UCF Parallel Cluster User's Guide

This document describes the basics of using the UCF parallel cluster. This guide was written by Dr. Paulius for the CDA 5110 course and has been modified slightly for our class. Provided information includes: logging in and manipulating the files, compiling MPI programs, using mpirun to execute MPI programs, and using the PBS queuing system.

Using the UCF Parallel Cluster

· Users can log into the parallel cluster at UCF by using a SECURE SHELL CLIENT (ssh).

Configure your client to connect to zephyr.cs.ucf.edu. Files can be transferred to/from the cluster by running an FTP session to zephyr.cs.ucf.edu.

The parallel cluster runs Linux operating system. The commands you will use most frequently are:

exit log out of the cluster.

mkdir <directory-name>

create a directory with a name specified by directory-name

rm [options…] <file-name>

delete the file specified by file-name. In order to delete a directory (and all the files contained in it) use the rm command with -r option.

man <name>

display the manual for the command/function specified by the name. You can use man command to obtain detailed information about other Linux commands (for example, type in man rm and press ENTER) as well as functions of the installed software libraries (for example, type man printf to get information for C function printf()). The manual pages are navigated (scrolled up/down) by the UP/DOWN arrow keys. You can also use the TAB key to skip to the next page. Press Q to return to the command line.

cp [options…] <source> <destination>

copy the file specified by source to the file specified by destination.

mv [options…] <source> <destination>

move the file specified by source to the file specified by destination. You can also use this command to rename files.

1. Initial setup

Before running any MPI program on the cluster you’ll need the “.rhosts” file in your home directory (the directory where you are as soon as you log in). The contents of the file are as follows

<nodename1> <userid>

<nodename2> <userid>

<nodename3> <userid>

.

.

.

The nodes in the zephyr cluster are named node1, node2, node3…., node32.

Example “.rhosts” file

node0 ceh
node1 ceh
node2 ceh
node3 ceh
node4 ceh
node5 ceh
node7 ceh
node8 ceh
node9 ceh
node10 ceh
node11 ceh
node12 ceh
node13 ceh
node14 ceh
node15 ceh
node16 ceh
node17 ceh
Here “ceh” is my username and I’m using the first 16 nodes of the cluster. I would recommend you to include all the 32 nodes, which are available. You can use any of the available editors like vi, pico or emacs to create this file.

Note: Bad nodes as of 10/18/2005 are node6, node21, node27, node28, node30, node31, and node32.
After this you need to ssh into each and every node that has been mentioned in the “.rhosts” file. This is required to be done only once. At the prompt just type

$ssh node1 date

You might be asked for the password or might be presented with a message like below just type “yes” then the password and you are done.

ceh@zephyr:~$ ssh node24 date

The authenticity of host 'node24 (10.0.1.24)' can't be established.

RSA key fingerprint is da:75:15:cd:00:e1:37:25:03:02:b1:ce:dc:18:a2:19.

Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added 'node24,10.0.1.24' (RSA) to the list of known hosts.

ceh@node24's password: *******
Connection closed by 10.0.1.24

ceh@zephyr:~$

You need to repeat this step for all the nodes (node1, node2, node3, …, node32).

2. Compiling an MPI Program

After you type in your program using some editor you are required to compile it. MPI implementations provide programs for compiling applications that call MPI functions. The two programs are mpicc and mpiCC, used to compile and link applications written in C and C++, respectively. Note, that C programs cannot be compiled using mpiCC. Similarly, C++ programs can be compiled and linked by mpicc. While other compilers (such as gcc or g++) can be configured to compile MPI applications, mpicc (or mpiCC) simplify the process by automatically including the options and libraries necessary to compile and link MPI programs.

The usage and messages generated by mpicc (or mpiCC) are identical to those of the standard gnu compilers. For example, in order to generate an executable from a source file hello.cpp, one would type mpiCC hello.cpp at the command line and press ENTER. If the compilation is successful, the executable file is given the default name a.out. The user can specify a different name for the executable by using the -o option followed by a space and then the desired name. For example, mpiCC hello.c -o hello will generate the executable and name it hello. For more information on compiler options consult the manual pages for mpicc, mpiCC. Options not specific to MPI compilers (such as optimization levels, etc.) are described in the manual pages for gcc or g++.

3. Running an MPI Program

MPI programs cannot be executed directly from the command line. Instead, they are submitted as parameters to the mpirun script. The script requires at least one parameter - the name of the executable file. Additional parameters are used to control the console output, number of machines used, etc. The syntax of the mpirun call is:

mpirun [mpirun_options…] <program name> [program options…]

The most frequent options are:

-machinefile <machine-file name>

start the processes on the machines specified in the machine-file. The machine-file is a text file with one machine name per line. The machines are utilized in sequence (i.e. the first process is run on the first machine in the file, the second process - on the second machine, etc.). If there are more processes than machines in the file, mpirun reuses the machines. Note that mpirun does not detect when a machine is not available. Instead, it times out after a process fails to start and returns an error.

-np <number of processes>

specifies the number of processes to be executed (one is the default).

-nolocal

do not start a process on the local machine. Always use this option so that your program does not compete for CPU cycles with other users' compilation and editing jobs. (This is a must)

For example, typing mpirun -np 2 -machinefile mf -nolocal hello at the console and pressing ENTER will cause two instances of the hello program to be executed on the first two machines in the mf file, no processes will be started on the local machine.

For more information on the use of the mpirun script please consult the manual pages for mpirun.

4. Executing MPI Programs on the UCF Cluster

Do not execute your MPI programs directly from the command line. In order to obtain meaningful timing results (by not sharing CPU cycles or network bandwidth with other users) MPI programs must be submitted to the queue. Note that this is not an option but the policy for the class and not adhering to it will result in grade penalties.

Portable Batch System (PBS) is the queuing system installed on the UCF parallel cluster. You must write a PBS script that calls your executable and submit the script to the queue. Here is an example of a simple script to execute a program hello:

#PBS -o run.out

#PBS -e run.err

cd $HOME

mpirun -machinefile mf -nolocal -np 2 hello

The first line specifies a file to which the console-output of your program will be saved (in this case the file is called run.out but you may specify any name). This is necessary since no output to the console is displayed when PBS executes your program.

The second line specifies the file to which the error messages are saved. PBS does not display system error messages (when the program crashes, for example) when it executes the program. The file name is run.err in the example, but you may specify any name.

The third line instructs PBS to change current directory to $HOME (which stands for your home directory). This is where PBS will look for the executable file and save any output files (in this case run.out and run.err). Note that you may specify any directory (for example, $HOME/prog1 could be the directory for the first assignment).

The fourth line is the call to execute the program hello. You may use any program name, but it must be preceded by a period and a slash.

The script is saved as a text file. Consider, for example, that the above script is saved to a file called rscript. The script is submitted to the queue by typing the following command: qsub rscript. This enters the job in the FIFO queue. The status of the queue can be checked by typing the qstat command. A user can delete his job from the queue by typing qdel job-ID, where job-ID is the ID assigned to the job by PBS (the ID can be obtained by running the qstat command).

Most frequently used PBS commands are:

qsub <script-file>

submit the specified script to the queue. This command places the job in the queue and returns immediately. It also prints the assigned job-ID.

qstat

print the status of the queue. This command lists all the jobs (if any) currently in the queue. The status (running/queued) is displayed for every job. Consult the manual pages for qstat for available options.

qdel <job-ID>

deletes the job with the specified ID (the ID is assigned by PBS when the job is submitted). A user can only delete his own jobs.

5. Sample programs

A few sample MPI programs have been provided these are located in the following directory “/home/ceh/examples”. You can “cd” to the mentioned directory to obtain these examples. The “helloworld.cpp” is a simple Hello World program for MPI. After the initial setup as described in section 1 of the document compile the program and execute it using a script. A sample batch script (batch_script) is also provided in the directory, it might work with minimal or no modification. Once you get the program to execute you may want to change the number of processors and observe the corresponding output. The “send-recv.cpp” is another simple program, which shows how two processors communicate. This example requires just two processors.

6. Getting Help

Indexed set of descriptions of all MPI functions and constants in the implementation we are using can be obtained by following this link

http://www.cs.ucf.edu/courses/cop4520/MPI/
 This reference comes with the implementation. The descriptions are sometimes brief so you may want to consult additional sources. The book by Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, Jack Dongarra. “MPI: The Complete Reference” is another useful resource. An online version of the book is available from

http://www.netlib.org/utk/papers/mpi-book/mpi-book.html

Please consult the manual pages before requesting help.

