COP4510 Fall 2005
Sample Mid Term#2

COP 4520 Fall 2005
Sample Mid Term #2

1.
a.)
If ShearSort is used on a Maspar-like (wraparound 2-D mesh) machine with N rows and M columns, what is the order of the number of compares before the sort completes? Your answer must take a form like O(N), O(lgN), or O(N(M). By the way, none of these are right!
Answer: O((N+M) lg N)

b.)
Fill in the following:

ShearSort:reduces N dirty rows to at most N/2 dirty rows after each row/column sort.

RevSort:reduces N dirty rows to at most (N dirty rows after each row/column sort.

c.)
A property of Even-Odd Transposition Sort, ShearSort and RevSort simplifies correctness and complexity proofs.
What is the name of this property? Oblivious Comparison Exchange
What kind of data must we consider in the resultant proofs? Binary (0-1) data only

2.
The following is an 8-node bitonic sorting network that we have virtualized to handle 16 numbers. For each comparator, write a plus (+) or minus (–) to distinguish increasing from decreasing comparators.

Next show the values that are produced after each comparator performs its comparison swap. I have written the word Values under each column where you should be placing the eight pairs of values written on that communication line. ANSWERS PROVIDED IN CLASS

3.
Use some combination of common tuple space services (read, readIfExists, take, takeIfExists, write) to show how a set of N tasks can achieve barrier synchronization. That is, show explicit code segments that would be executed by each participating task so each would block at some point in its computation, until all had reached the same barrier.

// This is a bit different than in class; this one is entirely symmetric

if (takeIfExists(“BARRIER”, ?i)) i--;

else i = N-1;

write(“BARRIER”, i);

read(“BARRIER”, 0);

4.
Consider a Disney adventure ride that uses cars that seat exactly four passengers. When a car arrives at the loading zone, it must first wait for any previously arriving cars to clear, and then it must await the arrival of four passengers. Once these conditions are met, the car proceeds to take it passengers on the adventure. When the ride is done, the car enters the exit zone, once it's clear, unloads passengers, and then proceeds back to the loading zone. Passengers queue up when they arrive until it is their turn. We can solve this coordination problem using semaphores as follows.

semaphore loadingStationClear=1, exitStationClear=1, readyToRide=0, rideOver=0;

process car[i=1 to nunberOfCars] {

while (ride is still operating) {

loadPassengers();

// provide ride to passengers

unloadPassengers();

}

}

process passenger[i=1 to whoKnowsHowMany] {

while (not bored with this ride)

goOnRide();

}

goOnRide() {

// walk up to queue

V(readyToRide);

P(rideOver);

// leave venue

}

loadPassengers() {

P(loadingStationClear);

for (int pass=0; pass<4; pass++)

P(readyToRide);

V(loadingStationClear);

}

unloadPassengers() {

P(exitStationClear);

for (int pass=0; pass<4; pass++)

V(rideOver);

V(exitStationClear);

}

The above solution does not require that cars finish in the order in which they start. This can lead to a serious semantic problem. What is that problem? What changes might be made, or policies enforced to avoid this?

The semantic problem is that this would imply cars can pass each other on a single track ride. That’s clearly impossible in the physical world.
The problem starts in the many processes car[i], each running the code
loadPassengers();

// provide ride to passengers

unloadPassengers();

 Since the car processes are independent of each other, process car[i] could succeed in loading passengers, taking them on a ride, and then lose control to process car[j], where i≠j. car[j] might then load and unload, breaking what seems like a reasonable ordering constraint. To circumvent this, we could add a mutex semaphore that serializes the cars. A simple version of this would be to have the new semaphore, sem s = 1, changing the code above to
P(s);

loadPassengers();

// provide ride to passengers

unloadPassengers();

V(s);

What would happen if there are fewer than four passengers who want to take this ride?

6. The last group would never be complete and those passengers would be stuck.
7. Write a monitor that creates water from hydrogen (2 parts) and oxygen (1 part). No atom may be used to create more than one water molecule and each molecule results in the completion of precisely one call to makeWater. The services are below.

The solution is from exam, but with SW semantics.

-- 2 --

