
COP 4710: Database Systems  (Day 11)              Page 1 Mark Llewellyn

COP 4710: Database Systems
Spring 2004

-Day 11 – February 11, 2004 –
Introduction to Normalization – Part 2 

COP 4710: Database Systems
Spring 2004

-Day 11 – February 11, 2004 –
Introduction to Normalization – Part 2 

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CC1 211, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2004



COP 4710: Database Systems  (Day 11)              Page 2 Mark Llewellyn

• Third Normal Form (3NF) is based on the concept of a 
transitive dependency.

• Given a relation scheme R with a set of functional 
dependencies F and subset X ⊆ R and an attribute A ∈R.  
A is said to be transitively dependent on X if there exists 
Y ⊆ R with X → Y, Y X → X and Y → A and A ∉
X∪Y. 

• An alternative definition for a transitive dependency is:  a 
functional dependency X → Y in a relation scheme R is a 
transitive dependency if there is a set of attributes Z ⊆ R 
where Z is not a subset of any key of R and yet both X →
Z and Z → Y hold in F.

Third Normal Form (3NF)
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• A relation scheme R is in 3NF with respect to a set of functional 
dependencies F, if whenever X → A holds either: (1) X is a superkey 
of R or (2) A is a prime attribute.

• Alternative definition:  A relation scheme R is in 3NF with respect to 
a set of functional dependencies F if no non-prime attribute is 
transitively dependent on any key of R.

Example:  Let R = (A, B, C, D)

K = {AB}, F = {AB → CD,  C → D,  D → C}

then R is not in 3NF since C → D holds and C is not a superkey of 
R.

Alternatively, R is not in 3NF since AB → C and C → D and thus D 
is a non-prime attribute which is transitively dependent on the key 
AB. 

Third Normal Form (3NF) (cont.)
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• What does 3NF do for us?  Consider the following 
database:

assign(flight, day, pilot-id, pilot-name)
K = {flight day}
F = {pilot-id → pilot-name,  pilot-name → pilot-id}

Why Third Normal Form?
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Why Third Normal Form? (cont.)
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Since {flight day} is key, clearly {flight day} → pilot-name.
But in F we also know that pilot-name → pilot-id, and
we have that {flight day} → pilot-id.

Now suppose the highlighted tuple is added to this instance.
is added.  The fd pilot-name → pilot-id is violated by this
insertion.  A transitive dependency exists since: pilot-id →
pilot-name holds and pilot-id is not a superkey. 
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• Boyce-Codd Normal Form (BCNF) is a more stringent 
form of 3NF.

• A relation scheme R is in Boyce-Codd Normal Form 
with respect to a set of functional dependencies F if 
whenever X → A hold and A ? X, then X is a superkey 
of R.

Example: Let R = (A, B, C)

F = {AB → C,  C → A} 

K =

R is not in BCNF since C → A holds and C is not a 
superkey of R. 

Boyce-Codd Normal Form (BCNF)

{AB}
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• Notice that the only difference in the definitions of 3NF 
and BCNF is that BCNF drops the allowance for A in X 
→ A to be prime.

• An interesting side note to BCNF is that Boyce and Codd 
originally intended this normal form to be a simpler form 
of 3NF.  In other words, it was supposed to be between 
2NF and 3NF.  However, it was quickly proven to be a 
more strict definition of 3NF and thus it wound up being 
between 3NF and 4NF.

• In practice, most relational schemes that are in 3NF are 
also in BCNF.  Only if X → A holds in the schema where 
X is not a superkey and A is prime, will the schema be in 
3NF but not in BCNF.

Boyce-Codd Normal Form (BCNF) (cont.)
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• The basic goal of relational database design should be to 
ensure that every relation in the database is either in 3NF 
or BCNF.

• 1NF and 2NF do not remove a sufficient number of the 
update anomalies to make a significant difference, 
whereas 3NF and BCNF eliminate most of the update 
anomalies.

• As we’ve mentioned before, in addition to ensuring the 
relation schemas are in either 3NF or BCNF, the designer 
must also ensure that the decomposition of the original 
database schema into the 3NF or BCNF schemas 
guarantees that the decomposition have (1) the lossless 
join property (also called a non-additive join property) 
and (2) the functional dependencies are preserved across 
the decomposition.

Moving Towards Relational Decomposition
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• There are decomposition algorithms that will guarantee a 
3NF decomposition which ensures both the lossless join 
property and preservation of the functional dependencies.

• However, there is no algorithm which will guarantee a 
BCNF decomposition which ensures both the lossless 
join property and preserves the functional dependencies.  
There is an algorithm that will guarantee BCNF and the 
lossless join property, but this algorithm cannot guarantee 
that the dependencies will be preserved.

• It is for this reason that many times, 3NF is as strong a 
normal form as will be possible for a certain set of 
schemas, since an attempt to force BCNF may result in 
the non-preservation of the dependencies.

• In the next few pages we’ll look at these two properties 
more closely.

Moving Towards Relational Decomposition (cont.)
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• Whenever an update is made to the database, the DBMS 
must be able to verify that the update will not result in an 
illegal instance with respect to the functional 
dependencies in F+.

• To check updates in an efficient manner the database 
must be designed with a set of schemas which allows for 
this verification to occur without necessitating join 
operations.

• If an fd is “lost”, the only way to enforce the constraint 
would be to effect a join of two or more relations in the 
decomposition to get a “relation” that includes all of the 
determinant and consequent attributes of the lost fd into a 
single table, then verify that the dependency still holds 
after the update occurs.  Obviously, this requires too 
much effort to be practical or efficient.

Preservation of the Functional Dependencies
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• Informally, the preservation of the dependencies means 
that if X → Y from F appears either explicitly in one of 
the relational schemas in the decomposition scheme or 
can be inferred from the dependencies that appear in 
some relational schema within the decomposition 
scheme, then the original set of dependencies would be 
preserved on the decomposition scheme.

• It is important to note that what is required to preserve 
the dependencies is not that every fd in F be explicitly 
present in some relation schema in the decomposition, 
but rather the union of all the dependencies that hold on 
all of the individual relation schemas in the 
decomposition be equivalent to F (recall what 
equivalency means in this context).

Preservation of the Functional Dependencies (cont.)
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• The projection of a set of functional 
dependencies onto a set of attributes Z, denoted 
F[Z] (also sometime as πZ(F)), is the set of 
functional dependencies X → Y in F+ such that 
X ∪ Y ⊆ Z.

• A decomposition scheme γ = {R1, R2, …, Rm} is 
dependency preserving with respect to a set of 
fds F if the union of the projection of F onto each 
Ri (1≤ i ≤ m) in γ is equivalent to F.

(F[R1] ∪ F[R2] ∪ … ∪ F[Rm])+ = F+

Preservation of the Functional Dependencies (cont.)
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• It is always possible to find a dependency 
preserving decomposition scheme D with respect 
to a set of fds F such that each relation schema in 
D is in 3NF.

• In a few pages, we will see an algorithm that 
guarantees a 3NF decomposition in which the 
dependencies are preserved.

Preservation of the Functional Dependencies (cont.)
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Algorithm for Testing the Preservation of Dependencies

Algorithm Preserve
// input: a decomposition D= (R1, R2, …, Rk),  a set of fds F, an fd X → Y
// output:  true if D preserves F, false otherwise

Preserve (D , F, X → Y)
Z = X;
while (changes to Z occur) do

for i = 1 to k do  // there are k schemas in D
Z = Z ∪ ( (Z ∩ Ri )+ ∩ Ri )

endfor;
endwhile;
if Y ⊆ Z

then return true;  // Z ? X → Y
else return false;

end.
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• The set Z which is computed is basically the 
following:

• Note that G is not actually computed but merely 
tested to see if G covers F.  To test if G covers F 
we need to consider each fd X→Y in F and 
determine if       contains Y.  

• Thus, the technique is to compute    without 
having G available by repeatedly considering the 
effect of closing F with respect to the projections 
of F onto the various Ri. 

How Algorithm Preserves Works
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Let R = (A, B, C, D) 
F = {A→B, B→C, C→D, D→A}

D = {(AB), (BC), (CD)}

G = F[AB] ∪ F[BC] ∪ F[CD] Z = Z ∪ ((Z ∩ Ri)+ ∩ Ri)

Test for each fd in F.
Test for A→B

Z = A, 
= {A} ∪ ((A ∩ AB)+ ∩ AB)
= {A} ∪ ((A)+ ∩ AB)
= {A}  ∪ (ABCD  ∩ AB)
= {A}  ∪ {AB}
= {AB}

A Hugmongously Big Example
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Z = {AB} 
= {AB} ∪ ((AB ∩ BC)+ ∩ BC)
= {AB} ∪ ((B)+ ∩ BC)
= {AB}  ∪ (BCDA  ∩ BC)
= {AB}  ∪ {BC}
= {ABC}

Z = {ABC}
= {ABC}  ∪ ((ABC ∩ CD)+ ∩ CD) 
= {ABC} ∪ ((C)+ ∩ CD)
= {ABC}  ∪ (CDAB  ∩ CD)
= {ABC}  ∪ {CD}
= {ABCD}

G covers A →B

A Hugmongously Big Example (cont.)
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Test for B→C
Z = B, 

= {B} ∪ ((B ∩ AB)+ ∩ AB)
= {B} ∪ ((B)+ ∩ AB)
= {B}  ∪ (BCDA  ∩ AB)
= {B}  ∪ {AB}
= {AB}

Z = {AB}
= {AB} ∪ ((AB ∩ BC)+ ∩ BC)
= {AB} ∪ ((B)+ ∩ BC)
= {AB}  ∪ (BCDA  ∩ BC)
= {AB}  ∪ {BC}
= {ABC}

Z = {ABC}
= {ABC} ∪ ((ABC ∩ CD)+ ∩ CD)
= {ABC} ∪ ((C)+ ∩ CD)
= {ABC}  ∪ (CDAB  ∩ CD)
= {ABC}  ∪ {CD}
= {ABC} So G covers B →C

A Hugmongously Big Example (cont.)
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Test for C→D
Z = C, 

= {C} ∪ ((C ∩ AB)+ ∩ AB)
= {C} ∪ ((∅)+ ∩ AB)
= {C}  ∪ (∅)
= {C}

Z = {C}
= {C} ∪ ((C ∩ BC)+ ∩ BC)
= {C} ∪ ((C)+ ∩ BC)
= {C}  ∪ (CDAB  ∩ BC)
= {C}  ∪ {BC}
= {BC}

Z = {BC}
= {BC} ∪ ((BC ∩ CD)+ ∩ CD)
= {BC} ∪ ((C)+ ∩ CD)
= {BC}  ∪ (CDAB  ∩ CD)
= {BC}  ∪ {CD}
= {BCD} So G covers C →D

A Hugmongously Big Example (cont.)



COP 4710: Database Systems  (Day 11)              Page 20 Mark Llewellyn

Test for D→A
Z = D, 

= {D} ∪ ((D ∩ AB)+ ∩ AB)
= {D} ∪ ((∅)+ ∩ AB)
= {D}  ∪ (∅)
= {D}

Z = {D}
= {D} ∪ ((D ∩ BC)+ ∩ BC)
= {D} ∪ ((∅)+ ∩ BC)
= {D}  ∪ (∅)
= {D}

Z = {D}
= {D} ∪ ((D ∩ CD)+ ∩ CD)
= {D} ∪ ((D)+ ∩ CD)
= {D}  ∪ (DABC  ∩ CD)
= {D}  ∪ {CD}
= {DC} Changes made to G so continue.

A Hugmongously Big Example (cont.)



COP 4710: Database Systems  (Day 11)              Page 21 Mark Llewellyn

Test for D→A continues on a second pass through D.
Z = DC, 

= {DC} ∪ ((DC ∩ AB)+ ∩ AB)
= {DC} ∪ ((∅)+ ∩ AB)
= {DC}  ∪ (∅)
= {DC}

Z = {DC}
= {DC} ∪ ((DC ∩ BC)+ ∩ BC)
= {DC} ∪ ((C)+ ∩ BC)
= {D} ∪ (CDAB ∩ BC)
= {D} ∪ (BC)
= {DBC}

Z = {DBC}
= {DBC} ∪ ((DBC ∩ CD)+ ∩ CD)
= {DBC} ∪ ((CD)+ ∩ CD)
= {DBC}  ∪ (CDAB  ∩ CD)
= {DBC}  ∪ {CD}
= {DBC} Again changes made to G so continue.

A Hugmongously Big Example (cont.)
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Test for D→A continues on a third pass through D.
Z = DBC, 

= {DBC} ∪ ((DBC ∩ AB)+ ∩ AB)
= {DBC} ∪ ((B)+ ∩ AB)
= {DBC}  ∪ (BCDA ∩ AB) 
= {DBC} ∪ (AB)
= {DBCA}

Finally, we’ve included every attribute in R.
Thus, G covers D →A.

Thus, D preserves the functional dependencies in F.

A Hugmongously Big Example (cont.)

Practice Problem:    Determine if D preserves the dependencies in F given:
R = (C, S, Z)
F = {CS →Z, Z→C}
D = {(SZ0, (CZ)} Solution in next set of notes!
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Algorithm for Testing for the Lossless Join Property

Algorithm Lossless
// input: a relation schema R= (A1, A2, …, An),   a set of fds F, a decomposition
//           scheme D = {R1, R2, ..., Rk)
// output:  true if D has the lossless join property, false otherwise

Lossless (R, F, D)
Create a matrix of n columns and k rows where column y corresponds to attribute
Ay (1 ≤ y ≤ n) and row x corresponds to relation schema Rx (1 ≤ x ≤ k).  Call this matrix T.

Fill the matrix according to: in Txy put the symbol ay if Ay is in Rx and the symbol bxy if not.

Repeatedly “consider” each fd X → Y in F until no more changes can be made to T.
Each time an fd is considered, look for rows in T which agree on all of the columns
corresponding to the attributes in X.  Equate all of the rows which agree in the X 
value on the Y values according to:  If any of the Y symbols is ay make them all ay,
if none of them are ay equate them arbitrarily to one of the bxy values.

If after making all possible changes to T one of the rows has become a1a2...an
then return yes, otherwise return no.

end.
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Let R = (A, B, C, D, E)
F = {A→C, B→C, C→D, DE→C, CE→A}
D = {(AD), (AB), (BE), (CDE), (AE)}

initial matrix T:

Testing for a Lossless Join - Example

a5b54b53b52a1(AE)

a5a4a3b42b41(CDE)

a5b34b33a2b31(BE)

b25b24b23a2a1(AB)

b15a4b13b12a1(AD)

EDCBA
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Consider each fd in F repeatedly until no changes are made to the matrix:

A→C: equates b13, b23, b53..  Arbitrarily we’ll set them all to b13 as shown.

Testing for a Lossless Join – Example (cont.)

a5b54b13b52a1(AE)

a5a4a3b42b41(CDE)

a5b34b33a2b31(BE)

b25b24b13a2a1(AB)

b15a4b13b12a1(AD)

EDCBA
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Consider each fd in F repeatedly until no changes are made to the matrix:

B→C: equates b13, b33..  We’ll set them all to b13 as shown.

Testing for a Lossless Join – Example (cont.)

a5b54b13b52a1(AE)

a5a4a3b42b41(CDE)

a5b34b13a2b31(BE)

b25b24b13a2a1(AB)

b15a4b13b12a1(AD)

EDCBA
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Consider each fd in F repeatedly until no changes are made to the matrix:

C→D: equates a4, b24, b34, b54..  We set them all to a4 as shown.

Testing for a Lossless Join – Example (cont.)

a5a4b13b52a1(AE)

a5a4a3b42b41(CDE)

a5a4b13a2b31(BE)

b25a4b13a2a1(AB)

b15a4b13b12a1(AD)

EDCBA
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Consider each fd in F repeatedly until no changes are made to the matrix:

DE→C: equates a3, b13..  We set them both to a3 as shown.

Testing for a Lossless Join – Example (cont.)

a5a4a3b52a1(AE)

a5a4a3b42b41(CDE)

a5a4a3a2b31(BE)

b25a4b13a2a1(AB)

b15a4b13b12a1(AD)

EDCBA
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Consider each fd in F repeatedly until no changes are made to the matrix:

CE→A: equates b31, b41, a1..  We set them all to a1 as shown.

Testing for a Lossless Join – Example (cont.)

a5a4a3b52a1(AE)

a5a4a3b42a1(CDE)

a5a4a3a2a1(BE)

b25a4b13a2a1(AB)

b15a4b13b12a1(AD)

EDCBA
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First pass through F is now complete.  However row (BE) has become all 
ais, so stop and return true, this decomposition has the lossless join 
property.

Testing for a Lossless Join – Example (cont.)

a5a4a3b52a1(AE)

a5a4a3b42a1(CDE)

a5a4a3a2a1(BE)

b25a4b13a2a1(AB)

b15a4b13b12a1(AD)

EDCBA


