
COP 4610L: Applications in the Enterprise Page 1 Mark Llewellyn ©

COP 4610L: Applications in the Enterprise
Spring 2005

Java Networking and the Internet – Part 3

COP 4610L: Applications in the Enterprise
Spring 2005

Java Networking and the Internet – Part 3

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4610L/spr2005

COP 4610L: Applications in the Enterprise Page 2 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets

• Step 1 is to create a ServerSocket object.

• Invoking a ServerSocket constructor such as,
ServerSocket server =

new ServerSocket (portNumber, queueLength);

registers an available TCP port number and specifies
the number of clients that can wait to connect to the
server (i.e., the queue length).

COP 4610L: Applications in the Enterprise Page 3 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• The port number is used by the clients to locate the server
application on the server computer. This is often called the
handshake point.

• If the queue is full, the server refuses client connections.

• The constructor establishes the port where the server waits
for connections from clients – a process known as binding
the server to the port.

• Each client will ask to connect to the server on this port.
Only one application at a time can be bound to a specific port
on the server.

COP 4610L: Applications in the Enterprise Page 4 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• Port numbers can be between 0 and 65,535. Most
OS reserve port numbers below 1024 for system
services such as email, and Internet servers.
Generally, these ports should not be specified as
connection ports in user programs. In fact, some OS
require special access privileges to bind to port
numbers below 1024.

• Programs manage each client connection with a
Socket object.

COP 4610L: Applications in the Enterprise Page 5 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• In Step 2, the server listens indefinitely (is said to block) for
an attempt by a client to connect. To listen for a client
connection, the program calls ServerSocket method
accept, as in,

Socket connection = server.accept();

which returns a Socket when a connection with a client is
established.

• The Socket allows the server to interact with the client.

• The interactions with the client actually occur at a different
server port from the handshake port. This allows the port
specified in Step 1 to be used again in a multi-threaded
server to accept another client connection. We’ll see an
example of this later in this set of notes.

COP 4610L: Applications in the Enterprise Page 6 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• In Step 3, the OutputStream and InputStream objects
that enable the server to communicate with the client by
sending and receiving bytes are established.

• The server sends information to the client via an
OutputStream and received information from the client
via an InputStream.

• The server invokes the method getOutputStream on the
Socket to get a reference to the Socket’s OutputStream
and invokes method getInputStream on the Socket to
get a reference to the Socket’s InputStream.

COP 4610L: Applications in the Enterprise Page 7 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• If primitive types or serializable types (like String)
need to be sent rather than bytes, wrapper classes are
used to wrap other stream types around the
OutputStream and InputStream objects
associated with the Socket.

ObjectInputStream input =
new(ObjectInputStream(connection.getInputStream());

ObjectOutputStream output =
new(ObjectOutputStream(connection.getOutputStream());

COP 4610L: Applications in the Enterprise Page 8 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• The beauty of establishing these relationships is that
whatever the server writes to the
ObjectOutputStream is set via the
OutputStream and is available at the client’s
InputStream, and whatever the client writes to its
OutputStream (with a corresponding
ObjectOutputStream) is available via the
server’s InputStream.

• The transmission of the data over the network is
seamless and is handled completely by Java.

COP 4610L: Applications in the Enterprise Page 9 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• With Java’s multithreading, you can create multithreaded
servers that can manage many simultaneous connections with
many clients.

• A multithreaded server can take the Socket returned by each
call to accept and create a new thread that manages network
I/O across that Socket.

– Alternatively, a multithreaded sever can maintain a pool of threads (a
set of already existing threads) ready to manage network I/O across the
new Sockets as they are created. In this fashion, when the server
receives a connection, it need not incur the overhead of thread creation.
When the connection is closed, the thread is returned to the pool for
reuse.

COP 4610L: Applications in the Enterprise Page 10 Mark Llewellyn ©

More Details on Establishing a
Server Using Stream Sockets (cont.)

• Step 4 is the processing phase, in which the server
and client communicate via the OutputStream
and InputStream objects.

• In Step 5, when the transmission is complete, the
server closes the connection by invoking the close
method on the streams and on the Socket.

COP 4610L: Applications in the Enterprise Page 11 Mark Llewellyn ©

More Details on Establishing a Client
Using Stream Sockets

• Step 1 is to create a Socket object to connect to
the server. The Socket constructor established the
connection with the server.

• For example, the statement
Socket connection = new Socket(serverAddress, port);

uses the Socket constructor with two arguments –
the server’s address and the port number.

• If the connection attempt is successful, this
statement returns a Socket.

COP 4610L: Applications in the Enterprise Page 12 Mark Llewellyn ©

More Details on Establishing a Client
Using Stream Sockets (cont.)

• If the connection attempt fails, an instance of a
subclass of IOException, since so many program
simply catch IOException.

• An UnknownHostException occurs specifically
when the system is unable to resolve the server
address specified in the call to the Socket
constructor to a corresponding IP address.

COP 4610L: Applications in the Enterprise Page 13 Mark Llewellyn ©

More Details on Establishing a Client
Using Stream Sockets (cont.)

• In Step 2, the client uses Socket methods
getInputStream and getOutputStream to
obtain references to the Socket’s InputStream
and OutputStream.

• If the server is sending information in the form of
actual types (not byte streams) the client should
receive the information in the same format. Thus, if
the server sends values with an
ObjectOutputStream, the client should read
those values with an ObjectInputStream.

COP 4610L: Applications in the Enterprise Page 14 Mark Llewellyn ©

More Details on Establishing a Client
Using Stream Sockets (cont.)

• Step 3 is the same as in the server, where the client and the server
communicate via InputStream and OutputStream objects.

• In Step 4, the client closes the connection when the transmission is
complete by invoking the close method on the streams and on the
Socket.

• The client must determine when the server is finished sending
information so that it can call close to close the Socket
connection.

• For example, the InputStream method read returns the value -1
when it detects end-of-stream (also called EOF). If an
ObjectInputStream is used to read information from the
server, an EOFException occurs when the client attempts to
read a value from a stream on which end-of-stream is detected.

COP 4610L: Applications in the Enterprise Page 15 Mark Llewellyn ©

Secure Sockets Layer (SSL)
• Most e-business uses SSL for secure on-line transactions.
• SSL does not explicitly secure transactions, but rather secures

connections.

• SSL implements public-key technology using the RSA
algorithm (developed in 1977 at MIT by Ron Rivest, Adi
Shamir, and Leonard Adleman) and digital certificates to
authenticate the server in a transaction and to protect private
information as it passes from one part to another over the
Internet.

• SSL transaction do not require client authentication as most
servers consider a valid credit-card number to be sufficient for
authenticating a secure purchase.

COP 4610L: Applications in the Enterprise Page 16 Mark Llewellyn ©

How SSL Works
• Initially, a client sends a message to a server.

• The server responds and sends its digital certificate to the client for
authentication.

• Using public-key cryptography to communicate securely, the client
and server negotiate session keys to continue the transaction.

• Once the session keys are established, the communication proceeds
between the client and server using the session keys and digital
certificates.

• Encrypted data are passed through TCP/IP (just as regular packets
over the Internet). However, before sending a message with
TCP/IP, the SSL protocol breaks the information into blocks and
compresses and encrypts those blocks.

COP 4610L: Applications in the Enterprise Page 17 Mark Llewellyn ©

How SSL Works (cont.)

• Once the data reach the receiver through TCP/IP, the SSL
protocol decrypts the packets, then decompresses and
assembles the data. It is these extra processes that provide an
extra layer of security between TCP/IP and applications.

• SSL is used primarily to secure point-to-point connections
using TCP/IP rather than UDP/IP.

• The SSL protocol allows for authentication of the server, the
client, both, or neither. Although typically in Internet SSL
sessions only the server is authenticated.

COP 4610L: Applications in the Enterprise Page 18 Mark Llewellyn ©

Java Secure Socket Extension (JSSE)
• SSL encryption has been integrated into Java technology

through the Java Secure Socket Extension (JSSE). JSSE has
been an integral part of Java (not a separately loaded
extension) since version 1.4.

• JSSE provides encryption, message integrity checks, and
authentication of the server and client.

• JSSE uses keystores to secure storage of key pairs and
certificates used in PKI (Public Key Infrastructure which
integrates public-key cryptography with digital certificates
and certificate authorities to authenticate parties in a
transaction.)

• A truststore is a keystore that contains keys and certificates
used to validate the identities of servers and clients.

COP 4610L: Applications in the Enterprise Page 19 Mark Llewellyn ©

Java Secure Socket Extension (JSSE) (cont.)

• Using secure sockets in Java is very similar to using the non-
secure sockets that we have already seen.

• JSSE hides the details of the SSL protocol and encryption
from the programmer entirely.

• The final example in this set of notes involves a client
application that attempts to logon to a server using SSL.

• NOTE: Before attempting to execute this application, look at
the code first and then go to page 25 for execution details.
This application will not execute correctly unless you follow
the steps beginning on page 25.

COP 4610L: Applications in the Enterprise Page 20 Mark Llewellyn ©

// LoginServer.java
// LoginServer uses an SSLServerSocket to demonstrate JSSE's SSL implementation.
package securitystuff.jsse;

// Java core packages
import java.io.*;

// Java extension packages
import javax.net.ssl.*;

public class LoginServer {
private static final String CORRECT_USER_NAME = "Mark";
private static final String CORRECT_PASSWORD = "COP 4610L";
private SSLServerSocket serverSocket;

// LoginServer constructor
public LoginServer() throws Exception
{

// SSLServerSocketFactory for building SSLServerSockets
SSLServerSocketFactory socketFactory =

(SSLServerSocketFactory)
SSLServerSocketFactory.getDefault();

// create SSLServerSocket on specified port
serverSocket = (SSLServerSocket)

socketFactory.createServerSocket(7070);

} // end LoginServer constructor

LoginServer.java

SSL Server Implementation

SSL socket will listen on port 7070

Use default
SSLServerSocketFactory to
create SSL sockets

COP 4610L: Applications in the Enterprise Page 21 Mark Llewellyn ©

// start server and listen for clients
private void runServer()
{

// perpetually listen for clients
while (true) {

// wait for client connection and check login information
try {

System.err.println("Waiting for connection...");
// create new SSLSocket for client

SSLSocket socket = (SSLSocket) serverSocket.accept();
// open BufferedReader for reading data from client
BufferedReader input = new BufferedReader(

new InputStreamReader(socket.getInputStream()));
// open PrintWriter for writing data to client
PrintWriter output = new PrintWriter(
new OutputStreamWriter(socket.getOutputStream()));

String userName = input.readLine();
String password = input.readLine();
if (userName.equals(CORRECT_USER_NAME) &&

password.equals(CORRECT_PASSWORD)) {
output.println("Welcome, " + userName);

}
else {

output.println("Login Failed.");
}

Accept new client connection.
This is a blocking call that
returns an SSLSocket when a
client connects.

Get input and output
streams just as with
normal sockets.

Validate user name and
password against constants
on the server.

COP 4610L: Applications in the Enterprise Page 22 Mark Llewellyn ©

// clean up streams and SSLSocket
output.close();
input.close();
socket.close();

} // end try

// handle exception communicating with client
catch (IOException ioException) {

ioException.printStackTrace();
}

} // end while

} // end method runServer

// execute application
public static void main(String args[]) throws Exception
{

LoginServer server = new LoginServer();
server.runServer();

}
} //end LoginServer class

Close down I/O streams and the socket

COP 4610L: Applications in the Enterprise Page 23 Mark Llewellyn ©

// LoginClient.java
// LoginClient uses an SSLSocket to transmit fake login information to LoginServer.
package securitystuff.jsse;
// Java core packages
import java.io.*;
// Java extension packages
import javax.swing.*;
import javax.net.ssl.*;

public class LoginClient {
// LoginClient constructor

public LoginClient()
{

// open SSLSocket connection to server and send login
try {

// obtain SSLSocketFactory for creating SSLSockets
SSLSocketFactory socketFactory = (SSLSocketFactory) SSLSocketFactory.getDefault();
// create SSLSocket from factory
SSLSocket socket = (SSLSocket) socketFactory.createSocket("localhost", 7070);
// create PrintWriter for sending login to server
PrintWriter output = new PrintWriter(

new OutputStreamWriter(socket.getOutputStream()));
// prompt user for user name
String userName = JOptionPane.showInputDialog(null, "Enter User Name:");
// send user name to server

output.println(userName);

LoginClient.java

Client Class for SSL Implementation

SSL socket will listen on port 7070

Use default
SSLServerSocketFactory to
create SSL sockets

COP 4610L: Applications in the Enterprise Page 24 Mark Llewellyn ©

// prompt user for password
String password = JOptionPane.showInputDialog(null, "Enter Password:");
// send password to server
output.println(password);
output.flush();
// create BufferedReader for reading server response
BufferedReader input = new BufferedReader(

new InputStreamReader(socket.getInputStream ()));
// read response from server
String response = input.readLine();
// display response to user
JOptionPane.showMessageDialog(null, response);
// clean up streams and SSLSocket

output.close();
input.close();
socket.close();

} // end try
// handle exception communicating with server
catch (IOException ioException) {

ioException.printStackTrace();
}
// exit application
finally {

System.exit(0);
}

} // end LoginClient constructor

// execute application
public static void main(String

args[])
{

new LoginClient();
}

}

COP 4610L: Applications in the Enterprise Page 25 Mark Llewellyn ©

Creating Keystore and Certificate

• Before you can execute the LoginServer and LoginClient
application using SSL you will need to create a keystore and
certificate for the SSL to operate correctly.

• Utilizing the keytool (a key and certificate management tool)
in Java generate a keystore and a certificate for this server
application. See the next slide for an example.

• We’ll use the same keystore for both the server and the client
although in reality these are often different. The client’s
truststore, in real-world applications, would contain trusted
certificates, such as those from certificate authorities (e.g.
VeriSign (www.verisign.com), etc.).

COP 4610L: Applications in the Enterprise Page 26 Mark Llewellyn ©

Creating Keystore and Certificate

COP 4610L: Applications in the Enterprise Page 27 Mark Llewellyn ©

Launching the Secure Server

• Start the server executing from a command prompt…
• Once started, the server simply waits for a connection from a

client. The example below illustrates the server after waiting
for several minutes.

Start the SSL Server executing with this
command where you replace this password
with the password you used when you set-
up the keystore.

COP 4610L: Applications in the Enterprise Page 28 Mark Llewellyn ©

Launching the SSL Client

• Start a client application executing from a new command
window…

• Once the client establishes communication with the server, the
authentication process begins.

Start the SSL Client application executing with this
command where you replace this password with
the password you used when you set-up the
keystore. Since we are using the same keystore
for the server and the client…these will be the
same.

COP 4610L: Applications in the Enterprise Page 29 Mark Llewellyn ©

User enters username
and password which

are sent to the server.

Authentication successful –
user is logged on.

COP 4610L: Applications in the Enterprise Page 30 Mark Llewellyn ©

User enters username and
password which are sent to the
server. In this case the user enters
an incorrect password.

Authentication not successful –
user is not logged on.

COP 4610L: Applications in the Enterprise Page 31 Mark Llewellyn ©

Multithreaded Socket Client/Server Example
• As a culminating example of networking and multi-threading, I’ve

put together a rudimentary multi-threaded socket-based
TicTacToe client/server application. The code is rather lengthy
and there isn’t really anything in it that we haven’t already seen in
the earlier sections of the notes. However, I did want you to see a
somewhat larger example that utilizes both sockets and threading
in Java. The code is on the course web page so try it out.

• This application is a multithreaded server that will allow two
client’s to play a game of TicTacToe run on the server.

• To execute, open three command windows, start one server and
two clients (in separate windows).

• The following few pages contain screen shots of what you should
see when executing this code.

COP 4610L: Applications in the Enterprise Page 32 Mark Llewellyn ©

Start server running…

COP 4610L: Applications in the Enterprise Page 33 Mark Llewellyn ©

Start first player thread

Indicate to first player that
server is waiting for another
player thread to connect.

COP 4610L: Applications in the Enterprise Page 34 Mark Llewellyn ©

Second player
thread connects to
server and is ready
to play.

Server
completes
connection for
second player.
Notifies Player
X that they can
make their
move.Player X is notified by

server that another
player has connected
and they can make
their move.

COP 4610L: Applications in the Enterprise Page 35 Mark Llewellyn ©

Player X makes a
move by placing an
“X” marker in location
4 of the game board.

Server validates move
made by Player X,
records board
configuration and
notifies Player O that
they can move and
redraws the board for
Player O.

Player O sees the
move made by
Player X and is now
ready to make a
move.

COP 4610L: Applications in the Enterprise Page 36 Mark Llewellyn ©

Player O is notified that Player X has
made a move and is graphically
shown the updated board layout.
Server indicates Player O is now
able to make their move. No
indication is given that the game is
technically over.

Although Player X
has won the game,
this server is too
dumb to know this
and allows the
game to continue

