn

Let R = (A, B, C, D, E)
K = {AB, AC}
F = {AB→CDE, AC→BDE, B→C, C→B, C→D, B→E}

Step 1: R not in 3NF since AB → C → D
Decompose to: R1 = (A, B, C, E) with K1 = K = {AB, AC}

R2 = (C, D) with K2 = {C}

Step 2: R2 in 3NF. R1 not in 3NF since AB → B → E
Decompose R1 to: R11 = (A, B, C) with K11= K1 = K = {AB, AC}

R12 = (B, E) with K12 = {B}

Step 3: R2, R11, and R12 are all in 3NF

Step 4: Test for the lossless join property (see next page).

Example – Using Algorithm 3NF.2

COP 4710: Database Systems (Day 12) Page 7 Mark Llewellyn

AB→CDE: (1st time: equates nothing)
AC→BDE: (1st time: equates nothing)
B→C: (1st time: equates a3 & b33)
C→B: (1st time: equates a2 & b12)
C→D: (1st time: equates b14, b24, b34) – stop second row becomes all a’s
B→E: (1st time: equates a5, b15, b25)

Decomposition has the lossless join property.

Step 4: Checking for a Lossless Join in the Decomposition

a5a4a3a2b31(BE)

b15a4a3a2a1(ABC)

b15a4a3a2b11(CD)

EDCBA

COP 4710: Database Systems (Day 12) Page 8 Mark Llewellyn

Let R = (A, B, C, D, E)
F = {AB→CDE, AC→BDE, B→C, C→B, C→D, B→E}}
D = {(CD), (ABC), (BE)}

G = F[CD] ∪ F[ABC] ∪ F[BE] Z = Z ∪ ((Z ∩ Ri)+ ∩ Ri)
Test for AB→CDE

Z = AB,
= {AB} ∪ ((AB ∩ CD)+ ∩ CD)
= {AB} ∪ ((∅)+ ∩ CD)
= {AB} ∪ (∅ ∩ CD)
= {AB} ∪ (∅)
= {AB}
= {AB} ∪ ((AB ∩ ABC)+ ∩ ABC)
= {AB} ∪ ((AB)+ ∩ ABC)
= {AB} ∪ (ABCDE ∩ ABC)
= {AB} ∪ (ABC)
= {ABC}
= {ABC} ∪ ((ABC ∩ BE)+ ∩ BE)
= {ABC} ∪ ((B)+ ∩ BE)
= {ABC} ∪ (BCDE ∩ BE)
= {ABC} ∪ (BE)
= {ABCE}

Step 5: Testing the Preservation of the Functional Dependencies

COP 4710: Database Systems (Day 12) Page 9 Mark Llewellyn

Test for AB→CDE continues
Z = {ABCE} ∪ ((ABCE ∩ CD)+ ∩ CD)

= {ABCE} ∪ ((C)+ ∩ CD)
= {ABCE} ∪ (CBDE ∩ CD)
= {ABCE} ∪ (CD)
= {ABCDE} thus, AB→CDE is preserved

Test for AC→BDE
Z = AC

= {AC} ∪ ((AC ∩ CD)+ ∩ CD)
= {AC} ∪ ((C)+ ∩ CD)
= {AC} ∪ (CBDE ∩ CD)
= {AC} ∪ (CD)
= {ACD}
= {ACD} ∪ ((ACD ∩ ABC)+ ∩ ABC)
= {ACD} ∪ ((AC)+ ∩ ABC)
= {ACD} ∪ (ACBDE ∩ ABC)
= {ACD} ∪ (ABC)
= {ABCD}

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)

COP 4710: Database Systems (Day 12) Page 10 Mark Llewellyn

Test for AC→BDE continues
Z = {ABCD} ∪ ((ABCD ∩ BE)+ ∩ BE)

= {ABCD} ∪ ((B)+ ∩ BE)
= {ABCD} ∪ (BCDE ∩ BE)
= {ABCD} ∪ (BE)
= {ABCDE} thus, AC→BDE is preserved

Test for B→C
Z = B

= {B} ∪ ((B ∩ CD)+ ∩ CD)
= {B} ∪ ((C)+ ∩ CD)
= {B} ∪ (CBDE ∩ CD)
= {B} ∪ (CD)
= {BCD} thus B→C is preserved

Test for C→B
Z = C

= {C} ∪ ((C ∩ CD)+ ∩ CD)
= {C} ∪ ((C)+ ∩ CD)
= {C} ∪ (CBDE ∩ CD)
= {C} ∪ (CD)
= {CD}

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)

COP 4710: Database Systems (Day 12) Page 11 Mark Llewellyn

Test for C→B continues
Z = {CD} ∪ ((CD ∩ ABC)+ ∩ ABC)

= {CD} ∪ ((C)+ ∩ ABC)
= {CD} ∪ (CBDE ∩ ABC)
= {CD} ∪ (BC)
= {BCD} thus, C→B is preserved

Test for C→D
Z = C

= {C} ∪ ((C ∩ CD)+ ∩ CD)
= {C} ∪ ((C)+ ∩ CD)
= {C} ∪ (CBDE ∩ CD)
= {C} ∪ (CD)
= {CD} thus C→D is preserved

Test for B→E
Z = B

= {B} ∪ ((B ∩ CD)+ ∩ CD)
= {B} ∪ ((∅)+ ∩ CD)
= {B} ∪ (∅)
= {B}

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)

COP 4710: Database Systems (Day 12) Page 12 Mark Llewellyn

Test for B→E continues
Z = {B} ∪ ((B ∩ ABC)+ ∩ ABC)

= {B} ∪ ((B)+ ∩ ABC)
= {B} ∪ (BCDE ∩ ABC)
= {BC} ∪ (BC)
= {BC}

Z = {BC}
= {BC} ∪ ((BC ∩ ABC)+ ∩ ABC)
= {BC} ∪ ((C)+ ∩ ABC)
= {BC} ∪ (CBDE ∩ ABC)
= {BC} ∪ (BC)
= {BC}

Z = {BC}
= {BC} ∪ ((BC ∩ BE)+ ∩ BE)
= {BC} ∪ ((B)+ ∩ BE)
= {BC} ∪ (BCDE ∩ BE)
= {BC} ∪ (BE)
= {BCE} thus, B →E is preserved.

Step 5: Testing the Preservation of the Functional Dependencies
(cont.)

COP 4710: Database Systems (Day 12) Page 13 Mark Llewellyn

• Why would you use algorithm 3NF.2 rather than
algorithm 3NF.1 when you know that algorithm 3NF.1
will guarantee that both the lossless join property and the
preservation of the functional dependencies?

• The answer is that algorithm 3NF.2 will typically
produce fewer relational schemas than will algorithm
3NF.1. Although both the lossless join and dependency
preservation properties must be independently tested
when using algorithm 3NF.2.

Why Use 3NF.2 Rather Than 3NF.1

COP 4710: Database Systems (Day 12) Page 14 Mark Llewellyn

Algorithm #3 for Producing a 3NF Decomposition

Algorithm 3NF.3
// input: a relation schema R= (A1, A2, …, An), a set of fds F.
// output: a 3NF decomposition of R, called D, which is guaranteed to have both the
// lossless join property and to preserve the functional dependencies in F.
// This algorithm is based on the a minimal cover for F (see Day 9 notes page 45).

3NF.3 (R, F)
find a minimal cover for F, call this cover G (see Day 9 page 45 for algorithm)
for each determinant X that appears in G do

create a relation schema { X ∪ A1 ∪ A2 ∪ ... ∪ Am} where Ai (1 ≤ i ≤ m) represents
all the consequents of fds in G with determinant X.

place all remaining attributes, if any, in a single schema.
if none of the schemas contains a key for R, create an additional schema which

contains any candidate key for R.
end.

COP 4710: Database Systems (Day 12) Page 15 Mark Llewellyn

• Algorithm 3NF.3 is very similar to algorithm 3NF.1,
differing only in how the schemas of the decomposition
scheme are created.

– In algorithm 3NF.1, the schemas are created directly from F.

– In algorithm 3NF.3, the schemas are created from a minimal
cover for F.

• In general, algorithm 3NF.3 should generate fewer
relation schemas than algorithm 3NF.1.

Algorithm 3NF.3

COP 4710: Database Systems (Day 12) Page 16 Mark Llewellyn

• The algorithm given on page 14 of Day 11 notes for testing the
preservation of a set of functional dependencies on a decomposition
scheme is fairly efficient for computation, but somewhat tedious to
do by hand.

• On the next page is an example solving the same problem that we did
in the example on page 16 of Day 11, utilizing a different technique
which is based on the concept of covers.

• Given D, R, and F, if D = {R1, R2, ..., Rn) then

G = F[R1] ∪ F[R2] ∪ F[R3] ∪ ... ∪ F[Rn] and if every

functional dependency in F is implied by G, then G covers F.

• The technique is to generate that portion of G+ that allows us to
know if G covers F.

Another Technique for Testing the
Preservation of Dependencies

COP 4710: Database Systems (Day 12) Page 17 Mark Llewellyn

Let R = (A, B, C, D)
F = {A→B, B→C, C→D, D→A}

D = {(AB), (BC), (CD)}

G = F[AB] ∪ F[BC] ∪ F[CD]

Projection onto schema (AB)
F[AB] = A+ ∪ B+ ∪ (AB)+

= {ABCD} ∪ {ABCD} ∪ {ABCD}
apply projection: = {AB} ∪ {AB} ∪ {AB} = {AB}, A→B is covered

Projection onto schema (BC)
F[BC] = B+ ∪ C+ ∪ (BC)+

= {BCDA} ∪ {CDAB} ∪ {BCDA}
apply projection: = {BC} ∪ {BC} ∪ {BC} = {BC}, C→C is covered

A Hugmongously Big Example Using Different Technique

COP 4710: Database Systems (Day 12) Page 18 Mark Llewellyn

Projection onto schema (CD)
F[CD] = C+ ∪ D+ ∪ (CD)+

= {CDAB} ∪ {DABC} ∪ {CDAB}
apply projection: = {CD} ∪ {CD} ∪ {CD} = {CD}, C→D is covered

• Thus, the projections have covered every functional dependency in F
except D → A. So, now the question becomes does G logically
imply D → A?

• Generate D+(with respect to G) and if A is in this closure the answer
is yes.

Therefore, G ? D → A

A Hugmongously Big Example Using Different Technique

(cont.)

}A,B,C,D{DG =+

COP 4710: Database Systems (Day 12) Page 19 Mark Llewellyn

• Functional dependencies are the most common and important type of
constraint in relational database design theory.

• However, there are situations in which the constraints that hold on a
relation cannot be expressed as a functional dependency.

• Multi-valued dependencies are related to 1NF. Recall that 1NF
simply means that all attribute values in a relation are atomic, which
means that a tuple cannot have a set of values for some particular
attribute.

• If we have a situation in which two or more multi-valued
independent attributes appear in the same relation schema, then we’ll
need to repeat every value of one of the attributes with every value of
the other attribute to keep the relation instance consistent and to
maintain the independence among the attributes involved.

• Basically, whenever two independent 1:M relationships A:B and A:C
occur in the same relation, a multi-valued dependency may occur.

Multi-valued Dependencies and Fourth Normal Form

COP 4710: Database Systems (Day 12) Page 20 Mark Llewellyn

• Consider the following situation of a N1NF relation.

Multi-valued Dependencies (cont.)

Mercedes E500
Porsche Carrera

Mercedes E320
Ford F350

vehicles

COP 3330
CDA 3103
COT 4810

COP 4710
COP 3502

classes

Kristy

Mark

name

COP 4710: Database Systems (Day 12) Page 21 Mark Llewellyn

• Converting the N1NF relation to a 1NF relation.

Multi-valued Dependencies (cont.)

Porsche CarreraCOP 3330Kristy

Porsche CarreraCDA 3103Kristy

Porsche CarreraCOT 4810Kristy

Mercedes E500COT 4810Kristy

Mercedes E500COP 3330Kristy

Ford F350COP 3502Mark

Ford F350COP 4710Mark

Mercedes E500

Mercedes E320

Mercedes E320

vehicles

CDA 3103

COP 3502

COP 4710

classes

Kristy

Mark

Mark

name

