
Objective 3 Directions

Objective 3 Overview

In this objective you will develop functions that handle LOGON, PGMEND,
SEGFAULT, and ADRFAULT events and load the programs for each user as
specified in scr i pt . dat . Several functions such as Di spl ay_pgm() and
Get _I nst r () from previous objectives will be used again in new ways and
several Objective 2 specific functions, such as Boot () , will no longer be used.

In the mai n() function of si mul at or . c an I nt er r upt Handl er ()
(in si mul at or . c) function is called which in turn calls your Logon_Ser vi ce()
function in response to LOGON events. Logon_Ser vi ce() will create a Process
Control Block (PCB) for each user that logs on, and will read the list of programs
that the user is going to execute from scr i pt . dat and store this information in
the PCB. Finally, Next _pgm() is called from Logon_Ser vi ce() to advance to the
next program in the PCB to execute.

Next _pgm() will handle deallocating programs from memory that are done
executing and will load the next program into memory. Next _pgm() will call
Get _memor y() and based on the information in the PCB, Get _memor y() will
open the correct program file and based upon the SEGMENT statements
determine if there is enough free memory to load the requested program. If there
is enough memory available Get _memor y() will called Al l oc_seg() for each
segment in the program file to allocate memory to load the program into. Once
the call to Get _memor y() completes, the Loader () function is called which loads
the program from the program file into the areas of MEM that were allocated by
Al l oc_seg() and that are described in the segment table of the PCB.

PGMEND, SEGFAULT, and ADRFAULT events are also handled in the
I nt er r upt _Handl er () function and call your End_Ser vi ce() and
Abend_Ser vi ce() similarly.

To get an example of what the output should look like run: make correct−output
to create an ossim.out file with the correct output.

Important data types and files

PCB − This data type (struct pcb_type) is defined in osdefs.h and has many data
members. Most of them are either used by the simulator or are used in
later objectives. In Objective 3 you are primarily concerned with the
following:

char user [5] ; / * User t er mi nal " Uxxx" * /
 i nt * scr i pt ; / * Poi nt er t o pr ocess scr i pt * /
 st r uct segment _t ype * segt abl e; / * segment t abl e pt r * /

 unsi gned i nt segt ab_l en; / * segment t abl e l engt h * /

You will initialize several other data members but won’ t use them much.
user [5] is simply a string like U001 or U002 just as before. * scr i pt is
an array of integers that will take on the values of the program ids (script
program codes) defined in osdef s. h as:

#def i ne EDI TOR 0
#def i ne PRI NTER 1
#def i ne COMPI LER 2
#def i ne LI NKER 3
#def i ne USER 4
#def i ne BOOT 5
#def i ne LOGOFF 6

Programs will be loaded from these script files into MEM. The PCB
contains a variable named segt abl e which is an array of segment _t ype
structs, just like MEMMAP, and is of length segt ab_l en.

script.dat − This is simply a text file that contains the programs codes as listed
above. When the first user logs on, this file is read until a
LOGOFF event reached. As additional users logon, the process is
repeated, with the file pointer remaining where it was left by the
previous logon actions. The fact that the events are broken up
across several lines makes no difference, the important thing to
know is that the LOGOFF event is the delimiter between users’
scripts. You don’ t need to worry about running out of program
codes, there are enough for all the users that will logon during the
simulation.

editor.dat − These files have the same format as boot.dat, although there are
compiler.dat often more than one program stored in a file. The first user to use
linker.dat the editor for example, will load the first program in editor.dat.
user.dat The second user to use the editor will load the second program,

etc. You don’ t need to worry about running out of program
instances in a script file, there will be enough for the simulated
users in this objective.

Get_Scr ipt

voi d Get _Scr i pt (st r uct pcb_t ype * pcb)

The comments in obj 3. c describe this function and what you basically need to
do.

Directions:
1. Initialize the pcb as described in the comments.
2. Read from script.dat and convert the program codes from their string

representation to their corresponding integer one (shown above). Store these
integers in pcb −> script. After reading and storing a LOGOFF event stop
reading from script.dat. script.dat can be accessed through the scriptfp file
pointer and does not need to be opened or closed in your code.

3. Print the script to simout as shown in ossim.out

Logon_Service

voi d Logon_Ser vi ce()

This function handles LOGON events.

Directions:
1. Follow the instructions given in obj 3. c in the comments surrounding

Logon_Ser vi ce() function.
2. Make sure to set pcb −> user as well, to U00x where x is AGENT.

Next_pgm

i nt Next _pgm(st r uct pcb_t ype * pcb)

This function makes the transition to the next program in the script for (pcb), if
there is one.

Directions:
1. Follow the instructions given in obj 3. c in the comments surrounding

the Next _pgm() function.
2. The format for the banner message is shown in ossi m. out .

Get_memory

voi d Get _memor y(st r uct pcb_t ype * pcb)

This function allocates space for a new program by reading a segment table from
disk.

Directions:
1. Follow the instructions given in obj 2. c in the comments surrounding

XPGM() function.
2. You don’ t need to worry about opening or closing any of the

PROGM_FILE[] files, that is taken care of for you.
3. Remember to skip the blank lines between segments in the script files

Alloc_seg

i nt Al l oc_seg(i nt l en)

This function searches the list of free memory segments for a segment of at least
length len and returns the address of this free segment. If the request can’ t be
satisfied, return −1;

Directions:
1. Follow the instructions given in obj 3. c in the comments surrounding

the Alloc_seg() function.

Loader

voi d Loader (st r uct pcb_t ype * pcb)

This function reads a program from a program file into memory.

Directions:
1. Follow the instructions given in obj 3. c in the comments surrounding

Loader () function.
2. Remember to skip the blank lines between segments in the script files
3. Be sure to output which program was loaded and for what process as

shown in ossi m. out .

Dealloc_pgm

voi d Deal l oc_pgm(st r uct pcb_t ype * pcb)

This function frees all allocated segments for the current program.

Directions:
1. Follow the instructions given in obj 3. c in the comments surrounding

Deal l oc_pgm() function

Dealloc_seg

voi d Deal l oc_seg(i nt base, i nt l en)

This function returns a segment at base of length len to the free list, and then
merges any continuous free segments.

Directions:
1. Follow the instructions given in obj 3. c in the comments surrounding

Deal l oc_seg() function

Merge_seg

voi d Mer ge_seg()

This function scans FreeMem and joins contiguous blocks of free memory.

Directions:
1. Follow the instructions given in obj 3. c in the comments surrounding

Mer ge_seg() function.

End_Service

voi d End_Ser vi ce()

This function services PGMEND events.

Directions:
1. Follow the instructions given in obj 3. c in the comments surrounding

End_Ser vi ce() function.
2. Be sure to output note as in ossi m. out that a program ended for a user.

Abend_Service

voi d Abend_Ser vi ce()

This function services SEGFAULT and ADRFAULT events

Directions:

1. Follow the instructions given in obj 3. c in the comments surrounding
Abend_Ser vi ce() function.

