
COP 4610L: SQL Part 1 Page 1 Mark Llewellyn

COP 4610L: Applications in the Enterprise
Spring 2005

Introduction to SQL

COP 4610L: Applications in the Enterprise
Spring 2005

Introduction to SQL

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4610L/spr2005

COP 4610L: SQL Part 1 Page 2 Mark Llewellyn

History of SQL
• SQL, pronounced “S-Q-L” by some and “sequel” by others (mostly old-

timers), has become the de facto standard language for creating and
querying relational databases. In fact, ANSI has declared that the official
pronunciation for SQL is “es queue el”.

• It has been accepted by ANSI (American National Standards Institute)
and ISO (International Standards Organization) as well as being a FIPS
(Federal Information Processing Standard).

• Between 1974 and 1979, workers at the IBM Research Laboratory in San
Jose, California undertook the development of System R. This was
shortly after Codd’s classic paper defining the relational database was
published. The goal of the System R project was to demonstrate the
feasibility of implementing the relational model in a DBMS. They used a
language named SEQUEL (Structured English QUEry Language), which
was a descendent of SQUARE (Specifying QUeries As Relational
Expressions), both of which were developed at IBM, San Jose.

• SEQUEL was renamed to SQL during this project due to a trademark
dispute with the Hawker-Siddeley aircraft company in the UK.

COP 4610L: SQL Part 1 Page 3 Mark Llewellyn

History of SQL (cont.)

• System R itself was never produced commercially, but directly led
to the development of SQL/DS (1981 running under DOS/VE OS, a
VM version followed in 1982) which was IBM’s first commercial
relational DBMS.

• IBM however, did not produce the first commercial implementation
of a relational DBMS. That honor went to Oracle (Relational
Software) in 1979.

• Today, the relational DBMS system of virtually all vendors is based
on SQL.

• Each vendor provides all the standard features of SQL. Most
vendors also provide additional features of their own, called
extensions to standard SQL. These extensions lead to portability
issues when moving SQL-based applications across various
RDBMS. Vendors attempt to distinguish their SQL versions through
these extensions.

COP 4610L: SQL Part 1 Page 4 Mark Llewellyn

History of SQL (cont.)

• The current version of ANSI standard for SQL is SQL-
2003 (also referred to as SQL3 as was SQL-99). This
standard has also been accepted by ISO.

• Although many different extensions of SQL exist, we’ll
look at the core SQL that will be found on any RDBMS
that you will encounter. Whether you use Oracle,
Microsoft SQL Server, IBM’s DB2, Microsoft Access,
MySQL, or any other well-established RDBMS, you’ll
be able to get up to speed on that system with the
information in this set of notes.

COP 4610L: SQL Part 1 Page 5 Mark Llewellyn

SQL
• SQL is a complete relational database language in the sense

that it contains both a data definition language (DDL) and a
data manipulation language (DML). It also contains a data
control language (DCL) used for authorization and security.

• We’ll examine components of all three parts of SQL.

• If you use Microsoft Access, for example, you’ll need to
know less about the DDL side of SQL than you will if you
use Oracle 9i or MySQL.

• The table on the following pages summarize the commands in
the DDL portion of SQL. The entries in the table do not
correspond to the order in which you will use the commands,
but simply give a quick summary of those available. The
table does not contain a complete listing of the commands in
the DDL portion of SQL.

COP 4610L: SQL Part 1 Page 6 Mark Llewellyn

Summary of SQL DDL Commands

Permanently deletes a viewDROP VIEW

Permanently deletes an indexDROP INDEX

Permanently deletes a table (and thus its data) from the DB
schemaDROP TABLE

Modifies a table’s definition: adds/deletes/updates attributes or
constraintsALTER TABLE

Creates a dynamic subset of rows/columns from 1 or more tablesCREATE VIEW

Creates an index for a tableCREATE INDEX

Constraint used to validate data in a columnCHECK

Defines a default value for a column (when no value is given)DEFAULT

Defines a foreign key for a tableFOREIGN KEY

Defines a primary key for a tablePRIMARY KEY

Constraint that ensures a column will not have duplicate valuesUNIQUE

Constraint that ensures a column will not have null valuesNOT NULL

Creates a new table in the user’s DB schemaCREATE TABLE

Creates a database schemaCREATE SCHEMA AUTHORIZATION

DescriptionCommand or Option

COP 4610L: SQL Part 1 Page 7 Mark Llewellyn

The DDL Component Of SQL
• Before you can use a RDMS two tasks must be completed: (1)

create the database structure, and (2) create the tables that will hold
the end-user data.

• Completion of the first task involves the construction of the physical
files that hold the database. The RDBMS will automatically create
the data dictionary tables and create a default database administrator
(DBA).

– Creating the physical files requires interaction between the host OS and
the RDBMS. Therefore, creating the database structure is the one
feature that tends to differ substantially from one RDBMS to another.

• With the exception of the creation of the database, most RDBMS
vendors use SQL that deviates very little from ANSI standard SQL.
Nevertheless, you might occasionally encounter minor syntactic
differences. For example, most RDBMSs require that any SQL
command be ended with a semicolon. However, some SQL
implementations do not use a semicolon. I’ll try to point out most
of the common syntactic differences, or at least the ones of which I
am aware.

COP 4610L: SQL Part 1 Page 8 Mark Llewellyn

Use Of DDL Commands In SQL
• We’ll use the database shown on the next page for illustrating the

DDL commands of SQL. This database is a bit more involved than
our supplier-parts-jobs-shipments database, but its along the same
lines. The business rules that apply to this database are:

1. A customer may generate many invoices. Each invoice is generated by
one customer.

2. An invoice contains one or more invoice lines. Each invoice line is
associated with one invoice.

3. Each invoice line references one product. A product may be found in
many invoice lines. You can sell more than one hammer to more than
one customer.

4. A vendor may supply many products. Some vendors may not supply
any products,

5. If a product is vendor-supplied, that product is supplied by only one
vendor.

6. Some products are not supplied by a vendor, they may be made “in-
house” or obtained through other means.

COP 4610L: SQL Part 1 Page 9 Mark Llewellyn

An Example Database

COP 4610L: SQL Part 1 Page 10 Mark Llewellyn

SQL Syntax Notation
DescriptionNotation

A simple value (e.g., 76 or ‘married’) or a formula (e.g., price-10)expression
One or more conditional expressions separated by logical operatorsconditionlist
One or more table names separated by commastablelist
One or more column names or expressions separated by commascolumnlist
A valid conditional expression – evaluates to true or falsecondition
A valid constraint definitionconstraint
A valid data type definitiondata type
The name of an attribute in a tablecolumn
The name of a tabletablename
An optional parameter – everything in brackets is optional[...]
A mandatory parameter, use one from option list{a | b | ... }
An end-user provided parameter – normally requireditalics
Required SQL command keywordCAPITALS

COP 4610L: SQL Part 1 Page 11 Mark Llewellyn

Creating Table Structures Using SQL
• The CREATE TABLE syntax is:

CREATE TABLE tablename (

column1 data type [constraint] [,

column2 data type [constraint]] [,

PRIMARY KEY (column1 [,column2])] [,

FOREIGN KEY (column1 [,column2]) REFERENCES tablename] [,

CONSTRAINT constraint]) ;

COP 4610L: SQL Part 1 Page 12 Mark Llewellyn

Example – Table Creation in SQL
• As an example, let’s create the VENDOR table as

described on page 11.

CREATE TABLE VENDOR (

V_CODE INTEGER NOT NULL UNIQUE,

V_NAME VARCHAR(35) NOT NULL,

V_CONTACT VARCHAR(15) NOT NULL,

V_AREACODE CHAR(3) NOT NULL,

V_PHONE CHAR(8) NOT NULL,

V_STATE CHAR(2) NOT NULL,

V_ORDER CHAR(1) NOT NULL,

PRIMARY KEY (V_CODE));

COP 4610L: SQL Part 1 Page 13 Mark Llewellyn

The VENDOR Table in Access

COP 4610L: SQL Part 1 Page 14 Mark Llewellyn

Creating the
Vendor Table

in MySQL
Create database
and switch to it

Define table schema

Show tables in the database

Description of the Vendor table schema

COP 4610L: SQL Part 1 Page 15 Mark Llewellyn

Example – Table Creation
• Now let’s create the PRODUCT table as described on page 11.

CREATE TABLE PRODUCT (

P_CODE VARCHAR(10) NOT NULL UNIQUE,

P_DESCRIPT VARCHAR(35) NOT NULL,

P_INDATE DATE NOT NULL,

P_ONHAND SMALLINT NOT NULL,

P_MIN SMALLINT NOT NULL,

P_PRICE NUMBER(8,2) NOT NULL,

P_DISCOUNT NUMBER(4,2) NOT NULL,

V_CODE INTEGER,

PRIMARY KEY (P_CODE),

FOREIGN KEY (V_CODE) REFERENCES VENDOR ON UPDATE CASCADE);

COP 4610L: SQL Part 1 Page 16 Mark Llewellyn

The PRODUCT Table in Access

COP 4610L: SQL Part 1 Page 17 Mark Llewellyn

Example – Table Creation
• Now let’s create the CUSTOMER table as described on page 11.

CREATE TABLE CUSTOMER (

CUS_CODE NUMBER PRIMARY KEY,

CUS_LNAME VARCHAR(15) NOT NULL,

CUS_FNAME VARCHAR(15) NOT NULL,

CUS_INITIAL CHAR(1),

CUS_AREACODE CHAR(3) DEFAULT ‘615’ NOT NULL

CHECK (CUS_AREACODE IN (‘615’, ‘713’, ‘931’)),

CUS_PHONE CHAR(8) NOT NULL,

CUS_BALANCE NUMBER(9,2) DEFAULT 0.00,

CONSTRAINT CUS_UI1 UNIQUE (CUS_LNAME, CUS_FNAME));

Creates a unique index constraint named CUS_UI1
on the customer’s last name and first name.

Table
constraint

Column
constraint

COP 4610L: SQL Part 1 Page 18 Mark Llewellyn

The CUSTOMER Table in Access

COP 4610L: SQL Part 1 Page 19 Mark Llewellyn

Example – Table Creation
• Now let’s create the INVOICE table as described on page 11.

CREATE TABLE INVOICE (

INV_NUMBER NUMBER PRIMARY KEY,

CUS_CODE NUMBER NOT NULL, REFERENCES CUSTOMER(CUS_CODE)

INV_DATE DATE DEFAULT SYSDATE NOT NULL,

CONSTRAINT INV_CK1 CHECK (INV_DATE > TO_DATE(’01-JAN-2002’, ‘DD-MON-YYYY’)));

Check constraint is used to validate that the invoice
date is greater than January 1, 2002. The TO_DATE
function requires two parameters, the literal date and
the date format used.

Alternative way to define a
foreign key

Special function that
returns today’s date

COP 4610L: SQL Part 1 Page 20 Mark Llewellyn

The INVOICE Table in Access

COP 4610L: SQL Part 1 Page 21 Mark Llewellyn

Example – Table Creation
• As a final example of table creation, let’s create the LINE table as

described on page 11.

CREATE TABLE LINE (

INV_NUMBER NUMBER NOT NULL,

LINE_NUMBER NUMBER(2,0) NOT NULL,

P_CODE VARCHAR(10) NOT NULL,

LINE_UNITS NUMBER(9,2) DEFAULT 0.00 NOT NULL,

LINE_PRICE NUMBER(9,2) DEFAULT 0.00 NOT NULL,

PRIMARY KEY (INV_NUMBER, LINE_NUMBER),

FOREIGN KEY (INV_NUMBER) REFERENCES INVOICE ON DELETE CASCADE

FOREIGN KEY (P_CODE) REFERENCES PRODUCT(P_CODE),

CONSTRAINT LINE_UI1 UNIQUE(INV_NUMBER, P_CODE));

Table constraint prevents the
duplication of an invoice line.

The use of ON
DELETE CASCADE is
recommended for weak
entities to ensure that
the deletion of a row in
the strong entity
automatically triggers
the deletion of the
corresponding rows in
the dependent weak
entity.

COP 4610L: SQL Part 1 Page 22 Mark Llewellyn

The LINE Table in Access

COP 4610L: SQL Part 1 Page 23 Mark Llewellyn

Some Notes On Table Creation
• Given our sample database, the PRODUCT table contains a foreign

key that references the VENDOR table. Thus, the VENDOR table
must be created first. In general, the table on the “1” side of a 1:M
relationship must be created before the table on the “M” side can be
created.

• In Oracle 9i, if you use the PRIMARY KEY designation you do not
specify the NOT NULL and UNIQUE specifications. In fact, you
will get an error message if you do so.

• ON UPDATE CASCADE is part of the ANSI standard but several
RDBMSs do not support it. Oracle is one which does not support
this specification.

• If the primary key is a composite key, all of the attributes of the key
are contained within a set of parentheses and are separated by
commas. For example, the table LINE on page 11 would have its
primary key defined as:

PRIMARY KEY (inv_number, line_number).

COP 4610L: SQL Part 1 Page 24 Mark Llewellyn

Some Notes On Table Creation (cont.)

• Support for referential constraints varies widely from
RDBMS to RDBMS.

– MS Access, SQL Server, and Oracle support ON DELETE
CASCADE.

– MS Access and SQL Server, support ON UPDATE CASCADE.

– Oracle does not support ON UPDATE CASCADE.

– Oracle supports SET NULL.

– MS Access and SQL Server do not support SET NULL.

• MS Access does not support ON DELETE CASCADE
or ON UPDATE CASCADE at the SQL line level,
however, it does support it through the relationship
window interface.

COP 4610L: SQL Part 1 Page 25 Mark Llewellyn

The DML Portion of SQL
• The DML portion of SQL can be viewed as two separate

components which overlap in certain areas. The two
components are the non-query DML commands and the
query DML commands.

• Non-query DML commands allow you to populate tables
(INSERT), modify data in tables (UPDATE), delete data
from tables (DELETE) as well as make changes
permanent (COMMIT) and undo changes (to some
extent with ROLLBACK).

• The query DML commands essentially consist of a
single statement (SELECT) with many different optional
clauses.

• We’ll look at the non-query part of the DML first.

COP 4610L: SQL Part 1 Page 26 Mark Llewellyn

Summary of SQL DML Commands

Used in conditional expressionsAND, OR, NOT
Logical Operators

Used in conditional expressions=, <, >, <=, >=, <>
Comparison Operators

Restores data to their original valuesROLLBACK

Permanently saves data changesCOMMIT

Deletes one or more rows from a tableDELETE

Modifies attribute values in one or more of a table’s rowsUPDATE

Orders the selected rowsORDER BY

Restricts the selection of grouped rows based on a conditionHAVING

Groups the selected rows based on one or more attributesGROUP BY

Restricts the selection of rows based on a conditional expressionWHERE

Selects attributes from rows in one or more tables or viewsSELECT

Inserts row(s) into a tableINSERT

DescriptionCommand or Option

COP 4610L: SQL Part 1 Page 27 Mark Llewellyn

Summary of SQL DML Commands (cont.)

used in conditional expressionsSpecial Operators

Returns the average of all values for a given columnAVG

Returns the sum of all values for a given columnSUM

Returns the maximum attribute value found in a given columnMAX

Returns the minimum attribute value found in a given columnMIN

Returns the number of rows with non-null values for a given columnCOUNT

used with SELECT to return mathematical summaries on columnsAggregate Functions
Limits values to unique values, i.e., eliminates duplicatesDISTINCT

Checks if a subquery returns any rows or notEXISTS

Checks whether an attribute value matches any value within a value listIN

Checks whether an attribute value matches a given string patternLIKE

Checks whether an attribute value is nullIS NULL

Checks whether an attributes values is within a rangeBETWEEN

DescriptionCommand or Option

COP 4610L: SQL Part 1 Page 28 Mark Llewellyn

Adding Rows To Tables

• SQL requires the use of the INSERT command to enter
data into a table.

• The syntax of the INSERT command is:

INSERT INTO tablename

VALUES (value1, value 2, ...value n);

COP 4610L: SQL Part 1 Page 29 Mark Llewellyn

Example - Adding Rows To Tables
• In order to add the two rows to the VENDOR table shown below,

we would need to execute the following two SQL commands:
INSERT INTO VENDOR

VALUES (21225, ‘Bryson, Inc.’, ‘Smithson’, ‘615’, ‘223-3234’, ‘TN’, ‘Y’);

INSERT INTO VENDOR

VALUES (21226, ‘SuperLoo, Inc.’, ‘Flushing’, ‘904’, ‘215-8995’, ‘FL’, ‘N’);

COP 4610L: SQL Part 1 Page 30 Mark Llewellyn

Example - Adding Rows With Nulls To Tables
• If an attribute in a row has no value (i.e., is null) you would use the

following syntax to enter the row into the table:
INSERT INTO PRODUCT

VALUES (‘23114-AA’, ‘Sledge hammer, 12 lb.’, ’02-Jan-02’, 8, 5, 14.40, 0.05, NULL);

This code inserts
this row into
PRODUCT

COP 4610L: SQL Part 1 Page 31 Mark Llewellyn

Example - Adding Rows With Optional Values To Tables

• There may be occasions on which more than one attribute is
optional (i.e., can be null). Rather than declaring each attribute as
NULL in the INSERT command, you can just indicate the attributes
that have required values.

• This is done by listing the attribute names for which values are
being inserted inside parentheses after the table name.

• For the purposes of example, suppose that only the P_CODE and
P_DESCRIPT are required attributes in the PRODUCT table. If
this is the case, then either of the following syntactic forms could be
used:

INSERT INTO PRODUCT

VALUES (‘23114-AA’, ‘Sledge hammer, 12 lb.’, NULL, NULL, NULL, NULL, NULL, NULL);

-or-

INSERT INTO PRODUCT(P_CODE, P_DESCRIPT)

VALUES(‘23114-AA’, ‘Sledge hammer, 12 lb.’);

COP 4610L: SQL Part 1 Page 32 Mark Llewellyn

Deleting Rows From A Table

• It is easy to use SQL to delete a row from a table. This
is handled via the DELETE command.

• The syntax of the DELETE command is:

• To delete a row of a table based on a primary key value
you would use a command such as:

DELETE FROM PRODUCT

WHERE P_CODE = ‘23114-AA’;

DELETE FROM tablename

[WHERE conditionlist];

COP 4610L: SQL Part 1 Page 33 Mark Llewellyn

Deleting Rows From A Table (cont.)

• Deletion also works to remove potentially multiple rows
from a table.

– For example, suppose that we want to delete every product from
the PRODUCT table where the value of the P_MIN attribute is
equal to 5. To accomplish this you would issue the following
command:

DELETE FROM PRODUCT

WHERE P_MIN = 5;

• DELETE is a set-oriented command. This means that
since the WHERE condition is optional, if it is not
specified, all rows from the specified table will be
deleted!

COP 4610L: SQL Part 1 Page 34 Mark Llewellyn

Updating the Rows of a Table

• To modify the data within a table the UPDATE command is used.

• The syntax of the UPDATE command is:

• Notice that the WHERE condition is optional in the UPDATE
command. If the WHERE condition is omitted, then the update is
applied to all rows of the specified table.

UPDATE tablename

SET columnname = expression [, columnname = expression]

[WHERE conditionlist];

COP 4610L: SQL Part 1 Page 35 Mark Llewellyn

Updating the Rows of a Table (cont.)

• As an example, suppose that we want to modify the P_INDATE
from December 13, 2003 to January 18, 2004 in the second row of
the PRODUCT table. We need to use the primary key value 13-
Q2/P2 to locate the correct row of the table, which gives the
following command syntax:

UPDATE PRODUCT

SET P_INDATE = ’18-Jan-2004’

WHERE P_CODE = ’13-Q2/P2’;

• If more than one attribute is to be updated in a row, the updates are
separated by commas:

UPDATE PRODUCT

SET P_INDATE = ’18-JAN-2004’, P_PRICE = 16.99, P_MIN = 10

WHERE P_CODE = ’13-Q2/P2’;

COP 4610L: SQL Part 1 Page 36 Mark Llewellyn

Saving Changes to a Table
• Any changes made to the table contents are not physically saved

into the underlying physical table (the file system) until a COMMIT
command has been executed.

• Depending on the sophistication of the system on which you are
working, if the power should fail during the updating of a table (or
database in general), before the COMMIT command was executed,
your modifications are simply lost. More sophisticated systems will
be able to recover from such disasters, but for small PC-based
systems you’d better have a UPS installed!

• The syntax for the COMMIT command is:

COMMIT [tablename];

-or-

COMMIT; //saves all changes made in any modified tables

COP 4610L: SQL Part 1 Page 37 Mark Llewellyn

Restoring Table Contents
• If you have not yet used the COMMIT command to permanently

store the changes in the database, you can restore the database to its
previous state (i.e., the one that was the result of the last COMMIT)
with the ROLLBACK command.

• ROLLBACK undoes any changes made and brings the data back to
the values that existed before the changes were made.

• The syntax for the ROLLBACK command is:

• MS Access does not support ROLLBACK! Some RDBMSs like
Oracle automatically COMMIT data changes when issuing DDL
commands, so ROLLBACK won’t do anything on these systems.

• ROLLBACK rolls back everything since the last COMMIT, which
means that even changes that you might not want undone will be if
no commit has been issued.

ROLLBACK;

COP 4610L: SQL Part 1 Page 38 Mark Llewellyn

Summary of SQL Non-Query DML Commands
• As you can see, data entry is rather cumbersome in SQL.

• End-user applications are best created with utilities that generate
attractive and easy to use input screens.

COP 4610L: SQL Part 1 Page 39 Mark Llewellyn

Query Portion of the DML of SQL

• The query portion of the DML of SQL consists of a single command
called the SELECT command.

• The syntax of the SELECT command is:

• We’ll examine most of the features of the SELECT command,
starting with simple queries and working our way toward more
complex queries. I’ll continue to use the same database that we’ve
developed in this set of notes.

SELECT [ALL | DISTINCT] columnlist

FROM tablelist

[WHERE condition]

[GROUP BY columnlist]

[HAVING condition]

[ORDER BY columnlist];

COP 4610L: SQL Part 1 Page 40 Mark Llewellyn

Simple Selection Queries in SQL

• Perhaps the simplest query to form is that which
retrieves every row from some specified table.

• For example, suppose that we wanted to list every
attribute value in every row of the PRODUCT table. In
other words, to view this table. The following command
will accomplish this task:

SELECT P_CODE, P_DESCRIPT, P_INDATE, P_ONHAND, P_MIN,

P_PRICE, P_DISCOUNT, V_CODE

FROM PRODUCT;

-or-
SELECT *

FROM PRODUCT;

* is a wildcard character representing
all attributes in a table

COP 4610L: SQL Part 1 Page 41 Mark Llewellyn

Inserting Table Rows with a Select Subquery

• Although this is technically a non-query DML operation, it also
includes a query command, so I’ve included an example here before
we move on to more complex query expressions.

• SQL allows you to enter rows into a table using the data from another
table as the populating basis. The syntax for this type of insert
command is:

• The inner query is always executed first by the RDBMS and the values
extracted by the inner query will be used as input to the outer query (in
this case the INSERT command). The values returned by the inner
query must match the attributes and data types of the table in the
INSERT statement.

INSERT INTO tablename

SELECT columnlist

FROM tablename;

subquery (or nested query)

COP 4610L: SQL Part 1 Page 42 Mark Llewellyn

Selection Queries With Conditional Restrictions
• You can select partial table contents by placing restrictions on the rows

to be included in the result. This is accomplished using the WHERE
clause: SELECT columnlist

FROM tablelist
WHERE conditionlist ;

• The SELECT statement will retrieve all rows that match the specified
condition(s) specified in the WHERE clause.
– For example: SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE

FROM PRODUCT
WHERE V_CODE = 21344;

COP 4610L: SQL Part 1 Page 43 Mark Llewellyn

Note on Access QBE Interface for SQL
• Microsoft Access provides the Access QBE query

generator. Although Access QBE generates its own
“native” version of SQL, you can also elect to type
standard SQL in the Access SQL window as shown on the
next page.

Access QBE “native” SQL code for
the query on the previous page.

COP 4610L: SQL Part 1 Page 44 Mark Llewellyn

Note on Access QBE Interface for SQL

User generated SQL code for the
same query.

Results of the user
generated SQL code
showing the same set of
tuples as before in the
result.

COP 4610L: SQL Part 1 Page 45 Mark Llewellyn

Conditional Restrictions in SQL Queries
• The SQL command structure provides almost limitless query

flexibility. Numerous conditional restrictions may be placed on the
selected table contents.

• Unless specifically testing for attribute values which are null, SQL
does not include rows for which a selected attribute value is null in the
result.

• Consider the following query:

SELECT P_DESCRIPT, P_INDATE, P_PRICE, V_CODE

FROM PRODUCT

WHERE V_CODE <> 21344;

• The PRODUCT table is shown on the next page and the output from
this query is shown on the following page. Notice that rows 10 and 13
in the PRODUCT table do not appear in the results of this query.

COP 4610L: SQL Part 1 Page 46 Mark Llewellyn

Conditional Restrictions in SQL Queries (cont.)

These two rows do not appear in the result on the following page.

COP 4610L: SQL Part 1 Page 47 Mark Llewellyn

Conditional Restrictions in SQL Queries (cont.)

Results of the query:
SELECT P_SDESCRIPT,
P_INDATE, P_PRICE,

V_CODE

FROM PRODUCT

WHERE

V_CODE <> 21344;

COP 4610L: SQL Part 1 Page 48 Mark Llewellyn

Comparisons Involving Dates in SQL Queries
• Date procedures are often more software-specific than most other SQL

procedures. For example, the query to list all the rows in which the inventory
stock dates occur on or after January 20, 2004, will look like this:

SELECT P_DESCRIPT, P_ONHAND, P_MIN, P_PRICE, P_INDATE
FROM PRODUCT
WHERE P_INDATE >= “20-Jan-2004’;

• Note that in Access the delimiters for dates is #, so in Access this query would
look like:

SELECT P_DESCRIPT, P_ONHAND, P_MIN, P_PRICE, P_INDATE
FROM PRODUCT
WHERE P_INDATE >= #20-Jan-2004#;

COP 4610L: SQL Part 1 Page 49 Mark Llewellyn

Using Computed Columns and Column Aliases
• Suppose that your query needs to determine a value which is not physically

stored in the database but is calculated from data that is in the database.

• For example, let’s suppose that we want to determine the total value of each of
the products currently held in inventory. Logically, this determination requires
the multiplication of each product’s quantity on hand by its current price. The
SQL query for this is shown below and the resulting output is on the next page.

SELECT P_DESCRIPT, P_ONHAND, P_PRICE, P_ONHAND * P_PRICE AS TOTVALUE
FROM PRODUCT

SQL will accept any valid expression
in the computed columns that apply to
the attributes in any of the tables
specified in the FROM clause. Note
that Access will automatically add an
Expr label to all computed columns.
Oracle uses the actual expression to
label the computed column.

Standard SQL permits the use
of aliases for any column in a
SELECT statement. The alias
for any column is preceded by
the keyword AS.

COP 4610L: SQL Part 1 Page 50 Mark Llewellyn

Using Computed Columns and Column Aliases
(cont.)

The computed
column with its
alias.

COP 4610L: SQL Part 1 Page 51 Mark Llewellyn

Using A Computed Column an Alias and Date
Arithmetic in a Single Query

• Suppose that we want to get a list of “out-of-warranty” products. In this case,
let’s assume that we’ve arbitrarily defined out-of-warranty products as those that
have been stored more than 90 days. Therefore, the P_INDATE is at least 90
days less than the current date. The Access version of this query is shown
below followed by the Oracle version, with the resulting output shown on the
next page.

Access Version
SELECT P_CODE, P_INDATE, DATE() – 90 AS CUTDATE

FROM PRODUCT
WHERE P_INDATE <= DATE() – 90;

Oracle Version
SELECT P_CODE, P_INDATE, SYSDATE – 90 AS CUTDATE

FROM PRODUCT
WHERE P_INDATE <= SYSDATE – 90;

COP 4610L: SQL Part 1 Page 52 Mark Llewellyn

Using A Computed Column an Alias and Date
Arithmetic in a Single Query

Verify that these are
the only two products
that are out of range for
the warranty by
checking the dates of
products in the
PRODUCTS table on
page 45.

COP 4610L: SQL Part 1 Page 53 Mark Llewellyn

Using The Logical Operators AND, OR, and NOT

• In the real world, a search of data normally involves multiple conditions. SQL
allows you to express multiple conditions in a single query through the use of
logical operators.

• The logical operators supported by SQL are: AND, OR, and NOT.

• Suppose you want a list of the table of PRODUCTS for either V_CODE =
21344 or V_CODE = 24288. The SQL query to accomplish this is:

SELECT P_DESCRIPT,
P_INDATE,
P_PRICE,
V_CODE

FROM PRODUCT
WHERE

V_CODE = 21344
OR
V_CODE = 24288;

COP 4610L: SQL Part 1 Page 54 Mark Llewellyn

Special Operators in SQL
• ANSI standard SQL allows the use of special operators in

conjunction with the WHERE clause. These special
operators include:

BETWEEN – Used to check whether an attribute value is within a
range.

IS NULL – Used to determine if an attribute value is null.
LIKE – Used to match an attribute value to a string pattern. Many

wildcard options are available.
IN – Used to determine if an attribute value is within a list of values.
EXISTS – Used to determine if a subquery returns an empty set or

not.

COP 4610L: SQL Part 1 Page 55 Mark Llewellyn

The BETWEEN Special Operator
• Suppose that we want to see a listing for all products whose

prices are between $50 and $100. The BETWEEN operator
can be used for this query expression.

• If your RDBMS does not support BETWEEN you would
need to express this query as:

SELECT *

FROM PRODUCT

WHERE P_PRICE BETWEEN 50.00 AND 100.00;

SELECT *

FROM PRODUCT

WHERE P_PRICE > 50.00 AND P_PRICE < 100.00;

COP 4610L: SQL Part 1 Page 56 Mark Llewellyn

The IS NULL Special Operator
• Suppose that we want to see a listing for all products that do

not currently have a vendor assigned, i.e., V_CODE = null.
The null entries could be found with the following query
expression.

• NOTE: SQL uses a special operator for testing for nulls.
You cannot use a condition such as V_CODE = NULL. The
reason is that NULL is technically not a “value”, but a
special property of an attribute that represents precisely the
absence of any value at all.

SELECT P_CODE, P_DESCRIPT, V_CODE

FROM PRODUCT

WHERE V_CODE IS NULL;

COP 4610L: SQL Part 1 Page 57 Mark Llewellyn

The LIKE Special Operator
• The LIKE special operator is used in conjunction with

wildcards to find patterns within string attributes.

• Standard SQL allows you to use the percent sign (%) and
underscore (_) wildcard characters to make matches when
the entire string is not known.

% means any and all following characters are eligible.

‘M%’ includes Mark, Marci, M-234x, etc.

_ means any one character may be substituted for the underscore.

‘_07-345-887_’ includes 407-345-8871, 007-345-8875

• Note: Access uses * instead of % and ? instead of _. Oracle
searches are case-sensitive, Access searches are not.

COP 4610L: SQL Part 1 Page 58 Mark Llewellyn

The LIKE Special Operator (cont.)

• Suppose that we would like to find all the VENDOR rows
for contacts whose last names begin with Smith.

SELECT V_NAME, V_CONTACT, V_AREACODE, V_PHONE

FROM VENDOR

WHERE V_CONTACT LIKE ‘Smith%’;

Access wildcard

COP 4610L: SQL Part 1 Page 59 Mark Llewellyn

The IN Special Operator
• Many queries that would seem to require the use of the

logical OR operator can be more easily handled with the help
of the special operator IN.

• For example the query:

can be handled more efficiently with:

SELECT *

FROM PRODUCT

WHERE V_CODE = 21344 OR V_CODE = 24288;

SELECT *

FROM PRODUCT

WHERE V_CODE IN (21344, 24288);

COP 4610L: SQL Part 1 Page 60 Mark Llewellyn

The IN Special Operator (cont.)

• The IN operator is especially valuable when it is used in conjunction with
subqueries.

• For example, suppose you want to list the V_CODE and V_NAME of
only those vendors that actually provide products. In this case, you could
use a subquery within the IN operator to automatically generate the value
list. The query expression would be:

• We’ll look more closely at the IN operator later when we deal more in
depth with subqueries.

SELECT V_CODE, V_NAME

FROM VENDOR

WHERE V_CODE IN (SELECT V_CODE

FROM PRODUCT);

COP 4610L: SQL Part 1 Page 61 Mark Llewellyn

The EXISTS Special Operator
• The EXISTS operator can be sued whenever there is a

requirement to execute a command based on the result of
another query. That is, if a subquery returns any rows, then
run the main query, otherwise, don’t. We’ll see this operator
in more detail when we look at subqueries in more depth.

• For example, suppose we want a listing of vendors, but only
if there are products to order. The following query will
accomplish our task.

SELECT *

FROM VENDOR

WHERE EXISTS (SELECT *

FROM PRODUCT

WHERE P_ONHAND <= P_MIN);

COP 4610L: SQL Part 1 Page 62 Mark Llewellyn

Advanced DDL Commands in SQL

• Most of the preceding notes covered the basics of table
creation in SQL, including inserting, deleting, and updating
rows in tables.

• Now we’ll look at the SQL commands to alter a table’s
structure, by changing attribute characteristics and by adding
columns. We’ll also see how to add data into new or
modified columns. We’ll also see how to copy tables or
parts of tables as well as deleting entire tables.

COP 4610L: SQL Part 1 Page 63 Mark Llewellyn

The ALTER Command
• All changes in the table structure are made using the ALTER

command, followed by a keyword that produces the specific
change you want to make.

• There are three options for the keyword: ADD, MODIFY,
and DROP.

– ADD enables you to add a column to a table.

– MODIFY enables you to change a column’s characteristics.

– DROP allows you to delete a column from a table Most RDBMSs do
not allow you to delete a column from a table, unless that column
does not contain any values, because such an action may delete
crucial data that are used by other tables.

COP 4610L: SQL Part 1 Page 64 Mark Llewellyn

The ALTER Command (cont.)

• The basic syntax of the ALTER command is:

• The ALTER TABLE command can also be used to add table
constraints. In that case the syntax would be as follows:

ALTER TABLE tablename

{ADD | MODIFY} (columnname datatype

[{ADD | MODIFY} columnname datatype]);

ALTER TABLE tablename
ADD constraint [ADD constraint];

COP 4610L: SQL Part 1 Page 65 Mark Llewellyn

The ALTER Command (cont.)

• You can also use the ALTER TABLE command to remove a
column or table constraint. The basic syntax of this form of
the ALTER command is:

• Notice that when removing a constraint, you need to specify
the name given to the constraint. This is one reason why it is
always advisable to name the constraints in the CREATE
TABLE or ALTER TABLE statements.

ALTER TABLE tablename

DROP { PRIMARY KEY |

COLUMN columnname |

CONSTRAINT constraintname } ;

COP 4610L: SQL Part 1 Page 66 Mark Llewellyn

Changing a Column’s Data Type
• You can also use the ALTER TABLE command to change the data type

of a column.

• For example, suppose we wanted to change the data type of V_CODE
attribute in the PRODUCT table from integer to character. The following
SQL command would accomplish this task:

• Most RDBMSs doe not allow you to change the data type of an attribute
unless the column to be changed is empty. For example, if we issued the
SQL command above on the database we’ve been using and error
message would be generated because the V_CODE column already
contains data. The reason for the error is simple. The V_CODE attribute
in PRODUCT references the V_CODE attribute in VENDOR. If the data
types don’t match, there is a referential integrity violation, thus triggering
the error message. If the V_CODE column in PRODUCT was empty
and the foreign key reference was not specified during the PRODUCT
table’s creation, then the SQL command above would execute properly.

ALTER TABLE PRODUCT

MODFIY (V_CODE CHAR(5));

COP 4610L: SQL Part 1 Page 67 Mark Llewellyn

Changing a Column’s Data Characteristics
• If the column to be changes already contains data, you can

make any changes in the column’s characteristics if those
changes do not alter the data type.

• For example, if we wanted to increase the width of the
P_PRICE column from 8 digits to 9 digits, we would need to
issue the following command:

• Many RDBMSs place restrictions on the types of changes to
column characteristics that can occur. For example, Oracle
will allow you to widen a column but will not allow you to
narrow a column.

ALTER TABLE PRODUCT

MODFIY (P_PRICE DECIMAL(9,2));

COP 4610L: SQL Part 1 Page 68 Mark Llewellyn

Adding a Column to a Table
• You can alter an existing table by adding one or more

columns.

• For example, suppose that we want to add a column to the
PRODUCT table called P_SALECODE that will allow us to
decide if products that have been in inventory for a certain
length of time should be placed on sale. Let’s assume that
the P_SALECODE entries will be 1, 2, or 3, and we’re not
going to do arithmetic on the column so we’ll make it a
character.

ALTER TABLE PRODUCT

ADD (P_SALECODE CHAR(1));

COP 4610L: SQL Part 1 Page 69 Mark Llewellyn

Adding a Column to a Table (cont.)

• When adding a column, be careful not to include the NOT
NULL clause for the new column. Doing so will cause an
error message because when adding a new column to a table
that already has rows, the existing rows will default to a
value of null for the new column. Therefore, it is not
possible to add the NOT NULL clause for this new column.

• You can add the NOT NULL clause to the table structure
after all the data for the new column has been entered and the
column no longer contains nulls.

COP 4610L: SQL Part 1 Page 70 Mark Llewellyn

Deleting a Column from a Table
• Occasionally, you may want to modify a table by deleting a

column.

• Suppose that we want to delete the V_ORDER attribute from
the VENDOR table. To accomplish this task we would use
the following SQL command:

• As before, some RDBMSs will impose restrictions on the
deletion of an attribute. For example, most RDBMSs will
not allow you to delete attributes that are involved in foreign
key relationships, nor may you delete an attribute of a table
that contains only that one attribute.

ALTER TABLE VENDOR

DROP COLUMN V_ORDER;

COP 4610L: SQL Part 1 Page 71 Mark Llewellyn

Advanced Data Updates
• To make data entries in an existing row’s columns, SQL uses

the UPDATE command. The UPDATE command only
updates data in existing rows.

• For example, to enter the P_SALECODE value of ‘2’ in the
fourth row of the PRODUCT_2 table, we need to use the
UPDATE command in conjunction with the primary key
value for that row. The following command produces this
effect with the before and after results shown on the next
page.

UPDATE PRODUCT_2

SET P_SALECODE = ‘2’

WHERE P_CODE = ‘1546-QQ2’;

COP 4610L: SQL Part 1 Page 72 Mark Llewellyn

Advanced Data Updates (cont.)

P_SALECODE value before update

COP 4610L: SQL Part 1 Page 73 Mark Llewellyn

Advanced Data Updates (cont.)

P_SALECODE value after update

COP 4610L: SQL Part 1 Page 74 Mark Llewellyn

Advanced Data Updates (cont.)

• Subsequent data can be entered in the same fashion, defining
each entry location by its primary key (P_CODE) and its
column location (P_SALECODE).

• The table on the previous page, also reflects the execution of
the following SQL command:

UPDATE PRODUCT_2

SET P_SALECODE = ‘1’

WHERE P_CODE IN (‘2232/QWE’, ‘2232/QTY’);

COP 4610L: SQL Part 1 Page 75 Mark Llewellyn

Advanced Data Updates (cont.)

• Although the UPDATE sequences we’ve just seen allow you
to enter values into specified table cells, the process is very
cumbersome. Fortunately, there may be better method.

• If a relationship can be established between entries and the
existing columns, that relationship may be used to assign
values to their appropriate slots.

• For example, suppose that we want to place sales codes based
on the P_INDATE into the table using the following rule:

• If P_INDATE is before December 25, 2003, then P_SALECODE = 2

• If P_INDATE between Jan. 16 and Feb 10, 2004, then P_SALECODE = 1

COP 4610L: SQL Part 1 Page 76 Mark Llewellyn

Advanced Data Updates (cont.)

• Given the rule from the previous page and using the PRODUCT
table to effect the update, the following two command sequences
will make all the appropriate updates to the P_SALECODE in the
PRODUCT table. The effect of these two updates on the
PRODUCT table is shown on the next page.
UPDATE PRODUCT

SET P_SALECODE = ‘2’

WHERE P_INDATE < ’25-Dec-2003’;

UPDATE PRODUCT

SET P_SALECODE = ‘1’

WHERE P_INDATE >= ’16-Jan-2004’

AND P_INDATE <= ’10-Feb-2004’;

COP 4610L: SQL Part 1 Page 77 Mark Llewellyn

Advanced Data Updates (cont.)

COP 4610L: SQL Part 1 Page 78 Mark Llewellyn

Advanced Data Updates (cont.)

• The arithmetic operators are particularly useful in data
updates.

• For example, if the quantity on hand in the PRODUCT table
has dropped below the minimum desirable value, you’ll order
more of the product. Suppose that we’ve ordered 20 more
units of product 2232/QWE. When the 20 units arrive, we’ll
need to add them to the inventory in the following manner:

UPDATE PRODUCT

SET P_ONHAND = P_ONHAND + 20

WHERE P__CODE = ‘2232/QWE/;

COP 4610L: SQL Part 1 Page 79 Mark Llewellyn

Advanced Data Updates (cont.)

• Suppose that you want to add 10 percent to the price of all
products that have current prices below $50. This can be
accomplished with the following command.

UPDATE PRODUCT

SET P_PRICE = P_PRICE * 1.10

WHERE P__PRICE < 50.00;

COP 4610L: SQL Part 1 Page 80 Mark Llewellyn

Copying Parts of Tables

• Although the database should be properly designed before it is
implemented, there are times when it may be necessary to break up
a table structure into several component parts (smaller tables).

• SQL allows for the copying of the contents of selected table
columns so that the data in those columns need not be reentered
manually into the newly created table(s).

• Suppose, for example, that we want to copy the P_CODE,
P_DESCRIPT, and P_PRICE columns from the PRODUCT table to
a new table named PART.

• First, we’ll need to create the PART table as shown on the next
page.

COP 4610L: SQL Part 1 Page 81 Mark Llewellyn

Copying Parts of Tables (cont.)

• Note that the PART column names need not be identical to those in
the original table, and that the new table need not have the same
number of columns as the original table.

– In this case, the first column in the PART table is PART_CODE, rather
than the original P_CODE found in the PRODUCT table. And the
PART table contains only three columns, rather than the seven columns
found in the PRODUCT table.

– However, column characteristics must match: you cannot copy a
character-based attribute into a numeric structure, and vice versa.

CREATE TABLE PART (

PART_CODE CHAR(8) NOT NULL UNIQUE,

PART_DESCRIPT CHAR(35),

PART_PRICE DECIMAL(8,2),

PRIMARY KEY (PART_CODE));

COP 4610L: SQL Part 1 Page 82 Mark Llewellyn

Copying Parts of Tables (cont.)

• Next, we need to add the rows to the new PART table using the
PRODUCT table rows. To do this we’ll need to use the INSERT
command.

• Recall, the basic syntax of this command:

• The target-columnlist is requires if the source-columnlist doesn’t match all
of the attribute names and characteristics f the target table (including the
order of the columns!). Otherwise, you do not need to specify the target-
columnlist.

– In our example, we will need to specify the target-columnlist since we are
changing the names of one or more of the columns.

INSERT INTO target_tablename [(target_columnlist)]
SELECT source_columnlist
FROM source-tablename;

COP 4610L: SQL Part 1 Page 83 Mark Llewellyn

Copying Parts of Tables (cont.)

• To effect the desired update, we need to issue the following
INSERT command:

• The contents of the updated PARTS table can be viewed with
the following query:

• The results are shown on the next page.

INSERT INTO PART (PART_CODE, PART_DESCRIPT, PART_PRICE)

SELECT P_CODE, P_DESCRIPT, P_PRICE

FROM PRODUCT;

SELECT *

FROM PART;

COP 4610L: SQL Part 1 Page 84 Mark Llewellyn

Copying Parts of Tables (cont.)

Results of copying
parts of a table with
renaming of the
columns.

COP 4610L: SQL Part 1 Page 85 Mark Llewellyn

Adding Primary and Foreign Key Designations

• Although we were able to create a new table based on an
existing table in the previous example, the process is not
without its problems. Primarily, the new PART table was
created without the inclusion of the integrity rules of the table
on which it was based. In particular, there is no primary key
designated for the table shown on the previous page.

• To define the primary key for this table we need to use the
ALTER command as shown below:

ALTER TABLE PRODUCT

ADD PRIMARY KEY (P_CODE);

COP 4610L: SQL Part 1 Page 86 Mark Llewellyn

Adding Primary and Foreign Key Designations
(cont.)

• Quite aside from the fact that the integrity rules are not
automatically transferred to a new table that derives its data
from one or more other tables, there are several other
scenarios that would leave you without entity and referential
integrity enforcement.

• For example, you might have simply forgotten to define the
primary and foreign keys when you created the tables.

• The integrity rules can be reestablished via the ALTER
command as shown below:

ALTER TABLE PRODUCT
ADD PRIMARY KEY(P_CODE)
ADD FOREIGN KEY(V_CODE) REFERENCES VENDOR;

COP 4610L: SQL Part 1 Page 87 Mark Llewellyn

Deleting a Table From the Database

• A table can be deleted from the database through the DROP
command as shown below:

• A table can only be dropped from a database if it is not
participating as the “1” side of any relationships. If you
attempt to delete such a table, the RDMS will issue an error
message to indicate that a foreign key integrity violation has
occurred.

DROP TABLE PRODUCT;

