Final Exam Topics

1. **Data Parallel**
 - MasPar Example
 - Parallel Prefix and Parallel Linked List Length

2. **Semaphores**
 - Abstraction with two services P (wait) and V (signal)
 - Critical section problem and semaphores
 - Java synchronized and semaphores
 - Barriers and semaphores
 - Producer / Consumer Problem; Dining Philosophers Problem; Reader/Writer Problems

3. **Monitors**
 - monitors and consds
 - wait(cv), wait(cv, rank), signal(cv), signal_all(cv), empty(cv), minrank(cv)
 - signal and wait versus signal and continue
 - queues, priority queues, BPOTs, heaps and analysis
 - bitonic lists
 - signal and wait versus signal and continue
 - semaphores implemented via monitors
 - monitor examples
 - semaphores, bounded buffers, readers/writers, shortest-job-next, sleeping barber
 - CSCAN/SCAN disk scheduler (bitonic lists)

4. **Java Support for Monitors**
 - Synchronize : specifies critical section using an object as lock
 - can do at granularity of method
 - can do at granularity of a block
 - Java synchronized, wait/notify/notify_all
 - Locks are reentrant
 - Locks can be temporarily given up : wait and notify

5. **Single lane bridge problem using semaphores and monitors**

6. **Message Passing**
 - channels: send (non-blocking); receive (blocking); empty
 - simple channel examples: char-to-line; sorting network
 - client server examples
 - MPI

7. **Parallelizing Graph Algorithms**
 - All shortest paths (Floyd’s)
 - Cannot parallelize pivots
 - Barriers for various approaches
 - Minimum spanning tree (Prim's Algorithm)
 - alternate data structures for adjacency (N^2 versus E lgN)
 - Block Striped Partitioning
 - Analysis of Prim's using p processors
 - computation cost N^2/p
 - communication cost
 - Hypercube O(N lg p); use p = N/lg N
 - Mesh O(N p^1/6) use p = N^2/3
8. **Distributed Computing Paradigms**
 - Channels (all the ways down to UDP and TCP/IP)
 - Distributed Objects
 - Mediated -- Spaces and Message Queues

9. **UDP, Multicast UDP, TCP/IP**
 - Concepts, comparisons

10. **Concurrent Objects**
 - Synchronous vs asynchronous
 - Garbage collection when distributed

11. **RMI**
 - Use of interface
 - Serialization
 - Handles to remote objects (stubs)
 - Garbage collection
 - Bid.com via RMI

12. **Tuple Space**
 - Read (rd), take (in), write (out), eval
 - readIfExists (rdp), takeIfExists (inp)
 - Leases on tuples
 - Bid.com as a tuplespace

13. **Atomicity and Transactions**
 - Commit/Abort; roll forward/roll back

14. **Object Request Broker (ORB)**
 - Discovery, Join, Lookup
 - Discovery process
 - Packet storms on restart

15. **Oblivious Comparison Exchange Sorts**
 - Proof of correctness for 0-1 data implies correct for all
 - Correctness of Even-Odd Transposition Sort

16. **Shear Sort and its Analysis**
 - Shear Sort and RevSort
 - Order, Cost, Work, Cost Efficiency, Work Efficiency.

17. **Revsort (a kin of ShearSort)**
 - Extend shear notion to the technique used in Revsort.
 Note this is not a snake sort like shear.
 - Revsort is not a sort. It just gets close (within 8 rows of being right.)
 - Revsort gets there fast. It cuts number of dirty rows, not in halves, but to square root of current number of dirty ones.

18. **Bitonic Sort**
 - Mapping to hypercube

19. **Virtualizing Algorithms**
 - Brent Scheduling, but not just for binary tree reduction

20. **Accelerated Cascading**
 - $\lg \lg N$ max
 - Tradeoff points

21. **PCN (Program Composition Notation)**
 - Mutable vs definitional
 - Intentional non-determinism
22. CSP
 o guarded communication
23. Parallel Constraint logic programming
 o generators and consumers
24. Program Flow Analysis
 o basic concepts (e.g., basic blocks, intra and inter procedural, aliasing)
 o flow graph
 ▪ DFS numbering
 ▪ domination
 ▪ du and ud chaining
 ▪ forward/backward and may/must
 o Parallelizing code
 ▪ scalar dependence (true, anti and output)
 ▪ Diophantine analysis
 ▪ GCD Test
 ▪ Vectorizing loops
25. Scheduling Algorithms
 o General Problem -- times and partial order
 o Timing (Gantt) Charts List Schedule
 Sorting when no partial order
 o Anomalies
 o UET trees and anti-trees (breadth first order)
 o UET graphs and 2 processors
 o NP Completeness
26. Message Ordering
 o Receive, Priority, Time, Causal, CATOCS