SOLUTIONS

Problem #1 — SQL Queries
Use this sample database: S (s#, name, rank, city, workers)
p (p#, name, color, weight, city)
] (i#, name, workers, city)
spj (s#, p#, [#, qty)

where: in s: rank is a numeric field, and workers is the number of employees of
that supplier.
in p: city is the city in which the part is built.
in j: workers is the number of workers on that job.

A. List the names of all suppliers who supply part number P2 to any job.

SELECT DISTINCT name

FROM s

WHERE s# IN (SELECT s#
FROM spj
WHERE p# = ‘P2’);

-Or-
SELECT s.name
FROM s JOIN spj
WHERE spj.p# = ‘P2’;

B. List the supplier names for those suppliers who do not supply part P2.

SELECT DISTINCT s.name
FROM s
WHERE s.s# NOT IN (SELECT spj.s#
FROM spj
WHERE spj.p# = ‘P2’);

C. List the names of those suppliers who supply at least one red part.

SELECT DISTINCT s.name

FROM s
WHERE s.s# IN (SELECT spj.s#
FROM spj
WHERE spj.p# IN (SELECT p.p#

FROM p
WHERE p.color = ‘red’) );



D. List all supplier number/part number/ job number triples, such that no two of the
indicated supplier, part, or job are located in the same city.

SELECT s.s#, p.p#, |.j#
FROM s CROSS JOIN p CROSS JOIN j
WHERE s.city <> p.city AND p.city <> j.city AND s.city <> j.city;

E. Get the total quantity of part number P1 that is supplied by supplier number S1.

SELECT SUM (spj.qty) AS totalP1byS1
FROM spj
WHERE spj.s# = ‘S1’ AND spj.p# = ‘P1’;

F. List the part numbers for those parts which are supplied by more than one
supplier.

SELECT spj.p#

FROM spj

GROUP BY spj.p#

HAVING COUNT (sp.s#) > 1,

Problem #2 — Serializability
Shown below is a concurrent schedule S of five transactions operating under an
exclusive-locking protocol. Determine if the schedule S is serializable. If the
schedule S is serializable, produce a serial schedule equivalent to the concurrent
schedule S.

S =[(T1: Xlock A), (T2: Xlock B), (T5: Xlock C), (T2: Unlock B), (T4: Xlock B),
(T1: Unlock A), (T5: Unlock C), (T4: Unlock B), (T5: Xlock A), (T3: Xlock C),
(T1: Xlock B), (T1: Unlock B), (T3: Unlock C), (T5: Unlock A), (T3: Xlock A),
(T3: Unlock A)]

Graph does not contain a cycle — so S is serializable. (T2, T4, T1, T5, T3)

Reason
(T2: Unlock B)...(T4: Xlock B)
(T1: Unlock A)...(T5: Xlock A)
(T5: Unlock C)...(T3: Xlock C)
(T4: Unlock B)...(T1: Xlock B)
(T5: Unlock A)...(T3: Xlock A)

@

N

o A W N P M
o
)




Problem #3 — Timestamping protocol
Using the timestamping mechanism for deadlock prevention, we presented two
different protocols: “wait or die” and “wound or wait”. Given the transaction time
stamps ts(T1) = 8, ts(T2) = 4, ts(T3) = 6, and ts(T4) = 2, determine the action for
both protocols given the scenarios shown below.

, “‘wait or die” “‘wound or wait”
Action
protocol protocol

: T1: dies T1: waits
T1 requests an object held by T3 T3: continues T3: continues

: T2: waits T2: gets lock
T2 requests an object held by T1 T1: continues T1: dies

: T4: waits T4: preempts lock
T4 requests an object held by T2 T2 continues T2: dies

, T4: waits T4: preempts lock
T4 requests an object held by T3 T3 continues T3 dies

: T3: dies T3: waits
T3 requests an object held by T2 T2: continues T2: continues

Problem #4 — Relational Algebra Queries
Construct correct relational algebra expressions for the following queries.

Use this sample database: s (s#, name, status, city
p (p#, name, color, weight, city)
J (i#, name, workers, city)
spj (s#, p#, [#, qty)
where: in s: status is a numeric field.
in p: city is the city in which the part is built.
in j: workers is the number of workers on that job.

A. List the names of all suppliers who supply part number P2 to any job.

Tcname(s >< (Tcs# (Gp#z'PZ' (Spj))))




B. List the supplier names for those suppliers who do not supply part P2.

Tcname(s >< ((Tcs# (Gp#;t'PZ' (Spj))) - (ns# (Gp#z'PZ' (Spj)»»

C. List the names of those suppliers who supply at least one red part.

Tname(S >< (T4 (SPJ >< (Gsoior—rea (P)))))

D. List the part names for those parts which are shipped by every supplier.

Trame ((Tansame (8)) 59 ((as (591)) = (724 (5)))

E. List all supplier number/part number/ job number triples, such that no two of the
indicated supplier, part, or job are located in the same city.

Tcs#, p#,j# (Gs.city;tp.scity AND p.city=j.city AND s.city=].city (S X p X J))



