COP 4610L: Applications in the Enterprise
Spring 2005

Introduction to SQL — Part 2

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4610L/spr2005

School of Electrical Engineering and Computer Science
University of Central Florida

COP 4610L: SQL Part 2 Page 1 Mark Llewellyn ©

An Example Database

Microsoft Access

JEiIe Edit Wiew Relationships Tools ‘Window Help

=10l x|

DB EERY | §B2RY %8 % BE-

2.

g ChO6_SaleCo : Database

=" Relationships

CUS_CODE
CUS_LMAME
CUS_FNAME
CUS_IMITIAL
CUS_AREACODE
CUS_PHOME
CUS_BALANCE

¥_CODE
Y_NAME
Y_CONTACT
Y_AREACODE
Y_PHOME
Y_STATE
Y_ORDER

P_DESCRIPT
P_IMDATE
P_ONHAND
P_MIM

P PRICE

LIME_UMITS
LIMNE_PRICE

|Fleau:|~;.-'

COP 4610L: SQL Part 2

Page 2

Mark Llewellyn ©

Advanced SELECT Queries

One of the most important advantages of SQL is its ability to
produce complex free-form queries.

The logical operators that were illustrated in the last set of
notes work just as well in the query environment.

In addition, SQL provides useful functions that count, find
minimum and maximum values, calculate averages, and so
on.

Even better, SQL allows the user to limit queries to only
those entries having no duplicates or entries whose duplicates
may be grouped.

We’ll illustrate several of these features over the next few
pages.

r
COP 4610L: SQL Part 2 Page 3 Mark Llewellyn © g};

Ordering A Listing

The ORDER BY clause is especially useful if the listing order is
Important to you. T

The syntax 1s: [SELECT columniist

FROM {fablelist

[WHERE conditionlist |

[ORDER BY columniist [ASC | DESC]] ;

If the ordering column contains nulls, they are either listed first or last
depending on the RDBMS.

The ORDER BY clause must always be listed last in the SELECT
command sequence.

Although you have the option of specifying the ordering type, either
ascending or descending — the default order is ascending.

r
COP 4610L: SQL Part 2 Page 4 Mark Llewellyn © gj‘r

Ordering A Listing (cont.)

The query shown below lists the contents of the PRODUCT
table listed by P_PRICE in ascending order:

Microsoft Access =10l x|
J File Edit Wiew Insert Format Records Tools window Help
- B ey sndasy - alslil%Em 2
SELECT =
P CODE, P_DESCRIPT,

P_CODE P_DESCRIPT P_INDATE | P_PRICE
P_|NDATE, P_PR|CE Feat-tail file, 1/3-in. fine 15-Dec-03 J4 .93
PWC23DRT PYWC pipe, 3.5-in., 8-t 20-Feh-04 587
FROM PRODUCT || SM-18277 1254, metal screve, 23 01-har-04 $6.99
|| SW-23116 | 2.54in. wd. sorew, 50 24-Feh-04 o458
. 23109-HB | Claww hammer 20-Jan-04 $9.95
ORDER BY P—PRICE’ | |23114-A4 | Sledge hammer, 12 [, 0Z-Jan-04 $14.40
| [13-02P2 7 254N, pvr . saw blade 13-Dec-03 $14.99
14-21/L3 9.00-in. prwer. savw blade 13-Mow-03 $17.49
| |2238/9P0 | B&D cordless dril, 172-in. 20-Jan-04 3895
| |15946-@3@2 Hrd. cloth, 1/4-in., 2x30 15-Jan-04 §38.85
1558-GY1 Hrd. cloth, 102-in., 3x50 15-Jan-04 §43.839
|| 223200WE BED jigsaw, 5-in. hlads 24-Dec-03 §99.57
|| 22320aTY BED jigsaw, 12-in. blade 30-Dec-03 §109.82
T12ERSS | Powver painter, 15 psi., 3-nozzle 03-Mow-03 F109.99
| |WRITTS | Steel matting, 4'8%1/48", 5" mesh 17-Jan-04 §119.95
89-WRE-Q Hicut chain saw, 16 in. 07-Feh-04 §256.99
* RN

Record: 14 <« || 1 b | v |r#| of 15 _|j

| "
|F‘r|:u:|uu:t code: Primary key | | |_| | [ILIR | | v

COP 4610L: SQL Part 2 Page 5 Mark Llewellyn ©

Ordering A Listing (cont.)

The query shown below lists the contents of the PRODUCT
table listed by P_PRICE in descending order:

Microsoft Access O] =]

JEiIe Edit View Inserk Format Becords Tools Window Help

- B ey snes| o (@tliilermy ?
SELECT -

g=f qryFigh-20 : Select Query 0] x|
P_CODE y P_D ESCRI PT, P_CODE P_DESCRIPT | P_INDATE | P_PRICE
WAl | Hicut chain saw, 16 in. 07-Feh-04 $2565.99

P_I N DATE, P_PR' C E | |WR3ITT3 | Steel matting, 4'«<8%18", 5" mesh 17-dan-04 $119.95 —
| |[1M1QERET | Powver painter, 13 psi., 3-nozzle 03-Mow-03 $109.939
FROM PRODUCT | |223200TY BAD jigsaw, 12-in. blade 30-Dec-03 $109.92
| [2232/00NE | BED jigsayw, 8-in. blade 24-Dec-03 $99.57
ORDER BY P PR'CE DESC | |1558-G01 Hrd. clath, 1/2-in., 3x50 153-Jan-04 §43.99
— ? | |15d46-aG2 Hrd. cloth, 154-in., 2x30 15-Jan-04| $39.95
| [2235/0P0 | BED cordless drill, 1/2-in. 20-Jan-04| $35.95
| 14213 9.00-in. pevr. savw blade 13-Mow-03 F17.49
| [13-Q2P2 72540, pavr. savy blade 13-Dec-03 $14.99
| [23114-A4 Sledge hammer, 12 |b. 02-Jan-04| %14 .40
| |23109-HB | Claw hamimer 20-Jan-04 F9.935
|| SW-231168 2.5-in. v, screw, S0 24-Feb-04 $5.45
| |SM-182FT 1.25-in. metal screw, 25 01 -Mar-04 $6.99
| |PYC23DRT PYC pipe, 3.5-in., -t 20-Feh-04 $587
54778-2T | Rat-tail file, 155-in. fine 15-Dec-03 i4.99 L

F0.00

|Product cade: Primary key | | [| [rra | | o

COP 4610L: SQL Part 2 Page 6 Mark Llewellyn ©

Cascading Order Seqguences

Ordered listings are used frequently. For example, suppose
you want to create a phone directory of employees. It would
be helpful if you could produce an ordered sequence (last
name, first name, middle initial) in three stages:

ORDER BY last name.
Within last names, ORDER BY first name.
Within the order created in Step 2, ORDER BY middle initial.

A multi-level ordered sequence is called a cascading order
sequence, and is easily created by listing several attributes,
separated by commas, after the ORDER BY clause.

This concept is illustrated in the next couple of slides.

.
COP 4610L: SQL Part 2 Page 7 Mark Llewellyn © @;

Cascading Order Seguences (cont.)

Microsoft Access : =10 x|

JEiIe Edit ‘iew Insert Format Records Tools Window Help

(- HESRY|sBa| o @8l YRV A K D4

3.

£ EMPLOYEE : Table E =10] x|

EMP_NUM | EMP_TITLE | EMP_LHAME | EMP_FHAME | EMP_INITIAL | EMP_DOB [EMP_HIRE_DATE | EMP_YEARS | EMP_AREACODE | EMP_PHONE

m Mt . Kalnycz Gearge] 15-Jun-42 15-Mar-85 18 B15 324-5456
101 M=, Lewis Rhonda e 19-hdar-6:5 25-Apr-g6 16 615 J24-4472
102 M. Yandam Rhett 14-Moy-55 20-Dec-90 12 90 G75-5993
103 W=, Jones Anne 16-0ct-74 25-Aug-94 g 615 G95-3456
104 M. Lange Johin O5-Mow-71 20-Dct-94 & 201 S04-4430
105 M. Willisms Robert 1d-tdar-75 (5-hlow-95 4 615 Ga0-3220
106 Mr=. Smith Jeanine 12-Feb-65 05-Jan-59 14 615 324-7883
107 M. Diante Jorge 21-2ug-74 02-Jul-94 g 615 5a0-4567
108 M. Wiesenbach Paul 14-Feh-66 18-hlow-92 10 615 a7 -4358
109 M. Smith Zearge 1 8-dun-E1 14-Apr-g9 13 90 a04-3339
110 Mr=. zenkazi Leighla 19-Mary-70 1 -Dec-90 12 90 SE69-0093
111 Mt Wiazhington Rupert 03-Jan-66 21-Jun-93 9615 890-4925
112 M. Johnson Edwvard 14-May-61 1 -Dec-53 19 B15 898-4357
113 M=, Smythe Melanie 15-Sep-70 11 -Mlay-99 3 E15 324-9006
114 Mz, Brandon harie 02-Mov-56 15-Mov-79 23 90 G582-0545
115 hrz. Saranda Hermine 25-Jul-72 23-Apr-a3 9615 324-5505
116 M. Smith Zearge 05-Moy -5 10-Dec-55 14 615 Ga0-2954
1 1

Record: I4| 1 || 1k |H|H9| af 17

AT MME XS0 xE 00

Employes number, (Primary key) | | [] | LM | |

Employee Table

COP 4610L: SQL Part 2 Page 8 Mark Llewellyn ©

Cascading Order Seguences (cont.)

To create the phonebook type ordering from the EMPLOYEE table, we
can execute the following SQL query:

SELECT EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_AREACODE, EMP_PHONE
FROM EMPLOYEE
ORDER BY EMP_LNAME, EMP_FNAME, EMP_INITIAL;

This query would produce the result shown on the next slide.

COP 4610L: SQL Part 2 Page 9 Mark Llewellyn ©

Cascading Order Seguences (cont.)

Microsoft Access =10l x|

JEiIe Edit Wiew Insert Format Records Tools Mindow Help |

|- BSRY $BEY - @ 82 YE Y K Ba- 2

g=8 qryFigh-22 : Select Query ;lglﬂ ;|;
EMP_LHAME | EMP_FHAME | EMP_IHITIAL | EMP_AREACODE | EMP_PHONE

L Arancdon Marie e 01 882-0345

| |Diante Jorge] E15 890-4567

| | Genkazi Leighla Wy a1 SE2-0093
Johnzon Eclwward E 615 895-4387
Jones Arine f 615 895-3456

| |Holmyez Gearge] E15 324-5456
Lange Johin P am S04-4430
Lewwiz Rhonda e B15 244472

|| Zarands Hermine R 615 324-5505

|| =mith Gearge A E15 890-2984

|| =mith Gearge K am S04-3334

|| Smith Jeanine K B15 F24-7883
Smythe Melanie P B15 F24-0005
Wandam Rhett a1 E75-5003

| |"ashington Rupert E E15 890-4925

| |"iezenbach Paul R 615 897-43585

|| Willlisms Rokert D B15 890-3220

*

Record: H| 1 II 1 » |H IHF| of 17

Employee Table — Sorted by LastName, FirstName, Middlelnitial

= T T T T T T T T A |

COP 4610L: SQL Part 2 Page 10 Mark Llewellyn ©

Additional Uses of the ORDER BY Clause

You can use the ORDER BY clause in conjunction with other SQL

commands as well.

For example, note the use of restrictions on date and price in the

following command sequence:

SELECT P_DESCRIPT, V_CODE, P_INDATE, P_PRICE
FROM PRODUCT

WHERE P_INDATE <’21-Jan-2004’ AND P_PRICE <= 50.00
ORDER BY V_CODE, P_PRICE DESC;

The result of this query is shown on the next slide:

COP 4610L: SQL Part 2 Page 11 Mark Llewellyn ©

Additional Uses of the ORDER BY Clause (cont.)

Microsoft Access -0l x|

JEiIe Edit Miew Inserk Format Records Tools Window Help

|- H SRy $BR 0@ 4 Ya v MK B8 2

gzt qryFigh-23 : Select Query
V_CODE| P_INDATE | P_PRICE
02-Jan-04
2225 20-Jan-04
9.00-in. pvr. save blade 2344 13-Mow-03
7254, pvr . zavwe blade 2344 13-Dec-03
Feat-tail file, 1/5-in. fine 21344 15-Dec-03
Hrdl. clath, 102-in., 3x50 2319 135-Jan-04
Hrdl. cloth, 14d-in., 250 2319 135-Jan-04
| |B&D cordless drill, 1/.2-in. 25585 20-Jan-04
0

|F'ru:u:|uu:t description | | I_ | | UM | | i

COP 4610L: SQL Part 2 Page 12 Mark Llewellyn ©

Listing Un

ique Values

How many different vendors are currently represented in the PRODUCT
table? A simple listing (SELECT command) is not very useful in
answering this query, particularly if the table contained several thousand

rows and we would have to manually sift out the vendor codes.

Fortunately, SQL’s DISTINCT clause Is designed to produce a list of
only those values that are different from one another.

For example, the command:

SELECT DISTINCT V_CODE
FROM PRODUCT;

will yield on the different (distinct)

vendor codes (V_CODE) that are

encountered in the PRODUCT table.

Microsoft Access -0 =]
File Edit Wiew Insert Format Records Tools
Window Help

| B -

= 1= A1V

$ BB 7

EEEEEC

Recard: 14 4 | I 1 v

O I

Oracle puts
the null
V_CODE at
the bottom of
the list while
Access will
put it at the
top. You can,
of course,
using the
ORDER BY
clause.

COP 4610L: SQL Part 2

Page 13 Mark Llewellyn ©

Grouping Results

Frequency distributions can be created quickly and easily using the
GROUP BY clause within the SELECT statement.

The syntax Is: | SELECT columniist

FROM {ablelist

[WHERE conditionlist]

[GROUP BY columnilist]

[HAVING condltionlist]

[ORDER BY columnlist [ASC | DESC]] ;

The GROUP BY clause is generally used when you have attribute
columns combined with aggregate functions in the SELECT statement.

For example, to determine the minimum price for each sales code, use the
following statement shown on the next page.

»
COP 4610L: SQL Part 2 Page 14 Mark Llewellyn © &;

Grouping Results (cont.)

The query IS: | SELECT P_SALECODE, MIN(P_PRICE)
FROM PRODUCT
GROUP BY P_SALECODE;

Microsoft Access - =10] x|

JEiIe Edit ‘iew Insert Format Records Tools Window Help |

|- BegRy e 0@tz Yh |4 Ba- 0.

gzt qryFigh-298 : Seleck Query
P_SALECODE Expri0g

Fa0.23
F104.90

$38.93

|P'ru:u:|u-:t sale code | | I_l | UM |

COP 4610L: SQL Part 2 Page 15 Mark Llewellyn ©

1.

Grouping Results (cont.)

When using the GROUP BY clause with a SELECT statement, the
following rules must be observed:

The SELECT’s columnlist must include a combination of column names and
aggregate functions.

The GROUP BY clause’s columnlist must include all non-aggregate function
columns specified in the SELECT’s columnlist. If required, you could also
group by any aggregate function columns that appear in the SELECT’s
columnlist.

The GROUP BY clause columnlist can include any column from the tables in
the FROM clause of the SELECT statement, even if they do not appear in the
SELECT’s columnlist.

e
COP 4610L: SQL Part 2 Page 16 Mark Llewellyn © g};

The GROUP BY Feature’s HAVING Clause

A particularly useful extension of the GROUP BY clause is the HAVING
clause.

Basically, HAVING operates like the WHERE clause in the SELECT
statement. However, the WHERE clause applies to columns and
expressions for individual rows, while the HAVING clause is applied to
the output of a GROUP BY operation.

For example, suppose you want to generate a listing of the number of
products in the inventory supplied by each vendor, but you want to limit
the listing to the products whose prices average below $10.00. The first
part of this requirement is satisfied with the help of the GROUP BY
clause, the second part of the requirement will be accomplished with the
HAVING clause.

The complete query and results are shown on the next page.

r
COP 4610L: SQL Part 2 Page 17 Mark Llewellyn © gj‘r

The GROUP BY Feature’s HAVING Clause

(cont.)

Microsoft Access -0 =]
JEiIe Edit Miew Insert Query Tools Window Help |

[B-l@EZRY|iaasy|odE-| %= aE = =F=

5= qryFig6-31B : Select Query P The query

SELECT PRODUCT _2.¥_CODE, Counk{PRODUCT _2.P_CODE) AS CounktOFP_CODE, Avg(PRODUCT_Z.F_PRICE)
A5 AvgOFP_PRICE

FROM PRODUCT 2

GROUP BY PRODUCT_2.Y_CODE

i—l.ﬁ.'u'ING {((Awg(PRODUCT_2.P_PRICEY)<100);

4
Ready Microsoft Access =10 x| | Vv

JEiIe Edit ‘jew Insert Formak Records Tools Window Help |

- B ey imey o|@slil%amv

gzt qryFigh-31B : Seleck QUery
Expri0g2

2122 2 $5.47

$id. 45

Record: Ll;ll 1 Llilﬁl of 2

\endor code: Fareign key to VEMD | [| MU | | v

COP 4610L: SQL Part 2 Page 18 Mark Llewellyn ©

Virtual Tables: Creating Views

Recall that the output of a relational operator (like SELECT in SQL) is
another relations (or table).

Using our sample database as an example, suppose that at the end of each
business day, we would like to get a list of all products to reorder, which
Is the set of all products whose quantity on hand is less than some
threshold value (minimum quantity).

Rather than typing the same query at the end of every day, wouldn’t it be
better to permanently save that query in the database?

To do this is the function of a relational view. In SQL a view is a table
based on a SELECT query. That query can contain columns, computed
columns, aliases, and aggregate functions from one or more tables.

The tables on which the view is based are called base tables.

Views are created in SQL using the CREATE VIEW command.

r
COP 4610L: SQL Part 2 Page 19 Mark Llewellyn © gj‘r

Virtual Tables: Creating Views (cont.)

The syntax of the CREATE VIEW command is:

CREATE VIEW viewname AS SELECT query

The CREATE VIEW statement is a DDL command that stores the
subquery specification, i.e., the SELECT statement used to generate the
virtual table in the data dictionary.

An example: | CREATE VIEW PRODUCT 3 AS
SELECT P_DESCRIPT, P_ONHAND, P_PRICE
FROM PRODUCT
WHERE P_PRICE > 50.00;

Note: The CREATE VIEW command is not directly supported in
Access. To create a view in Access, you just need to create an SQL
query and then save it.

e
COP 4610L: SQL Part 2 Page 20 Mark Llewellyn © g};

1.

Virtual Tables: Creating Views (cont.)
A relational view has several special characteristics:

You can use the name of a view anywhere a table name is expected in an
SQL statement.

Views are dynamically updated. That is, the view is re-created on demand
each time it is invoked.

Views provide a level of security in the database because the view can restrict
users to only specified columns and specified rows in a table.

Views may also be used as the basis for reports. The view definition shown
below creates a summary of total product cost and quantity on hand statistics
grouped by vendor:

CREATE VIEW SUMPRDXVEN AS
SELECT V_CODE, SUM(P_ONHAND*P_PRICE) AS TOTCOST,
MAX(P_ONHAND) AS MAXQTY, MIN(P_OHAND) AS MINQTY,
AVG(P_ONHAND) AS AVGQTY
FROM PRODUCT
GROUP BY V_CODE;

»
COP 4610L: SQL Part 2 Page 21 Mark Llewellyn © §;

Joining Database Tables

The ability to combine (join) tables on common attributes is perhaps the
most important distinction between a relational database and other types
of databases.

In SQL, a join is performed whenever data is retrieved from more than
one table at a time.

To join tables, you simply enumerate the tables in the FROM clause of
the SELECT statement. The RDBMS will create the Cartesian product of
every table specified in the FROM clause.

To effect a natural join, you must specify the linking on the common
attributes in the WHERE clause. This is called the join condition.

The join condition i1s generally composed of an equality comparison
between the foreign key and the primary key in the related tables.

.
COP 4610L: SQL Part 2 Page 22 Mark Llewellyn © @;

Microsoft Access =10l =]

JEiIe Edit W%iew Insert Formak Records Tools wWindow Help |

Joining Database Tables (cont.)

Suppose we want to join the VENDOR and PRODUCT tables.
V_CODE is the foreign key in the PRODUCT table and the primary key

In the VENDOR table, the join condition occurs on this attribute.

SELECT PRODUCT.P_DESCRIPT, PRODUCT.P_PRICE, VENDOR.V_NAME

FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

VENDOR.V_CONTACT, VENDOR.V_AREACODE, VENDOR.V_PHONE

AN

2 -H SR +Emes o | @&(8Z%E v dr% | Ea-|@. Qualified names
-
&5 aryFigh-33 : select Query : — are normally only
P_DESCRIPT P_PRICE vV_HAME V_COHNTA | V_AREACODE | V_PHOHE g
| B lsny hammer F9.95 | Bryson, Inc. Smith=on E15S 223-3234 reqUIred Where

1.25-in. metal screw, 25 F5.99 Bryson, Inc. Smith=on 15 223-3234
2.5-0n. wd . screwy, S0 F5 .45 | DEE Supply Singh 15 228-3245 the Same
T .25, pavr . saw blade $14.99 SGomez Bros. Ortega G515 S559-2546 1
9.00-in. pwwr . saw blade $17.49 Gomez Bros. Ortega G515 S559-2546 attrIbUte appears
Rat-tail file, 155-in. fine F4.99 Gomez Bros. Ortega G515 S559-2546 In more than One
Hrd. clath, 154-in., 2x50 F$39.95 Randsets Lid. Anderson Q01 E75-3995
Hrd. clath, 142-in., S=50 §43.99 Randsets Ltd. Anderson ao 575-3995 Of the joined
BED jigsaw, 12-in. blade F109.92 ORDWA INC. Hakford 15 595-1234 .
B&D jigsaw, S-in. blade F99.57 ORDWA, INc. | Hakford 515 5951254 rela’uons_
Hicut chain saw, 16 in. F256.99 ORDWA, Inc. Hakford E15 895-1234
Powwer pairter, 15 p=i., S-nozzle F109.99 Rubicon Systel Orton Q04 4SE-0092
B&D cordless drill, 1:2-in. F35.95 | Rubicon Systen Orton Q04 4SE-0092

Steel matting, 4'=5"%1 6", 5" mesh F$119.95 Ruhicon Systel Orton Q04 4SE-0092

[Product description [[| [caps [Facira | [s

COP 4610L: SQL Part 2 Page 23 Mark Llewellyn ©

Joining Database Tables (cont.)

If you do not specify a join condition in the WHERE clause, a Cartesian
product results. Using our sample database, the PRODUCT table
contains 16 tuples (rows) and the VENDOR table contains 11 tuples,
which results in a Cartesian product that contains 16 x 11 = 176 tuples.
Most of these tuples (as you can see from the proper result on the
previous page) are garbage!

When joining three or more tables, you need to specify a join condition
for each pair of tables. The number of join conditions will always be N-1
where N is the number of tables listed in the FROM clause.

Be careful not to create circular join conditions. For example, if table A
Is related to table B, table B is related to table C, and table C is also
related to table A, create only two join conditions: join A with B and B
with C. Do not join C with Al

r
COP 4610L: SQL Part 2 Page 24 Mark Llewellyn © gj‘r

Recursive Joins

An alias can be used to identify the source table from which data is taken

for a query. For example:

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE
FROM PRODUCT P, VENDOR V

WHERE P.V_CODE = V.V_CODE
ORDER BY P_PRICE;

An alias is especially useful when a table must be joined with itself,
called a recursive join.

For example, using the EMPLOYEE table we would like to generate a
list of all employees along with the name of their manager. Without
using an alias this query is not possible, since even qualified attribute
names are not unique.

COP 4610L: SQL Part 2 Page 25 Mark Llewellyn ©

Recursive Joins (cont.)

Microsoft Access O] x|

HERY iRy o8- (== u 2

= qryFigh-36 : Select Query 1O x|
SELECT E.EMP_MGR, M.EMP_LNAME, E.EMP_HUM, E.EMP_LNAME

JEiIe Edit Miew Insert Query Tools Window Help

-

FROMEMP ASE, EMP AS M —
WHERE E.EMP_MGR=M,EMP_MLIM T
ORDER. BY E.EMP_MGE,;
[_|L| E =10l x|
~ - Records Tools ‘yindow Help
Ready T T T s o @ gzl Ymy 2

: Select Query
EMP_MGE | M.EMP_LHAN| EMP_HUM |E.EMP_LHAMI

3 P Kolmyez 112 John=on
- 100 Kalmycz 103 Jones
. 100 kalmycz 102 “andam
L 100 Kalmycz 101 Lewis
- 105 Williams 115 Saranda
. 105 | wWilliams 113 Smythe

105 Williams 111 Washington

105 Williams Diante
105 | wWilliams Smith
105 Williams 104 Lange
105 Wiesenbach =mith
105 | wiesenbach Brandan
108 | Wiesenbach Genkazi
103 Wiesenbach

COP 4610L: SQL Part 2 Page 26 Mark Llewellyn ©

Outer Joins

The query results shown on page 23 resulted from the natural join of the
PRODUCT and VENDOR tables. Notice that there are 14 product rows
listed in this output. If you compare these results with the PRODUCT
table itself (see SQL part 1 notes page 46) you will notice that there are
two missing products. Why? The reason is that the two missing products
have null values in the V_CODE attribute in the PRODUCT table.
Because there 1s no matching null “value” in the VENDOR table’s
V_CODE attribute, they do not appear in the final output based on the
join.

To include such rows in the final join output, we’ll need to use an outer
join.

Recall that there are three basic types of outer joins, left outer joins, right
outer joins, and full outer joins. Given tables A and B, A left outer join B
gives all matching rows (on the join condition) plus all unmatched rows
in A. A right outer join B gives all matching rows (on the join condition)
plus all unmatched rows in B. We’ll look at full outer joins later.

.
COP 4610L: SQL Part 2 Page 27 Mark Llewellyn © g)‘l

Left Outer Joins

Microsoft Access - -0 x|

File Edit Wew Insert Format Becords Tools Window

. To include the null valued V_CODE
tuples from the PRODUCT table in the
final output, we’ll need to issue the
following query:

Microsoft Access -0 =

Help

| BE -

HeRy|smRrs| w|a 2
5 aryFigh-37 : Select QU =

P_CODE | V_CODE
21225 | Bryszaon, Inc.
Sh-18277 21225 | Bryszaon, Inc.

21226 superLoo, Inc.
SWS2IME 21231 DEE Supply
13-22P2 21344 Gomez Bros.
1421113 21344 Gomez Bros.
S477E8-2T 21344 Gomez Bros.

22567 | Dome Supgply
1546-2002 23119 Randsets Lid.
1555-201 23119 Randsets Lid.

24004 Brackman Bros.
ZAI2TY 24255 ORDYWA, Inc.
Z2I2NCNNE 24255 ORDYWA, Inc.
S9-WRE-Q 24255 ORDYWA, Inc.

25443 BaK, Inc.

25501 | Damal Supplies
112ERS 25595 | Rubicon Systems
2238/2PD 25595 | Rubicon Systems
| |WRSTTS 25595 | Rubicon Systems

JEiIe Edit Wiew Insert Query Tools Window Help

-

HERY iR o

T

!|"'E|E|

g=f qryFigb-37 : Select Query

SELECT P_CODE, YENDOR.Y_CODE, ¥_NAME
FROM YENDOR: LEFT JOIN PRODUCT OM YENDOR.Y_CODE = PRODUCT.Y_CODE;

aryFina-308 A1 arvUpdateProduct ¥
- [o
|Fleau:|}.-' \ | ’_l | MUM | I_ A

Pradud [[[[[um[| v

COP 4610L: SQL Part 2 Page 28 Mark Llewellyn ©

Left Outer Joins (cont.)

=Y P2 Microsoft Acess zé _lojx

Fil= Edit Wiew Insert Formak Records JEiIe Edit Wiew Insert Formak Records ‘ File Edt Yiew Insert Format Records Tools Windaow
Help o) - a N n

- H SRy e M- 3B &S s 4T 2

Tools indow Help

Help

& -

W

HERY |y 2R e 2

P_CODE |V_CODE
[[[v.cobE] w.nAamE P_CODE | V_CODE -
|+ JFES Bry=on, Inc. 3103-HB 21225 Bry=on, Inc. B
18-G5 E 21226 SuperLoo, Inc. SM-18277 21225 Bry=on, Inc.
1546-Q52 e 21231 DEE Supply B 21226 SuperLon, Inc.
;gggm HE 21344 Gomez Bros. SW-2F16 | 21231 DEE Supply
BT ||+ 22967 Dome Supply 13-Q2P2 | 21344 Gomez Bros.
SRR B+ 231181 Randssts Ltd. 14-Q10L3 21344 Gomez Bros.
+ 24004 Brackman Bros. —
23109-HE B 24266 ORDYA. Inc. | |odTTE-aET 21344 Gomez Bros.
23114-44 |+ 25443 BaK, Inc. 22567 Dome Stpply
S47TE-2T [~ |+ 25501 Damal Supplies | [1546-032 23118 Randsets Ltd.
S8-WRE-G HE 25595 Rukicon Systems | [1958-Gh | 23119 Randsets Ltd,
;;?12835?? #* 0 24004 Brackman Bros.
ST | [223209TY | 24288 ORDVA, Inc.
ARATTS cord: 14 < | L 22INCWE | 24283 ORDVA, Inc.
iy e 89-WRE-Q 24288 ORDVA, Inc.
WRIITTS 25595 Rubicon = —
> 25443 BEK, Inc.

22501 Damal Supplies n
Record: H| 1 || 1 ;l T12ERM 23393 Rubicon Systems

| |22385aPD 25585 Ruhicon Systems
WRITTS 25585 Ruhicon Systems

Podid | [[[[on]

COP 4610L: SQL Part 2 Page 29 Mark Llewellyn ©

Right Outer Joins

. The VENDOR table 1s shown below. Notice that there are rows in
this table in which the V_CODE does not match any of the V_CODE
values in the PRODUCT table.

Microsoft Access 10l =l

JEiIe Edit Wiew Insert Format Records Tools ‘Window Help

- Hl | SEY % BRR o | @ R eR | BE-| 3.

e

g Cho6_SaleCo : Database .

I == YENDOR : Table : 10l =l

s V_CODE V_HAME V_CONTACT | V_AREACODE | V_PHOMNE | V_STATE | V_ORDER

— AFFE Bryson, Inc. Stnithson 615 223-3234 |TM v

;/—"' 21226 SuperLoo, Inc. Flushing Q04 215-8995 FL I

— + 2123531 DEE Supply Zingh 15 225-3245 TH s

— H| 21344 Gomez Bros. Orteda E15 S80-2545 A%]

— + 17 22567 Daome Supply =mith 901 E7G-1419 Leriy I

— + 23119 Randsets Lid. Anderson a0 E¥5-3993 A i

— [24004 Brackman Bros. | Browning 615 2281410 TH il

~_ +\‘ 24258 ORDW A INc. Hakfard 15 Sa5-1234 TH N

. N 25443 BEK, Inc. Stk a04 227-0093 FL Il

— > 25501 Damal Supplies Smythe 15 S90-3529 TH I

— + 25595 Rubicon Systems Orton 904 456-00932 FL N

I o L

— | Record: 14 < || 1 v | en]r#] oF 11 -
. | _'*I_I
[vendor code (primary key.) [[[[[Far | [5

COP 4610L: SQL Part 2 Page 30 Mark Llewellyn © “

Right Outer Joins (cont.)

Microsoft Access |1 xl |

JEiIe Edit Yiew Insert Query Tools Window Help

Microsoft Access =10l x|

K

JEiIe Edit ‘jew Insert Formak Records Tools Window Help |

- B ey smas o @lsl il

HERY a2 o@- szl uf

=t qryFigh-38 : Select Query

SELECT P_CODE, YENDOR.Y_CODE, Y_NAME
FR.OM YENDOR, RIGHT JOIN PRODUCT OM YENDOR.Y_CODE = FRODUCT.Y_CODE;

gE= ChO6_SaleCo : Database
g=F qryFigh-38 : Seleck QUers =10 x| |:

P_CODE | V_CODE V_HAME

T T I

PYWCZEDRT

|Read}.f

23 09-HB 21225 Bry=son, Inc.

[T

[~

Shl-18277 21225 Bry=son, Inc.
SW-23116 2123 DAE Supply
13-22p2 21344 Gomez Bros.
14-21 L3 21344 Gomez Bros.
S4778-2T 21344 Gomez Bros.
1546-G32 23119 Randsets Lid.
1558-GhA 23119 Randsets Lid.
2232007y 242835 ORDMVA | Inc.
2232/ChNE 242835 ORDMVA | Inc.
39-MRE-Q 242835 ORDMVA | Inc.

11 QERMH 25585 Rubicon Systems
223800PD 25585 Rubicon Systems
WRIITT S 25585 Rubicon Systems

EEGY
Rz

Product cade: P | | [| UM | | i

COP 4610L: SQL Part 2 Page 31 Mark Llewellyn ©

Right Outer Joins (cont.)

-0l P2 Microsoft Access é _lix]

Fil= Edit View Insert Formak Records jEiIe Edit View Insert Formak Records ‘ JFilE Edit Wiew Insert Format Records Todls ‘indaw Help |

¥-HERY smRY| o @4l i

Help Toaols ‘indow Help

- EBERY e -3 &8 83T 2

= Projection on PRODL gEE ChD6 SaleCo : Database

P_CODE |V_CODE

LRl
= 1anole

25535 [] |[V.CODE| v.mame =10/ x|
LUEE |+ Bry=on, Inc. —
14-Q143 21344 E ﬁ Sui:uerLDD, InG. 114
Egggﬁ 32112 |+ 21231 DaE Supply PYCIIDR
= AT {21344 Gomez Bros. JH0GHB 21225 Bryson, Inc.
+ 22567 Dome Supply 1
2RIDICNNE 24288 — . e T Sh-18277 21225 Bryson, Inc.
223BAPD | 25595 BB 5| 24002 | Erackren Bros. SM-23116 21231 DEE Supply
23109-HB 2225 |+ 24768 ORDWA, InG. 13-G2P2 21344 Gomez Bros.
23114-2.8 Bl + 254475 EIS:H, Inc. 14-Gr1 L3 21344 Gomez Bros.
94778-21 21344 |+ 25501 Damal Supplies 54778-2T 21344 Gomez Bros.
B9WNRE-G| 24288 [|+ 25595 Rubicon Systems 1546-002 23118 Randsets Ltd.
PAC23DRT 0 1558-GM1 23119 Randsets Ltd.
swhlgare | 21 223200TY | 24288 ORDVA, Inc.
e cord: 14| <[] 1| 232CGWE 24288 ORDVA, Inc.
] Wg;;ﬁ; = Ruticon o BOWRE-G 24288 ORDVA, Inc.
| 112ERI31 25585 Ruhicon Systems s
223810P0 25585 Ruhicon Systems
recard: 14| < | 1] | |WR3TT3 25585 Rubicon Systems ROD
»
| v Record: 14 4 || L v | rn e o 16

Praductcode:P [[[[| Wom |

COP 4610L: SQL Part 2 Page 32 Mark Llewellyn ©

Relational Set Operators

Recall that relational algebra is set-oriented and includes many set
operators such as union, intersection, and set difference. Recall too, that
the terms, sets, tables and relations are interchangeable in the relational
world.

As with pure relational algebra, the set operators only work with union-
compatible relations. In SQL, this means that the names of the attributes
must be the same and their data types must be identical. This is an area
where different RDBMSs vary widely in what is meant by union-
compatible. For example, some RDBMSs will consider the data types
VARCHAR(35) and VARCHAR(15) compatible because, although they
have different length, the underlying base type is the same. Other
RDBMSs will not consider these two data types as compatible. You’ll
need to experiment with your RDBMS to see what is compatible and
what isn’t.

r
COP 4610L: SQL Part 2 Page 33 Mark Llewellyn © g};

Union Operator

Suppose that our company has bought another company and management
wants to make sure that the acquired company’s customer list is properly
merged with the existing company customer list. Since it is quite
possible that some customers have purchased from both companies, the
two lists may contain common customers. Management does not want
any duplicates in the customer list.

The SQL UNION query automatically removes duplicate rows from the
operand relations. If you wish to include duplicate rows in the result use
the UNION ALL command.

The syntax of a UNION query Is: query UNION guery

Basically, the UNION statement combines the output of two SELECT
queries. Remember that the output of the two SELECT queries must be
union compatible.

To illustrate the UNION query, let’s combine our original customer list
with the new customer list as shown on the next couple of pages.

(
COP 4610L: SQL Part 2 Page 34 Mark Llewellyn © g;‘l

Union Operator (cont.)

Microsoft Access

JEiIe Edit Wiew Insert Formak Records Tools

Window Help

- HE8R_RY | $mE Y o @2l 2h | #@n |Ea- B,

B CUSTOMER : Table - O] =l

CUS_CODE | CUS_LNAME | CUS_FHNAME | CUS_INITIAL | CUS_AREACODE | CUS_PHOHNE | CUS_BALANCE
E Tl Famas Alfred 2, £15 544-2573 $0.00
E: 10011 | Dunne Leans K 713 §04-1238 $0.00
E 10012 | Smith Kathy W B15 594-2235 $345 56
IE: 1001 3| Ol ski PaLl F 15 §94-2150 $536 75
E 1001 4| Orlando Myron B15 2221672 $0.00
IE: 10015 | C'Brrian &y B 713 4423381 $0.00
E 10016 Brown Jammes (e 615 2971225 $221.14
IE: 10017 | williams George 15 290-2556 $768 .93
E 10018 | Farrizs Arine (e 713 382-T185 $216.55
INE: 10019 Smith Olette K B15 297-3309 $0.00
* 0 $0.00
Record: 14] < | Microsoft Access

JEiIe Edit Miews Insert Format Records Tools Window Help

|Datashest Yiew

4 8 CUSTOMER_2 : Table

CUS_CODE | CUS_LHAME | CUS_FHAME | CUS_INITIAL| CUS_AREACODE | CUS_PHONE

Terrell Justine
347 | Qlaweski Paul

351 | Hernandez Carlos
392 McDovvell Gearge

365 Tirpin Khalead

365 Lewvis darie
369 Dunne Leana
u]

Record: I4| 4 || 1 ||>||He| of 7

322-9870
394-2150
123-7654
123-77685
123-9576
33217848
§94-12385

- H ey sbe s o @tlil e v |dan|Ea- B,

|Data5heet Wiew

I UM |

COP 4610L: SQL Part 2

Page 35

Mark Llewellyn ©

Union Operator (cont.)

Microsoft Access

JEiIe Edit Mjew Insert Format Records Tools Window Help

=101 x|

Jsmv

; gz qryUNION-of-CUSTOMER-and-CUSTOMER_ 2 : Linion 0

CUS_LHAME | CUS_FHAME |CUS_IMITIAL| CUS_AREACODE | CUS_PHOHE

bR James 615
Dunne Leona 713
Farrizs Anne 713
Hernandez Carlos 723
Lewis Iarie 734
mcDoweell Gearge 723
O'Brian Ay 713
Clowneski Paul 615
Orlando hdyron E15
Ramas Alfred A 615
Smith Kathey) G615
Smith Olette 4 G615
Terrell Justine H 615
€ 723
Williams Gearge E15

Tirgin Khaleed

2971228
d34-12385
3g2-7135
123-76324
33217349
123-77ES
442-3331
d34-2130
2221672
d44-2373
F34-2235
297-3309
J22-9370
123-9376
290-2336

Recard: Hl 1 || 1k |H|P*| af 15

H SRV | imesy o|@sli%e v éar % Ba-

3.

Datasheet Yiew

COP 4610L: SQL Part 2

Page 36

Mark Llewellyn ©

Union ALL Operator

Microsoft Access =10 x|

JEiIe Edit Mjew Insert Format Records Tools Window Help

- F@RY| s BRY o(@ 42U YR Y #x B 2

; gz qryUNION-ALL-for-CUSTOMER-and-CUSTOMER_2 : Union QUes

CUS_LHAME | CUS_FHAME | CUS_IHITIAL| CUS_AREACODE | CUS_PHONE
Alfred G44-2573
Leona §94-12385
Kathey 94-2285
Paul g94-2180
Orlando hdyron 2221672
O'Brian Ay 442-3381
Brosen James 2971228
Williams Gearge 280-2556
Farrizs Anne 352-7185
Smith Olette 297-3809
Terrell Justine 322-9870
Olowyski Paul g94-2180
Hernandez Carlos 123-7654
mcDoweell Gearge 123-7768
Tirgin Khaleed 123-9576
Lewis Iarie 332-1789
Dunne Leona K §94-12385

Record: HI 1 || 1k Ibllb*l af 17

Datasheet Yiew | | [] | UM | | A

COP 4610L: SQL Part 2 Page 37 Mark Llewellyn ©

Intersect Operator

The syntax of an INTERSECT query IS: | guery INTERESCT query

Access does not support the INTERSECT statement. To effect an
Intersection in Access you need to use the IN operator.

K Microsoft Access =10l x|
JEiIe Edit Miew Insert Query Tools ‘Window Help |

|B-E @SRy =R o ! % = | dIEN = =k=R

"'

1

' [SELECT CUS_CODE

FROM CUSTOMER
WHERE CUS_AREACODE = '615' AND

CUS_CODE IN {SELECT DISTINCT CUS_CODE

FROM INYOICED;

COP 4610L: SQL Part 2 Page 38 Mark Llewellyn © 6

Intersect Operator

Microsoft Access Microsoft Access _ =101 x|
J File Edit ‘iew Insert Format Records Tools MWindow Help J File Edit Wiew Insert Format Records Tools indow Help
28 Al Z] e, Al Z
M- B ERY¥ sy ot Ya v ariM-BESRY $BRY|o[8IUTY ?
B INYOICE : Table
_ (ol (k! INV_NUMBER [CUS_CODE| INV_DATE
HLAE 001} 10014 16-Jan-04
| CUS_CODE | CUS_LHAME | CUS_FHAME |CUS_INITIAL | CUS_AREACODE | CUS_PI L |* 1002 10011 16-Jan-04 |
e Ramas Alfred A E15 g44-257 ||+ 1003 10012 16-Jan-04
NE 10011 Dunne Leana K T3 894-123 |+ 1004 10011 17-Jan-04
|t 10012 Smith Kathy Wy E15 894-228 . 1003 10013 17-Jan-04 | |
BE 10013 Olawski Paul F B15 594-218 N 1006 10014 17-Jan-04
Rk 10014 Crlando hdyron B35 222167 I 1007 10015 17-Jan-04
|+ 10015 OBrian Ay B T3 442-338 £2 1008 10011 17-Jan-04
[10016 Brown James G E15 2872
[10017 williams George E15 SO0 _JEE
| [+ 10018 Farriss Anne G k] [Microsoft Access =
s 10018 Smith Olette K B13 J File Edit Yiew Insert Format Records Tools Window Help | k
* 0 -
| . RE - Al Z =M
Recard: 14 <] 1 v e of 10 Jﬁ E|§&J|$E-‘g|ﬂ|%|2lﬁl|%' 2

Datashest View

Datasheet Yiew | | [| WM | | A

COP 4610L: SQL Part 2 Page 39 Mark Llewellyn ©

Set Difference Operator

The syntax of a (set difference) MINUS query is: query MINUS query

Access does not support the MINUS statement. To effect a set difference
in Access you need to use the NOT IN operator.

Most RDBMSs name the MINUS operation EXCEPT.

K Microsoft Access = =10l x|
JEiIe Edit Miew Insert Query Tools Window Help

|- dERY | BB o

e

"'

g=8 alternative for minus : Select Query

SELECT CUS_CODE, CUS_LMAME
FROM CUSTOMER.

WHERE CUS_AREACODE = '515" AND

CUS_CODE MOT IM (SELECT DISTIMCT CUS_CODE

FROM INVOICE); —
L0 gqryUNION-ALL-For-CUSTOMER-and-CUSTOMER, 2
() gryUNION-of-CUSTOMER -and-CUSTOMER 2 -
| b
Ready I Y O I T Vv

COP 4610L: SQL Part 2 Page 40 Mark Llewellyn © 6

Set Difference Operator (cont.)
S vicrosort Access =101 x]

JEiIe Edit Miew Insert Format Records Tools Window Help

BaR¥|sBe |8y 2

Microsoft Access

JEiIe Edit ‘jew Insert Formak Records Tools Window Help

BaRv & E?@'|“|%|%lil|%?|ﬂjﬁ*

| B -

e

B9 CUSTOMER : Table B INYOICE : Table

CUS_CODE | CUS_LHAME | CUS_FHAME | CUS_IHITIAL | CUS_AREACODE R L EE e L
DE T Raimas Alfred A 515 : . Ejz:gi
[IS 10011 Dunne Leana K 13 £ < 16-Jan-04
[[RE 10012 Simith Hathy W 615 i = 17-Jan-0d
[[RE 10013 Claveeski Paul F 615 i = 17-Jan-0d
[IS 10014 Orlanco hyron G123 + 17 -Jan-0d |
[[RE 10015 C'Brian Ay B 713 ¢ - 17-Jan-04
||+ 10016 Brown James G G135 : < 17-Jan-04
[IS 10017 | willizims Gearge E15
[IS 10013 Farriss Anne G 13

+ 10019 Simith Clette K 615]

¥ | 0 Record: LI;II 1 |rir#|of & |
Recard: LILII 1 Llllﬂl of 10 Microsoft Access 1Ol =] »

JEiIe Edit Wiew Insert Formak Records Tools ‘Window Help

|Datasheet Wigw

- HB SERY e o @l 2

gzl alternative for minu =101 =

CUS_CODE | CUS_1L HAME

10013 Olowweski
10016 Brovwwn
10017 Williams

10019 Smith

MER.-an

reband-CI T
»

[Datashest vie | [| | MU | | o

COP 4610L: SQL Part 2 Page 41 Mark Llewellyn ©

SQL Join Operations

The SQL join operations merge rows from two tables and

returns the rows that:

1. Have common values in common columns (natural join) or,

2. Meet a given join condition (equality or inequality) or,

3. Have common values in common columns or have no matching

values (outer join).

We’ve already examined the basic form of an SQL join
which occurs when two tables are listed in the FROM clause
and the WHERE clause specifies the join condition.

An example of this basic form of the join is shown on the

next page.

COP 4610L: SQL Part 2

Page 42

Mark Llewellyn ©

'r

SQL Join Operations (cont.)

SELECT P_CODE, P_DESCRIPT, P_PRICE, V_NAME
FROM PRODUCT, VENDOR
WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

The FROM clause indicates which tables are to be joined. If
three or more tables are specified, the join operation takes
place two tables at a time, starting from left to right.

The join condition is specified in the WHERE clause. In the
example, a natural join is effected on the attribute V_CODE.

The SQL join syntax shown above Is sometimes referred to
as an “old-style” join.

The tables on pages 55 and 56, summarize the SQL join
operations.

(
COP 4610L: SQL Part 2 Page 43 Mark Llewellyn © g;‘l

SQL Cross Join Operation

A cross join in SQL is equivalent to a Cartesian
product in standard relational algebra. The cross
join syntax Is:

SELECT column-list
FROM fable1, table2:

SELECT column-list _

FROM fable? CROSS JOIN tableZ,

A

old style syntax

A

COP 4610L: SQL Part 2 Page 44 Mark Llewellyn ©

SQL Natural Join Operation

The natural join syntax Is:

SELECT column-list L _

FROM fable7 NATURAL JOIN fableZ,

The natural join will perform the following tasks:

— Determine the common attribute(s) by looking for
attributes with identical names and compatible data types.

— Select only the rows with common values in the common
attribute(s).

— If there are no common attributes, return the cross join of
the two tables.

e
COP 4610L: SQL Part 2 Page 45 Mark Llewellyn © g};

SQL Natural Join Operation (cont)

The syntax for the old-style natural join is:

SELECT column-list
FROM fablel, table2
WHERE fable1.C1 = table2.C2;

old style syntax

One important difference between the natural join
and the “old-style” syntax is that the natural join
does not require the use of a table qualifier for the
common attributes. The two SELECT statements
shown on the next page are equivalent.

r
COP 4610L: SQL Part 2 Page 46 Mark Llewellyn © g};

SQL Natural Join Operation (cont)

SELECT CUS_NUM, CUS_LNAME,
INV_NUMBER, INV_DATE
FROM CUSTOMER, INVOICE

WHERE CUSTOMER.CUS_NUM = INVOICE. CUS_NUM;

A

old style
syntax

SELECT CUS_NUM, CUS_LNAME,
INV_NUMBER, INV_DATE

FROM CUSTOMER NATURAL JOIN INVOICE;

A

COP 4610L: SQL Part 2

Page 47

Mark Llewellyn ©

Join With Using Clause

A second way to express a join Is through the
USING keyword. This query will return only the
rows with matching values in the column indicated
In the USING clause. The column listed in the
USING clause must appear in both tables.

The syntax Is:

SELECT column-list
FROM fable? JOIN table2 USING (common-column);

.
COP 4610L: SQL Part 2 Page 48 Mark Llewellyn © @;

Join With Using Clause (cont.)

An example:

SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS,
LINE_PRICE
FROM INVOICE JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE);

As was the case with the natural join command, the
JOIN USING does not required the use of qualified
names (qualified table names). In fact, Oracle 9i
will return an error If you specify the table name In
the USING clause.

(
COP 4610L: SQL Part 2 Page 49 Mark Llewellyn © g;‘l

Join On Clause

Both the NATURAL JOIN and the JOIN USING commands
use common attribute names in joining tables.

Another way to express a join when the tables have no
common attribute names is to use the JOIN ON operand.
This query will return only the rows that meet the indicated
condition. The join condition will typically include an
equality comparison expression of two columns. The
columns may or may not share the same name, but must
obviously have comparable data types.

The syntax Is:
SELECT column-list

FROM fable? JOIN table2 ON join-condition;

(
COP 4610L: SQL Part 2 Page 50 Mark Llewellyn © g;‘l

Join On Clause (cont)

An example:

SELECT INVOICE.INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE
FROM INVOICE JOIN LINE ON INVOICE.INV_NUMBER = LINE.INV_NUMBER
JOIN PRODUCT ON LINE.P_CODE = PRODUCT.P_CODE;

Notice In the example query, that unlike the NATURAL
JOIN and the JOIN USING operation, the JOIN ON clause
requires the use of table qualifiers for the common attributes.
If you do not specify the table qualifier you will get a
“column ambiguously defined” error message.

Keep In mind that the JOIN ON syntax allows you to
perform a join even when the tables do not share a common
attribute name.

.
COP 4610L: SQL Part 2 Page 51 Mark Llewellyn © g)‘l

Join On Clause (cont)

For example, to general a list of all employees with
the manager’s name you can use the recursive query

shown below which utilizes the JOIN ON clause.

SELECT E.EMP_MGR, M.EMP_LNAME, E.EMP_NUM, E.EMP_LNAME
FROM EMP E JOIN EMP M ON E.EMP_MGR = M.EMP_NUM
ORDER BY E.EMP_MGR;

COP 4610L: SQL Part 2 Page 52 Mark Llewellyn ©

Outer Joins

We saw the forms for the LEFT OUTER JOIN and the
RIGHT OUTER JOIN in the previous set of notes.

There is also a FULL OUTER JOIN operation in SQL. A
full outer join returns not only the rows matching the join
condition (that Is, rows with matching values in the common
column(s)), but also all the rows with unmatched values In
either side table.

The syntax of a full outer join is:

SELECT column-/ist
FROM fable? FULL [OUTER] JOIN {fable2 ON join-condition,

r
COP 4610L: SQL Part 2 Page 53 Mark Llewellyn © gj‘r

Outer Joins (cont)

The following example will list the product code,
vendor code, and vendor name for all products and
Include all the product rows (products without
matching vendors) and also all vendor rows
(vendors without matching products):

SELECT P_CODE, VENDOR.V_CODE, V_NAME
FROM VENDOR FULL OUTER JOIN PRODUCT
ON VENDOR.V_CODE = PRODUCT.V_CODE;

r
COP 4610L: SQL Part 2 Page 54 Mark Llewellyn © g};

Su

mmary of SQL JOIN Operations

Join Join Type SQL Syntax Example Description
Classification
Cross CROSS SELECT * Old style. Returns the Cartesian product of T1 and
JOIN FROM T1, T2; T2
SELECT * New style. Returns the Cartesian product of T1 and
FROM T1 CROSS JOINT2; | T2
Inner Old Style SELECT * Returns only the rows that meet the join condition in
JOIN FROM T1, T2 the WHERE clause — old style. Only rows with
WHERE T1.C1 = T2.C1 matching values are selected.
NATURAL SELECT * Returns only the rows with matching values in the
JOIN FROM T1 NATURAL JOIN matching columns. The matching columns must
T2 have the same names and similar data types.
JOIN USING | SELECT * Returns only the rows with matching values in the
FROM T1 JOIN T2 USING columns indicated in the USING clause.
(C1)
JOIN ON SELECT * Returns only the rows that meet the join condition

FROM T1 JOIN T2
ONT1.C1=T2.C1

indicated in the ON clause.

COP 4610L: SQL Part 2

Page 55

Mark Llewellyn ©

Summary of SQL JOIN Operations

)
(cont.
Join Join Type SQL Syntax Example Description
Classification
Outer LEFT JOIN SELECT * Returns rows with matching values and includes all
FROM T1 LEFT OUTER rows from the left table (T1) with unmatched values.
JOIN T2
ONT1.C1=T2.C1
RIGHT JOIN | SELECT * Returns rows with matching values and includes all
FROM T1 RIGHT OUTER rows from the right table (T2) with unmatched
JOIN T2 values.
ONT1.C1=T2.C1
FULL JOIN SELECT * Returns rows with matching values and includes all
FROM T1 FULL OUTER rows from both tables (T1 and T2) with unmatched
JOIN T2 values.
ONT1.C1=T2.C1

COP 4610L: SQL Part 2 Page 56 Mark Llewellyn ©

J—

—

Subqueries and Correlated Queries

The use of joins allows a RDBMS go get information from
two or more tables. The data from the tables Is processed
simultaneously.

It is often necessary to process data based on other processed
data. Suppose, for example, that you want to generate a list
of vendors who provide products. (Recall that not all
vendors in the VENDOR table have provided products —
some of them are only potential vendors.)

The following query will accomplish our task:

SELECT V_CODE, V_NAME
FROM VENDOR
WHERE V_CODE NOT IN (SELECT V_CODE FROM PRODUCT);

.
COP 4610L: SQL Part 2 Page 57 Mark Llewellyn © g)‘l

Subqueries and Correlated Queries (cont.)

A subquery is a query (SELECT statement) inside a query.
A subquery is normally expressed inside parentheses.

The first query In the SQL statement Is known as the outer
query.

The second query in the SQL statement is known as the inner
query.

The inner query Is executed first.

The output of the Inner query is used as the input for the
outer query.

The entire SQL statement Is sometimes referred to as a
nested query.

»
COP 4610L: SQL Part 2 Page 58 Mark Llewellyn © §;

Subqueries and Correlated Queries (cont.)

1.

A subguery can return:

One single value (one column and one row). This subguery can be
used anywhere a single value is expected. For example, in the right
side of a comparison expression.

A list of values (one column and multiple rows). This type of
subqguery can be used anywhere a list of values is expected. For
example, when using the IN clause.

A virtual table (multi-column, multi-row set of values). This type of
subquery can be used anywhere a table is expected. For example, In
the FROM clause.

4. No value at all, i.e., NULL. In such cases, the output of the outer

query may result in an error or null empty set, depending on where
the subquery is used (in a comparison, an expression, or a table set).

.
COP 4610L: SQL Part 2 Page 59 Mark Llewellyn © @;

Correlated Queries

A correlated query (really a subquery) is a subquery that contains a
reference to a table that also appears in the outer query.

A correlated query has the following basic form:

SELECT * FROM tablel WHERE col1 = ANY

(SELECT coll FROM table2
WHERE table2.col2 = tablel.coll);

Notice that the subquery contains a reference to a column of tablel,
even though the subquery’s FROM clause doesn’t mention tablel.
Thus, query execution requires a look outside the subquery, and finds the

table reference in the outer query.

(’
COP 4610L: SQL Part 2 Page 60 Mark Llewellyn © §;

WHERE Subqueries

The most common type of subguery uses an inner SELECT
subquery on the right hand side of a WHERE comparison
expression.

For example, to find all products with a price greater than or
equal to the average product price, the following query
would be needed:

SELECT P_CODE, P_PRICE
FROM PRODUCT
WHERE P_PRICE >= (SELECT AVG(P_PRICE)
FROM PRODUCT);

r
COP 4610L: SQL Part 2 Page 61 Mark Llewellyn © gj‘r

WHERE Subqueries (cont.)

Subqueries can also be used in combination with joins.

The query below lists all the customers that ordered the
product “Claw hammer”.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME
FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)
JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE)
WHERE P_CODE = (SELECT P_CODE
FROM PRODUCT
WHERE P_DESCRIPT = “Claw hammer”);

r
COP 4610L: SQL Part 2 Page 62 Mark Llewellyn © g};

WHERE Subqueries (cont.)

Notice that the previous query could have been written as:
SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME
FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)
JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE)
WHERE P_DESCRIPT = ‘Claw hammer’);

However, what would happen if two or more product
descriptions contain the string “Claw hammer”?

— You would get an error message because only a single
value Is expected on the right hand side of this expression.

(
COP 4610L: SQL Part 2 Page 63 Mark Llewellyn © g;‘l

IN Subqueries

To handle the problem we just saw, the IN operand must be

used.

The query below lists all the customers that ordered any kind

of hammer or saw.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME
FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)
JOIN LINE USING (INV_NUMBER)
JOIN PRODUCT USING (P_CODE)
WHERE P_CODE IN (SELECT P_CODE
FROM PRODUCT

WHERE P_DESCRIPT LIKE ‘%hammer%’

OR P_DESCRIPT LIKE “Y%saw%’);

COP 4610L: SQL Part 2 Page 64 Mark Llewellyn ©

HAVING Subqgueries

It is also possible to use subqueries with a HAVING clause.

Recall that the HAVING clause is used to restrict the output
of a GROUP BY query by applying a conditional criteria to
the grouped rows.

For example, the following query will list all products with
the total quantity sold greater than the average quantity sold.

SELECT DISTINCT P_CODE, SUM(LINE_UNITS)
FROM LINE
GROUP BY P_CODE
HAVING SUM(LINE_UNITS) > (SELECT AVG(LINE_UNITS)
FROM LINE);

(
COP 4610L: SQL Part 2 Page 65 Mark Llewellyn © g;‘l

Multi-row Subquery Operators: ANY and ALL

The IN subquery uses an equality operator; that is, it only
selects those rows that match at least one of the values in the
list. What happens if you need to do an inequality
comparison of one value to a list of values?

For example, suppose you want to know what products have
a product cost that is greater than all individual product costs
for products provided by vendors from Florida.

SELECT P_CODE, P_ONHAND*P_PRICE

FROM PRODUCT

WHERE P_ONHAND*P_PRICE > ALL (SELECT P_ONHAND*P_PRICE
FROM PRODUCT

WHERE V_CODE IN (SELECT V_CODE
FROM VENDOR

WHERE V_STATE= ‘FL’));

COP 4610L: SQL Part 2

Page 66

Mark Llewellyn ©

(\

FROM Subqgueries

In all of the cases of subqueries we’ve seen so far, the subquery was part
of a conditional expression and it always appeared on the right hand side
of an expression. This is the case for WHERE, HAVING, and IN
subqueries as well as for the ANY and ALL operators.

Recall that the FROM clause specifies the table(s) from which the data
will be drawn. Because the output of a SELECT statement is another
table (or more precisely, a “virtual table”), you could use a SELECT
subquery in the FROM clause.

For example, suppose that you want to know all customers who have
purchased products 13-Q2/P2 and 23109-HB. Since all product
purchases are stored in the LINE table, it is easy to find out who
purchased any given product just by searching the P_CODE attribute in
the LINE table. However, in this case, you want to know all customers
who purchased both, not just one.

The query on the next page accomplishes this task.

(
COP 4610L: SQL Part 2 Page 67 Mark Llewellyn © g;‘l

FROM Subgueries (cont.)

SELECT DISTINCT CUSTOMER.CUS_CODE, CUSTOMER.LNAME
FROM CUSTOMER, (SELECT INVOICE.CUS_CODE
FROM INVOICE NATURAL JOIN LINE
WHERE P_CODE =’13-Q2/P2’) CP1,
(SELECT INVOICE.CUS_CODE
FROM INVOICE NATURAL JOIN LINE
WHERE P_CODE = 23109-HB’) CP2
WHERE CUSTOMER.CUS_CODE = CP1.CUS_CODE
AND CP1.CUS_CODE = CP2.CUS_CODE;

COP 4610L: SQL Part 2 Page 68 Mark Llewellyn ©

Subqueries in MySQL

The ability to handle subqueries like we’ve just examined
was not available in MySQL until version 4.1.

If you are using a version of MySQL earlier than 4.1 you will
need to download the latest version (4.1.9) before you begin
to work on the next assignment which will involve the

execution of subqueries.

There are a number of other enhancements that became
active with version 4.1 that are extremely useful and we will
examine a number of these over the coming days.

COP 4610L: SQL Part 2

Page 69

Mark Llewellyn ©

'r

Subqgueries in MySQL (cont)

Subqueries are also useful in optimizing queries as they can
be used to eliminate more costly join operations.

Consider the following general query:

SELECT DISTINCT table1.col1
FROM table1, table2
WHERE table1.col1 = table2.col1;

This query can be more efficiently expressed using
subqueries as:

SELECT DISTINCT colf

FROM table1

WHERE table1.col1 IN (SELECT col1
FROM table2);

e
COP 4610L: SQL Part 2 Page 70 Mark Llewellyn © g};

