1. As regards Accelerated Cascading Max, analyze this algorithm if the binary tree reduction cutoff is:
 a.) \(\lg \lg \lg \lg N \)
 b.) square root(\(\lg N \))
Determine which are fast and/or efficient. Do precise analysis.

 a) \(\lg \lg \lg \lg N \) steps in binary reduction requires \(O(\lg \lg \lg \lg N) \) time and no more than \(O(N) \) work. The problem size is now reduced to \(N/2^{(\lg \lg \lg \lg N)} \) or \(N/(\lg \lg \lg N) \) elements. The doubly log algorithm now completes in \(O(\lg \lg N) \) time, but takes \(N(\lg \lg N)/(\lg \lg \lg N) \) work. Thus, even though the time is fine, the work exceeds our goal of \(O(N) \).

 b) \(\sqrt{\lg N} \) steps in binary reduction requires more than \(\lg \lg N \) time, as \(O(\sqrt{k}) \) contains \(O(\lg N) \), but not vice versa. The work is still \(O(N) \). The doubly log has \(N/2^{\sqrt{\lg N}} \) elements to reduce, but that’s fewer than \(N/\lg N \), and can be reduced in \(O(\lg \lg N) \) time taking \(N/\lg N \times \lg \lg N \) work. But that’s \(O(N) \) work. Thus, the work is fine, but the time is too long.
2. For each of (a) Bitonic Sort and (b) $\lg \lg$ trees Max, operating on N values, determine if there is a magic p (similar to Brent's Scheduling), for which this algorithm is work efficient and fast ($\lg^2 N$ and $\lg \lg N$, resp.) when virtualized with each processor starting with N/p values. Prove that your value of p is optimal, as in Brent's choice of $p = N/\lg N$, or argue convincingly that no such p can be found for arbitrary N.

a) At a prepass, we do local sorts, taking $N/p \lg(N/p)$ time and $N \lg(N/p)$ work. At each pass, we take N/p time and do N work. At convergence, we have spent $N/p \times \lg(N/p) + (N/p) \lg^2 p$ time and done $N \lg(N/p) + N \lg^2 p$ work. To get work down to $N \lg N$, we will assume $p = 2^k$, for some k. That’s a good assumption for Bitonic. Now, $\lg^2 p$ is then k^2. Letting $N = 2^j$, we can choose $p = 2^{\sqrt{j}}$. Thus, p must be $2^{\sqrt{\lg N}}$ in order to keep the work under control. Plugging in, we get time of $N/2^{\sqrt{\lg N}} \times (\lg(2^j/2^{\sqrt{j}}) + \lg^2 2^{\sqrt{j}})$ or $2^j/2^{\sqrt{j}} \times (\lg(2^j/2^{\sqrt{j}}) + \lg^2 2^{\sqrt{j}})$ or $2^j/2^{\sqrt{j}} \times (j-\sqrt{j} + j) = O((N-\sqrt{N}) \lg N)$. Unfortunately, that’s a bad time, so there is no p that satisfies our needs.

b) At a prepass, we do local max, taking N/p time (really $(N-1)/p$) and N work (really $N-1$). We would then compute the max in $\lg \lg (p)$ time and $p \lg \lg (p)$ work. Total time is $N/p + \lg \lg p$. Total work is $N + p \lg \lg p$. Let $p = N/\lg \lg N$. Time is then $\lg \lg N$ and work is N, as desired.