
COP 4610L: PHP – Part 1 Page 1 Mark Llewellyn ©

COP 4610L: Applications in the Enterprise
Spring 2005

Introduction to PHP – Part 1

COP 4610L: Applications in the Enterprise
Spring 2005

Introduction to PHP – Part 1

School of Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790

http://www.cs.ucf.edu/courses/cop4610L/spr2005

COP 4610L: PHP – Part 1 Page 2 Mark Llewellyn ©

Introduction to PHP
• PHP is officially known as PHP: Hypertext Preprocessor and

is very rapidly becoming the most popular server-side
scripting language for creating dynamic web pages.

• PHP was created in 1994 by Rasmus Lerdorf (who currently
works for Linuxcare, Inc. as a senior open-source researcher)
to track users at his Web site. Lerdorf originally called it
Personal Home Page Tools in a package he released in 1995.
It eventually became an Apache Software Foundation
project.

• PHP2 featured built-in database support and form handling.
In 1997, PHP3 was released and featured a new parser which
substantially increased performance and led to an explosion
in PHP use.

COP 4610L: PHP – Part 1 Page 3 Mark Llewellyn ©

Introduction to PHP (cont.)

• PHP4 featured the Zend Engine and was considerably faster
and more powerful than its predecessors and further
enhanced the popularity of PHP.

• The current release is PHP5.0.4 and features the Zend Engine
2, which provides further increases in speed and
functionality. You can download the latest version of PHP at
www.php.net. For more details on the Zend Engine 2 see
www.zend.com.

• Today more than 17 million domains utilize PHP technology.

• All of the examples we’ll be looking at use the latest stable
version of PHP which is 5.0.4.

COP 4610L: PHP – Part 1 Page 4 Mark Llewellyn ©

Introduction to PHP (cont.)

• The power of the Web resides not only in serving content to
users, but also in responding to requests from users and
generating Web pages with dynamic content.

• Interactivity between the user and the server has become a
crucial part of Web functionality. While other languages can
also perform these functions, PHP was written specifically
for interacting with the Web.

• PHP code is embedded directly into XHTML documents.
This allows the document author to write XHTML in a clear,
concise manner, without having to use multiple print
statements, as is necessary with other CGI-based languages.

COP 4610L: PHP – Part 1 Page 5 Mark Llewellyn ©

Introduction to PHP (cont.)

• PHP script file names usually end with .php, although a server
can be configured to handle other file extensions.

• To run a PHP script, PHP must first be installed on your
system. Download PHP5.0.x from www.php.net. (Most recent
version is 5.0.4, but any of the 5.0.x versions should be ok.)

• Although PHP can be used from the command line, a Web
server is required to take full advantage of the scripting
language. I would suggest the Apache server available from
www.apache.org. (Note: this is not the Tomcat server you’ve
already used.) Current version is 2.0.54 which just fixed a few
simple bugs from some of the earlier versions. I would expect
that any of the 2.0.x versions would be ok for what we will be
doing.

COP 4610L: PHP – Part 1 Page 6 Mark Llewellyn ©

Apache Server

COP 4610L: PHP – Part 1 Page 7 Mark Llewellyn ©

Apache Server Set-up
• Once you get the Apache Server downloaded and running on

your machine…you’ve seen the screen on the previous page,
you’ll need to configure Apache to work with PHP.

• There are a couple of steps required to accomplish this task:

1. Assume that you’ve downloaded PHP and placed it in the
directory c:/php.

2. Add the PHP directory to the PATH.

3. Setup a valid configuration file for PHP. Do the following:
a) Copy php.ini-recommend inside c:/php and rename it to

php.ini.

COP 4610L: PHP – Part 1 Page 8 Mark Llewellyn ©

Apache Server Set-up (cont.)

4. Install PHP as an Apache module by doing the following:

a) Edit the Apache httpd file found in the Apache conf directory.

b) Add the following lines to this file in Section1: Global Environment.
(screen shot on next page shows location of this edit)

#For PHP5
#
LoadModule php5_module "c:/php/php5apache2.dll"
AddType application/x-httpd-php .php
#configure the path to php.ini
PHPIniDir "C:/php“

5. Once these steps are completed, Apache is configured to run
PHP (basic components – more later). When you’ve
completed these steps, you can beginning writing PHP code.

COP 4610L: PHP – Part 1 Page 9 Mark Llewellyn ©

Apache Server Set-up (cont.)

Addition to the
httpd file

COP 4610L: PHP – Part 1 Page 10 Mark Llewellyn ©

A PHP Test Example

<html>
<head>
<title>Hello From PHP</title>
</head>
<body style = "font-family: arial, sans-serif;

background-color: #856363" background=image1.jpg>
<h1> Hello From PHP</h1>

<?
print "Current Information";
phpInfo();

?>

</body>
</html>

Create this file named
hello.php and save it to the
htdocs folder in Apache.
Then start the Apache server,
enter the URL:
http://localhost:8080/hello.php
and you should see output similar
to that shown on the next slide.

This is
PHP

COP 4610L: PHP – Part 1 Page 11 Mark Llewellyn ©

A First PHP Example

The default directory for
the php.ini file will be
the system directory
C:/WINDOWS unless
you set the path to the
c:/php directory using
the technique shown on
page 7

COP 4610L: PHP – Part 1 Page 12 Mark Llewellyn ©

The default directory for
the php.ini file has
been changed via the
httpd file from
within Apache. The
values in php.ini will
now be used to
configure PHP under
Apache.

COP 4610L: PHP – Part 1 Page 13 Mark Llewellyn ©

A First PHP Example
• The following two pages illustrate a simple PHP “hello

world” program.

• In PHP, code is inserted between the scripting delimiters
<?php and ?>. PHP code can be placed anywhere in
XHTML markup, as long as the code is enclosed in these
scripting delimiters.

COP 4610L: PHP – Part 1 Page 14 Mark Llewellyn ©

welcome.php Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!-- welcome.php -->
<!-- XHTML file containing a PHP script. -->

<?php
$name = "Mark"; //php declaration and assignment

?>

<html xmlns = "http://www.w3.org/1999/xhtml">

<!-- head section of document -->
<head>

<title>A Simple PHP Document</title>
</head>

<!-- body section of document -->
<body style = "font-size: 2em">
<hr>
<h1> Generating HTML From PHP </h1>
<p>

PHP code
declaring a
variable.

COP 4610L: PHP – Part 1 Page 15 Mark Llewellyn ©

welcome.php Example

<!---print variable name's value in the message-->
<?php

print("This is your first crack at running a PHP script...");
print("<HR>");
print("Welcome to the world of PHP technology, ");

?>

<?php

print("$name");
?>

</p>

</body>
</html> <!-- end XHTML document -->

PHP
code

PHP
code

COP 4610L: PHP – Part 1 Page 16 Mark Llewellyn ©

welcome.php Example Output

COP 4610L: PHP – Part 1 Page 17 Mark Llewellyn ©

Viewing Client/Server Environment Variables
• Knowledge of a client’s execution environment is useful to

system administrators who want to provide client-specific
information.

• Environment variables contain information about a script’s
environment, such as the client’s web browser, the HTTP
host and the HTTP connection.

– The table on the next page summarizes some of the superglobal
arrays defined by PHP.

• The XHTML document on page 18 displays the values of the
client’s environment variables in a table. PHP stores the
environment variables and their values in the $_ENV array.
Iterating through the array allows one to view all of the
client’s environment variables.

COP 4610L: PHP – Part 1 Page 18 Mark Llewellyn ©

Some Superglobal Environment Arrays

Data contained in cookies on the client’s computer.$_COOKIE

Data posted to the server by the get method.$_GET

Data about the currently running server.$_SERVER

Array containing all global variables.$GLOBALS

Data posted to the server by the post method.$_POST

Data about the client’s environment.$_ENV

DescriptionVariable Name

COP 4610L: PHP – Part 1 Page 19 Mark Llewellyn ©

env.php Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- env.php -->
<!-- Program to display environment variables -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head>

<title>Environment Variables Display</title>
</head>

<body>
<table border = "0" cellpadding = "2" cellspacing = "0"

width = "100%">
<?php

// print the key and value for each element
// in the $_ENV array
foreach ($_ENV as $key => $value)

print("<tr><td bgcolor = \"#11bbff\">
$key</td>

<td>$value</td></tr>");
?>
</table>

</body>
</html>

Iterate through the $_ENV
array to list all of the
environment variable for the
client system.

COP 4610L: PHP – Part 1 Page 20 Mark Llewellyn ©

Output from
executing
env.php

COP 4610L: PHP – Part 1 Page 21 Mark Llewellyn ©

Form Processing and Business Logic
• XHTNL forms enable web pages to collect data from users

and send it to a web server for processing.

• Interaction of this kind between users and web servers is vital
to e-commerce applications. Such capabilities allow users to
purchase products, request information, send and receive
web-based email, perform on-line paging and take advantage
of various other online services.

• The XHTML document on the next few pages collects
information from a user for the purposes of adding them to a
mailing list.

• The PHP file on page XX validates the data entered by the
user through the form and “registers” them in the mailing list
database.

COP 4610L: PHP – Part 1 Page 22 Mark Llewellyn ©

form.html Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- form.html -->
<!-- Form for use with the form.php program -->

<html xmlns = "http://www.w3.org/1999/xhtml">
<head>

<title>Sample form to take user input in XHTML</title>
</head>
<body>

<h1>This is a sample registration form.</h1>

Please fill in all fields and click Register.
<!-- post form data to form.php -->
<form method = "post" action = "form.php">

Please fill out the fields below.

<!-- create four text boxes for user input -->

<input type = "text" name = "fname" />

This XHTML document
generates the form that the
user will submit to the
server via form.php

COP 4610L: PHP – Part 1 Page 23 Mark Llewellyn ©

<input type = "text" name = "lname" />

<input type = "text" name = "email" />

<input type = "text" name = "phone" />

Must be in the form (555)555-5555

<img src = "images/downloads.gif"

alt = "Products" />

Which publication would you like information about?

<!-- create drop-down list containing magazine names -->
<select name = "magazine">

<option>Velo-News</option>
<option>Cycling Weekly</option>
<option>Pro Cycling</option>
<option>Cycle Sport</option>

<option>RadSport</option>
<option>Mirror du Cyclisme</option>

</select>

COP 4610L: PHP – Part 1 Page 24 Mark Llewellyn ©

Which operating system are you currently using?

<!-- create five radio buttons -->
<input type = "radio" name = "os" value = "Windows XP"

checked = "checked" />
Windows XP

<input type = "radio" name = "os" value =
"Windows 2000" />
Windows 2000

<input type = "radio" name = "os" value =
"Windows 98" />
Windows 98

<input type = "radio" name = "os" value = "Linux" />
Linux

<input type = "radio" name = "os" value = "Other" />
Other

<!-- create a submit button -->
<input type = "submit" value = "Register" />

</form>

</body>
</html>

COP 4610L: PHP – Part 1 Page 25 Mark Llewellyn ©

form.php Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- form.php -->
<!-- Read information sent from form.html -->
<html xmlns = "http://www.w3.org/1999/xhtml">

<head>
<title>Form Validation</title>

</head>
<body style = "font-family: arial,sans-serif">

<?php
extract($_POST);
// determine whether phone number is valid and print an error message if not
if (!ereg("^\([0-9]{3}\)[0-9]{3}-[0-9]{4}$",

$phone)){
print("<p>

INVALID PHONE NUMBER:

A valid phone number must be in the form
(555)555-5555

Click the Back button, enter a valid phone number and resubmit.

Thank You.</p></body></html>");

die(); // terminate script execution
}

?>

Function extract
(associativeArray)
creates a variable-value pair
corresponding to each key-
value pair in the associative
array $_POST.

Function die() terminates script execution.
An error has occurred, no need to continue.

See page 28 for
explanation of regular
expressions.

COP 4610L: PHP – Part 1 Page 26 Mark Llewellyn ©

<p>Hi
 <?php print("$fname"); ?> .
Thank you for completing the survey.

You have been added to the

 <?php print("$magazine "); ?> mailing list.
</p>
The following information has been saved in our database:

<table border = "0" cellpadding = "0" cellspacing = "10">
<tr>

<td bgcolor = "#ffffaa">Name </td>
<td bgcolor = "#ffffbb">Email</td>
<td bgcolor = "#ffffcc">Phone</td>
<td bgcolor = "#ffffdd">OS</td>

</tr>
<tr>

<?php
// print each form field’s value
print("<td>$fname $lname</td> <td>$email</td> <td>$phone</td> <td>$os</td>");

?>
</tr>

</table>

<div style = "font-size: 10pt; text-align: center">

This is only a sample form. You have not been added to a mailing list.
</div>

</body>
</html>

COP 4610L: PHP – Part 1 Page 27 Mark Llewellyn ©

Execution of
form.html within a

web browser

COP 4610L: PHP – Part 1 Page 28 Mark Llewellyn ©

After execution of
form.php has

verified correct
entries made

within the form.

COP 4610L: PHP – Part 1 Page 29 Mark Llewellyn ©

User enters an
improperly
formatted

telephone number
in the form.

COP 4610L: PHP – Part 1 Page 30 Mark Llewellyn ©

form.php issues
error regarding

improperly
formatted

telephone number.

COP 4610L: PHP – Part 1 Page 31 Mark Llewellyn ©

How the Form Example Works
• The action attribute of the form element, indicates that

when the user clicks the Register button, the form data
will be posted to form.php for processing.

• Using method = “post” appends the form data to the
browser request that contains the protocol (i.e., HTTP) and
the requested resource’s URL. Scripts located on the web
server’s machine (or accessible through the network) can
access the form data sent as part of the request.

• Each of the form’s input fields are assigned a unique name.
When Register is clicked, each field’s name and value
are sent to the web server.

• Script form.php then accesses the value for each specific
field through the global array $_POST.

COP 4610L: PHP – Part 1 Page 32 Mark Llewellyn ©

How the Form Example Works (cont.)

• The superglobal arrays are associative arrays predefined by
PHP that hold variable acquired from the user input, the
environment, or the web server and are accessible in any
variable scope.

– If the information from the form had been submitted via the HTTP
method get, then the superglobal array $_GET would contain the
name-value pairs.

• Since the HTML form and the PHP script “communicate”
via the name-value pairs, it is a good idea to make the
XHTML object names meaningful so that the PHP script that
retrieves the data is easier to understand.

COP 4610L: PHP – Part 1 Page 33 Mark Llewellyn ©

Register_globals
• In PHP versions 4.2 and higher, the directive

register_globals is set to Off by default for security
reasons.

• Turning off register_globals means that all variables
sent from an XHTML form to a PHP document now must be
accessed using the appropriate superglobal array (either
$_POST or $_GET).

• When this directive was turned On, as was the default case in
PHP versions prior to 4.2, PHP created an individual global
variable corresponding to each form field.

COP 4610L: PHP – Part 1 Page 34 Mark Llewellyn ©

Validation of Form Generated Data
• The form example illustrates an important concept in the

validation of user input. In this case, we simply checked the
validity of the format of the telephone number entered by the
client user.

• In general, it is crucial to validate information that will be
entered into database or used in mailing lists. For example,
validation can be used to ensure that credit-card numbers
contain the proper number of digits before the numbers are
encrypted to a merchant.

• In this case, the form.php script is implementing the business
logic or business rules for our application.

COP 4610L: PHP – Part 1 Page 35 Mark Llewellyn ©

Pattern Matching in PHP
• For powerful string comparisons (pattern matching), PHP

provides functions ereg and preg_match, which use
regular expressions to search a string for a specified pattern.

• Function ereg uses Portable Operating System Interface
(POSIX) extended regular expressions.

– POSIX-extended regular expressions are a standard to which PHP
regular expression conform.

• Function preg_match provides Perl-compatible regular
expressions.

• Perl-compatible regular expressions are more widely used
that POSIX regular expressions. PHP’s support for Perl-
compatible regular expressions eases migration from Perl to
PHP. The following examples illustrates these concepts.

COP 4610L: PHP – Part 1 Page 36 Mark Llewellyn ©

expression.php - Example
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<!-- expression.php -->
<!-- Using regular expressions -->
<html xmlns = "http://www.w3.org/1999/xhtml">

<head>
<title>Regular expressions</title>

</head>
<body>

<?php
$search = "Now is the time";
print("Test string is: '$search'

");
// call function ereg to search for pattern ’Now’ in variable search
if (ereg("Now", $search))

print("String 'Now' was found.
");

// search for pattern ’Now’ in the beginning of the string
if (ereg("^Now", $search))

print("String 'Now' found at beginning of the line.
");

// search for pattern ’Now’ at the end of the string
if (ereg("Now$", $search))

print("String 'Now' was found at the end of the line.
");

^ matches at beginning
of a string

$ matches at end of a
string

COP 4610L: PHP – Part 1 Page 37 Mark Llewellyn ©

// search for any word ending in ’ow’
if (ereg("[[:<:]]([a-zA-Z]*ow)[[:>:]]", $search,

$match))
print("Word found ending in 'ow': " .

$match[1] . "
");

// search for any words beginning with ’t’
print("Words beginning with 't' found: ");

while (eregi("[[:<:]](t[[:alpha:]]+)[[:>:]]",
$search, $match)) {
print($match[1] . " ");

// remove the first occurrence of a word beginning
// with ’t’ to find other instances in the string
$search = ereg_replace($match[1], "", $search);

}

print("
");
?>

</body>
</html>

Uses a regular expression to
match a word ending in “ow”.

COP 4610L: PHP – Part 1 Page 38 Mark Llewellyn ©

Output From expression.php - Example

