[image: image1.png]10 0 20 | © 30] 0

Svent event Svent
agent agent agent

WOLL] < B

Objective 1 Directions

Add_Event

void Add_Event(int event, int agent, struct time_type* time)

This function inserts a future event in the list Event_List in the proper time
sequence. Event_List points to the event having the smallest time defined by the
given function:

Compare_time(struct time_type *, struct time_type *)

This function is called by Load_Events().

Directions:

1. Allocate a new node of type struct event_list.

2. Set the new node's fields to the given event, agent, and time.

3. Insert the node at the appropriate position in the event list (Event_List):

1. If the event list (Event_List) is empty, set the event list header node to the new event node.

2. Else, if the new event node goes in the middle or at the end of the list, traverse the event list until reaching the node that should precede the new node. Then add the new node after the node reached in the traversal. Be sure to handle the sepcial case of the new node being at the end of the list.

The event list is ordered chronologically so make sure to maintain the correct order while inserting by using the provided function:

Compare_time(struct time_type *, struct time_type *)

Before insertion of the new node:

[image: image2.png]10 | O 30 | 0
event Svent
agent agent
woLL] E (woin

After inserting a time_type record with seconds = 20, nanosec = 0:

Notes:

Event_List is a doubly-linked list of elements of type struct event_list:

struct event_list {

event_type event;

int agent;

struct time_type time;

struct event_list *prev,*next;

};

event_type is an enumerated type defined in osdefs.h.

time_type is a struct defined and typedefed in osdefs.h.

Load_Events

void Load_Events(void)

This function is called from simulator.c (the simulator driver) and it initializes
the event list (Event_List) from the file logon.dat. This file normally contains
only LOGON events for all terminals. However, for debugging purposes,
logon.dat can contain events of any type. This function uses:

Add_Event(int, int, struct time_type*)

get_event_id(char*)

get_agent_id(char*)

Directions:

1. Open the logon file designated by the constant LOGON_FILENAME.

2. Read event name, agent name, and time from each line in the file. (Refer to intro.doc for the logon.dat file format. Note that the event name and agent name can be either in upper or lower case or a combination. Make sure you convert them to upper case!)

3. For each event:

1. Convert the event name to event_id using get_event_id(), which you will write in this objective. Example: event name = LOGON, event id = 0.

2. Convert the agent name to agent_id using get_agent_id(), which you will write in this objective.

3. Convert the time to simulation time using the given function, defined in simulator.c:

Uint_to_time(unsigned long ul_time,

 struct time_type* sim_time)

4. Call Add_Event(event_id, agent_id, sim_time) to add the event to the event list.

Write_Event

void Write_Event(int event, int agent, struct time_type *time)

This function writes an event to the output file with the format:

"EVENT AGENT TIME (HR:xxxxxxxx MN:xx SC:xx MS:xxx mS:xxx NS:xxx"

You will have to convert the nanosec field to MS, mS, and NS. The seconds field
will have to be converted to HR, MN, and SC.

This function is called by Interrupt().

Directions:

1. Convert the event_id and agent_id to event name and agent name for printing to the output file using the function print_out(), which is already defined in simulator.c.

2. As in get_agent_id() (see below), there are two cases for the agent:

1. If agent_id <= Num_Terminals, agent is user terminal:

Agent name is of the form Uxxx.

2. Otherwise, the agent is a device, and agent name is stored in:

Dev_Table[agent – Num_Terminals – 1]

Interrupt

void Interrupt(void)

This function is called from simulator.c (the simulator driver).

Directions:

1. Remove an event from Event_List.

2. Set Clock, Agent, and Event.

3. Write the event to the output file by calling write_event(), which is defined in simulator.c.

4. Deallocate the event element.

5. Copy CPU.state into Old_State.

6. Copy New_State into CPU.state.

get_event_id

int get_event_id(char* event_name)

This function converts an event name into an event ID number. This function is
called by Load_Events().

Directions:

1. Make sure event name is capitalized.

2. Verify the name's length is shorter than EVENT_NAME_LENGTH_MAX.

3. For event_id = 0 to NUM_EVENTS, compare event name to Event_Names[event_id], and return event_id when they are equal.

4. Otherwise, if the event name is not matched, report an error using the function err_quit(), defined in simulator.c.

get_agent_id

int get_agent_id(char* agent_name)

This function converts an agent name into an agent ID number. This function is
called by Load_Events().

Directions:

1. Make sure agent name is capitalized.

2. Verify the name's length is shorter than DEV_NAME_LENGTH.

3. To determine the actual agent id, two cases arise:

 1. If the agent name is Uxxx, agent id = xxx. (agent is a user)

 2. Otherwise, the agent is a device. For agent_id = 0 to Num_Devices, compare agent name to Dev_Table[agent_id], and return agent_id + Num_Terminals + 1 when they are equal (since device agent IDs follow user agent IDs).

4. Otherwise, if the agent name is not matched, report an error using the function err_quit(), defined in simulator.c.

