Smart Navigation
Application

Group 16
Neela Balkaran, Evan Dorundo, Michael Kirsche,
Clifford Rice, Jason Tiller, and Ryan Zimmerman

Outline

Concept of Operations

Project Management Plan

Software Requirements Specification
Test Plan

High-level Design

Detailed Design

Concept of
Operations

Current System

e Currently no existing system designed to
solve this direct problem

e Closest alternative is Google Maps -
provides user complete control but is time-
consuming and can lead to suboptimal
routes

Modes of Operation

e Input - user provides list of activities
e Navigation - application provides list of
directions

Operational Features

Interface for entering activities in order in which they
should be performed

Ordered list of locations the user should visit
Navigation between consecutive locations

Ability to detect user’s location as a starting point of the
navigation

Different directions based on user’'s mode of
transportation (driving, walking, etc.)

Analysis

e |mprovements
o Shorter travel distance
o Less time making decisions
e Disadvantages
o Battery Usage
e Limitations
o Requires smartphone, GPS, and Internet
o Decisions not based on user’s preferences

Analysis (continued)

e Risks

- Losing GPS signal could cause navigation problems

e Alternatives
- Google Maps
> Internet Search
- Research places in advance

Project Management
Plan

Team Organization

e No leader

e Individual roles

o Evan - Planning meetings

o Ryan - Taking meeting minutes
e Communication

o Meetings

o Webcourses

o Email

Software Life Cycle
e Agile

e

= ~ Daily Scrum

Tested & Integrated
Product Component

Planning Backlog

Standards

e Indentation
o Allman style

e Naming Conventions
o PascalCase

o camelCase
o ALL_CAPS

e Comments
o Implementation comments as needed
o Documentation comments for each class, field, and method

Standards

e Documents
o Online templates

e Size metric
o Source lines of code (SLOC)

Development Tools

e [atest versions of Java, Android SDK, and
Google APIs

e Configuration Management - GitHub

e Operating system not standardized

Quality Assurance & Risk

e (Goals: A variety of real-world testing and
user feedback

e Few project specific risks
o Data integrity
o Usability

Work Packages and Division

e Initially: Ul, Functionality, Documentation

e Further division into: Ul Design, Class
Development, and Testing

e Individuals responsible for tracking their own
progress.

Software
Requirements
Specifications

Functional Requirements

The mobile application shall allow a user to...

e add one or multiple destinations.

delete any particular destination(s).

reorder any particular previously entered destination(s).
view all entered destination(s) for a particular day.
navigate, and see the optimal route navigation between
successive items in his/her “to do” list.

Interface Requirements

e (Google Maps API for navigation directions.

Physical Environment Requirements

e Run Android version 2.3 or later.
e [nternet when navigating.

Users and Human Factors Req’s

e Allow any college level user to successfully navigate
through the application with ease.

Documentation Requirements
e Online templates

Data Requirements

e Implement a dynamic programming algorithm to identify
the optimal route between destinations.

Security Requirements

e There shall be HTTPS encryption of the communication
between the system and server.

Quality Assurance Requirements

e The navigation algorithm to identify the optimal route
shall complete in under 30 seconds.

e The user interface will always respond to user
Interactions within 5 seconds

Test Plan

Test Environment

e Unit Testing

o Code base
o GitHub

e Integration Tests
o Android emulator

Test Cases

1 simple location in area
9 locations in area

Too many locations
Description too long
Location out of range

High-Level Design

Use Case Diagram

p
«include» _ _ _ —
Reorder Destinations k——— 7~ ~ -
\ -
N - -~
N «include» Pl
\ - - -
- ”~
N e
) . \ i
Delete Destination “'“Cl}‘dé”
— AN Ne”
] N - <
— > N
Z7N «ex\qnds»
~ N
.) 4 N
\ Add Destination - N
User ~ «ex{an\:‘&»
~ - - N N
: - ~ ~ AN
Navigate ————__ «extends» \\
—— ~
~ =~ — — «include» REERR
«include» A RN
NN BRI
~\/ Query Google e -3
Maps API
Google Maps

Modify Destination

View Destination

State Diagram

add, remove,
reorder, or
clear

\ / Close Navigation

Click Start Navigation

Module Diagram

Calculate Path

QuerylLoc
FindShortestPath

Call APl via
Eapgle AP GMéps andLPIacF__*s Interface Interface
: etCurrentLocation
CI;HECIED;PI GetListOfPlaces S
CetDistanceBetweenPlaces Eatrien data -
requested
APl Erro
> User Interface
Input Add
Validation Remove
Reorder
Clear

Cot Path
Start
Mavigation
Mavigation
Render Map

= Highlight Segment

Close

Mavigation

Data Flow
Diagram

Add

Quer‘g,.r
New Query

Delete
(QuerNDQueer

Query List

Ordering
——ID, Position Reorder
User

‘\\-‘-M
ap
Navigation -
Shortestpath___ ey ortest Bath

Queries

Request for directions | Shortest path

Calculate
Path

Locations/Directions
Path/Location queries

Google
APls

Design Issues

Pipes-and-Filter Architecture

Functional Decomposition Design
o 2 distinct steps (enter list/navigation)

Technical Difficulties - Testing GPS

Performance, Reusability, Reliability, Robustness

Detailed Design

Class Diagram

Activity

[\

InputActivity NavigationActivity
- QuerylList : List<String> - AddressList : List<Address>
- add(query : String) - lelOfDlrecl_n0n§ : List<String>
- delete(query : String) - currentSection :int
- reorder(id : int, loc : int) - NavigationActivity(queryList : List<String>)
- clear() - drawMap()
- runNavigation() - endNavigation()
- highlight(section : int)
- nextSection()
- prevSection()
APIWrapper PathCalculator

+ drawMap(List<Address>)

- locations : List<List<Address>>
+ PathCalculator(querylist : List<String>

+ getDirections(start : Address, end : Address) : List<String>
+ queryPlace(query : String, radius : int)

+ getCurrentLoc() : Address

+ getTime(start : Address, end : Address) : double

+ calculate() : List<Address>
- findLocations()
- chooseOptimal() : List<Address>

Input Activity

Record user input, storing it as a list of “query” strings.

Users can: InputActivity
. - QuerylList : List<String>
e Add items A e -
: - add(query : String)
e Delete items - delete(query : String)
e Reorder items S
e Clear all items - runNavigation()

Pressing submit sends the list of queries to the
Navigation Activity.

Navigation Activity

Provides directions to

locations PR

: avigationActivi
Updates based on user’s - AddressList : List<Address>
StatUS - ListOfDirections : List<String>

- currentSection :int
User can view individual - NavigationActivity(queryList : List<String>)
. . - drawMap()

Gives option to return to input |2 JgiEecion 1m0
mode - prevSection()

Path Calculator

e The PathCalculator
class is given a list of
queries

e |t calculates the
shortest path to visit
places that match the
gueries in order

PathCalculator

- locations : List<List<Address>>

+ calculate() : List<Address>
- findLocations()
- chooseOptimal() : List<Address>

APl Wrapper

e Contains wrapper functions

for Google’s API APIWrapper

e Uses Maps and Places API [“aamapiisiaddresss)

+ getDirections(start : Address, end : Address) : List<String>
+ queryPlace(query : String, radius : int)

+ getCurrentLoc() : Address

+ getTime(start : Address, end : Address) : double

Requirements Trace

InputActivity class:
e add one or multiple destinations.
e delete any particular destination(s).
e reorder any particular previously entered destination(s).
e view all entered destination(s) for a particular day.
NavigationActivity class
e navigate, and see the optimal route navigation between successive
items in his/her “to do” list.
InputActivity and NavigationActivity classes:
e The user interface will always respond to user interactions within 5
seconds

Requirements Trace

PathCalculator class:
e Implement a dynamic programming algorithm to identify the optimal

route between destinations.
e The navigation algorithm to identify the optimal route shall complete in
under 30 seconds.
APIWrapper class:
e utilize Google Maps API for navigation
e HTTPS encryption of communication between system and server

Questions?

