Objective 3 Directions

Objective 3 Overview

In this objective you will develop functions that handle LOGON, PGMEND,
SEGFAULT, and ADRFAULT events and load the programs for each user as
specified in scri pt . dat . Severa functions such as bi spl ay_pgn() and

Get _Instr() from previous objectiveswill be used again in new ways and
several Objective 2 specific functions, such as Boot (), will no longer be used.

In the mai n() function of si mul ator.c anl nterrupt Handl er ()

(in'si mul at or. c¢) function is called which in turn calls your Logon_Ser vi ce()
function in response to LOGON events. Logon_Ser vi ce() will create a Process
Control Block (PCB) for each user that logs on, and will read the list of programs
that the user is going to execute from scri pt . dat and store thisinformation in
the PCB. Finally, Next _pgn() iscalled from Logon_Ser vi ce() to advance to the
next program in the PCB to execute.

Next _pgmn() will handle deallocating programs from memory that are done
executing and will load the next program into memory. Next _pgn() will call

Get _nmenory() and based on the information in the PCB, Get _nenory() will
open the correct program file and based upon the SEGMENT statements
determine if there is enough free memory to load the requested program. If there
is enough memory available Get _nmenory() will called Al | oc_seg() for each
segment in the program file to allocate memory to load the program into. Once
the call to Get _nenory() completes, the Loader () function is called which loads
the program from the program file into the areas of MEMthat were allocated by

Al l oc_seg() and that are described in the segment table of the PCB.

PGMEND, SEGFAULT, and ADRFAULT events are dso handled in the
I nt er rupt _Handl er () function and call your End_Ser vi ce() and
Abend_Servi ce() sSmilarly.

To get an example of what the output should look like run: make correct—output
to create an ossim.out file with the correct outpuit.

Important data typesand files

PCB — This data type (struct pcb_type) is defined in osdefs.h and has many data
members. Most of them are either used by the smulator or are used in
later objectives. In Objective 3 you are primarily concerned with the
following:

char user[5]; [/* User termnal "Uxxx" */

int *script; /* Pointer to process script */

struct segnment _type *segtable; /* segnent table ptr*/
unsigned int segtab len;/* segnent table length */

You will initialize several other data members but won't use them much.
user [5] issmply astring like UOOL or U002 just as before. *scri pt is
an array of integersthat will take on the values of the program ids (script
program codes) defined in osdef s. h as:

#def i ne EDI TOR
#def i ne PRI NTER
#defi ne COWPI LER
#def i ne LI NKER
#def i ne USER
#def i ne BOOT
#def i ne LOGOFF

OUTRAWNEFO

Programs will be loaded from these script filesinto VeM The PCB
contains a variable named segt abl e which isan array of segnent _t ype
structs, just like vEmvAP, and is of length segt ab_I en.

script.dat —

editor.dat -
compiler.dat
linker.dat
user.dat

Get_Script

Thisissmply atext file that contains the programs codes as listed
above. When the first user logson, thisfileisread until a

L OGOFF event reached. As additional userslogon, the processis
repeated, with the file pointer remaining where it was left by the
previous logon actions. The fact that the events are broken up
across severa lines makes no difference, the important thing to
know isthat the LOGOFF event is the delimiter between users
scripts. You don’'t need to worry about running out of program
codes, there are enough for al the usersthat will logon during the
simulation.

These files have the same format as boot.dat, although there are
often more than one program stored in afile. Thefirst user to use
the editor for example, will load the first program in editor.dat.
The second user to use the editor will load the second program,
etc. You don’'t need to worry about running out of program
instances in a script file, there will be enough for the simulated
usersin this objective.

void Get_Script(struct pcb_type *pch)

The commentsin obj 3. ¢ describe this function and what you basically need to

do.

Directions:

1. Initialize the pcb as described in the comments.

2. Read from script.dat and convert the program codes from their string
representation to their corresponding integer one (shown above). Store these
integersin pcb —> script. After reading and storing a LOGOFF event stop
reading from script.dat. script.dat can be accessed through the scriptfp file
pointer and does not need to be opened or closed in your code.

3. Print the script to Ssmout as shown in ossim.out

L ogon_Service

voi d Logon_Service()

This function handles LOGON events.

Directions:
1. Follow theinstructions given in obj 3. ¢ in the comments surrounding
Logon_Servi ce() function
2. Make sureto set pcb —> user aswell, to UOOX where X iISAGENT.

Next_pgm

i nt Next_pgm(struct pcb_type *pch)

This function makes the transition to the next program in the script for (pcb), if
thereisone.

Directions:

1. Follow theinstructions given in obj 3. ¢ in the comments surrounding
the Next _pgn() function.
2. Theformat for the banner message is shown in ossi m out .

Get_memory

void Get_menory(struct pcb_type *pch)

This function allocates space for a new program by reading a segment table from
disk.

Directions:
1. Follow theinstructions given in obj 2. ¢ in the comments surrounding
XPGW) function.
2. You don't need to worry about opening or closing any of the
PROGM_FILE[] files, that istaken care of for you.
3. Remember to skip the blank lines between segmentsin the script files

Alloc_seg

int Alloc_seg(int |en)

This function searches the list of free memory segments for a segment of at least
length I en and returns the address of this free segment. If the request can’t be
satisfied, return — 1;

Directions:
1. Follow theinstructions given in obj 3. ¢ in the comments surrounding
the Alloc_seg() function.

L oader

voi d Loader (struct pcb_type *pch)

This function reads a program from a program file into memory.

Directions:
1. Follow theinstructions given in obj 3. ¢ in the comments surrounding
Loader () function.
2. Remember to skip the blank lines between segmentsin the script files
3. Besureto output which program was loaded and for what process as
shown in ossi m out .

Dealloc_pgm

voi d Deal | oc_pgm(struct pcb_type *pch)

This function frees all allocated segments for the current program.

Directions:
1. Follow theinstructions given in obj 3. ¢ in the comments surrounding
Deal | oc_pgn() function

Dealloc_seg

voi d Deal | oc_seg(int base, int |en)

This function returns a segment at base of length | en to the freelist, and then
mer ges any continuous free segments.

Directions:
1. Follow theinstructions given in obj 3. ¢ in the comments surrounding
Deal | oc_seg() function

Merge seg
voi d Merge_seg()
This function scans FreeMem and joins contiguous blocks of free memory.
Directions:
1. Follow theinstructions given in obj 3. ¢ in the comments surrounding
Mer ge_seg() function.

End_Service

voi d End_Servi ce()

This function services PGMEND events.

Directions:
1. Follow theinstructions given in obj 3. ¢ in the comments surrounding
End_Servi ce() function.
2. Be sureto output note asin ossi m out that a program ended for a user.

Abend_Service

voi d Abend_Servi ce()

This function services SEGFAULT and ADRFAULT events

Directions:

1. Follow theinstructions given in obj 3. ¢ in the comments surrounding
Abend_Ser vi ce() function.

