
Knight’s Guard

Detailed Design

COP4331C, Fall, 2014

Team Name: Group 1

Team Members:

● Megan Postava
● Katie Jurek
● David Moore
● Miguel Corona
● William Adkins
● Jonathan Bennett

Modification history:

Version Date Who Comment

v0.0 09/30/14 Jonathan Bennett Imported template, filled out Team
Members and header

v0.1 10/16/14 Miguel Corona Worked on Trace of Requirements

v0.2 10/19/14 Katie Jurek Began filling out Implementation
Locations for Trace of Requirements

v0.3 10/20/14 Miguel Corona,
Jonathan Bennett

Design Issues section completed

v1.0 10/22/14 Jonathan Bennett Finished the Trace of Requirements,
diagrams and document

Contents of this Document

Design Issues

Detailed Design Information

Trace of Requirements to Design

Design Issues

This section provides details on the design decisions of the game and architecture. It explains the
reasoning for the decision and associated risks (if any).

● Reusability
○ By designing the functional requirements in a more generic fashion, they become more

reusable. One example of this is the creation of a tower. By making the tower creation

function more specific, multiple tower types can be created with the same tower

creation function; with tower specific attributes added later.

● Maintainability
○ Having objects allows for easier error detection. Once errors occur, they are more easily

identified and can be corrected by simply viewing the objects functionality. Objects also
make it easier to update the existing code. Each object can be changed and manipulated
without changing any code for the other objects.

○ Leaving consistent comments throughout the code makes the system much easier to
read and maintain. By labeling what each object/function does, the overall maintenance
becomes quicker and concise.

○ Easily identifiable naming makes the code easier to read as well. Being able to glance at
a piece of code and know what it is doing, or at least being able to tell what variables it
uses, makes editing that code easier.

● Testability
○ Following standard testing methods will save time and trouble. Since it is impossible to

test every setup that this application can be used on, by making the application work on
the most popular, we can assume that the majority of the users will have a good
experience.

○ Having the components separated into distinct objects makes it easier to test specific
functionality. If there is a known problem with one component of the system, instead of
testing multiple pieces of the system, we can narrow down the issue to a specific object.

● Performance
○ The game market today is geared towards 60 frames per second(fps). This frame rate

makes games appear seamless and more responsive to the users interactions.
○ The syncing process between the client and the server should be quick. This process

should be quick so that the user is quickly notified of their standings on the leaderboard.
This notification speed could be the difference between the user playing again or not.

● Portability
○ The decision to use the GameMaker engine was made in part by its support of multiple

operating systems. Since the team hopes to make a game playable on both desktop and
smartphone, having an engine that supports these features natively is a huge benefit.

○ There is a risk that the game will not function as well on the smartphone as it does on a
desktop, due to the power available in a typical desktop computer and also possible
incompatibilities in the game engine. However, research and testing gives the team
confidence that the engine is capable of producing a smooth output for smartphones as
well as desktop operating systems.

○ There is an additional risk of running out of time, because there will need to be
adjustments made to the smartphone version of the game. The team is focusing on
completing the desktop version first, and depending on the remaining time available,

the smartphone version may not be ready for release, or not play as well as its desktop
counterpart.

● Safety
○ Since this video game is primarily used on the local device, the risks for safety are quite

limited (compared to software such as a banking application). The only risk involved is
the networking between the local client and the web server that is used to track the
scores of all players, i.e. the online scoreboard.

○ There exists a risk for this scoreboard to be manipulated, such as by a player who may
try to sniff the network data in order to learn how to send fake high scores to the web
server. The development team is taking steps to prevent this issue from occurring, but
the ultimate risk is minimal because the online scoreboard is not used for anything
except keeping track of text scores, which are optional and play no part in keeping the
game operational on the local devices of all players.

● Prototypes
○ Enemy pathing prototype:

■ This prototype was useful so that the spawned enemies would not overcrowd a
single path. It also adds a random element to the game because enemies have
the choice of multiple paths to take, instead of taking the same predictable path
each time. This will make the game more challenging and fun.

○ Scoreboard prototype:
■ The scoreboard is a classic video game pattern and adds an extra element of fun

and competitiveness to the game. It gives the player a reason to try again and
improve their score. It also allows multiple players to compare their abilities
against one another by comparing their scores.

■ The player is able to gain score by efficient use of their towers and killing
enemies before they can attack the player’s base. This prototype enabled the
team to start implementing a basic scoreboard into the game, which increased
by 100 points for each enemy kill.

○ Base health bar:
■ The main objective of the game is to protect the Student Union base from the

attacks of the enemies. The base is capable of receiving multiple attacks over
time, and the game needs a way to show the player how many attacks it can
withstand. This is achieved by use of a health bar, which is conventional in video
games. As the base gets attacked, the health bar will continue to decrease. The
player may be able to restore health to the base with special powerups in the
game.

○ Basic game prototype:
■ This was the first prototype made available to the client.
■ The prototype was focused on getting the basic mechanics of the game

working. The prototype featured a basic 1-color map to play on, one location
where enemies spawn, one location for the enemies to move to (using A*
path-finding) and the ability to place towers anywhere on the map that would
automatically shoot at the enemy.

■ The team chose to focus on the basic mechanics because they serve as the
foundation of the entire game. In order to develop more complicated towers
and enemies, we are using a basic version for each of them to start with.

■ The prototype was shared with the client for additional feedback and to show
progress. This allowed the team to gather feedback on the game so far and help

reduce risk of misunderstanding or wasted time focusing on features that
shouldn’t be in the game.

■ The next prototype will build on these basic mechanics and introduce more
complexity, such as additional details added to the user interface and multiple
enemy paths.

● Technical Difficulties
○ Since the majority of this project relies on the implementation and design of the code

that allows the system to function, the last aspect we need to finish is its artwork
appearance. The artwork needs to fit the overall theme of the game or the game can
feel cheap.

○ Making the enemies follow predefined paths and allowing these paths to change with a
random generated value can be tricky. The enemy pathing will not only be effected by
“forks”, lane branching, but also by the users placed towers. In the end, designing and
implementing these path choices will make the game more interesting and
unpredictable.

○ Game difficulty is a huge part of what makes a game successful. If the game is easy to
playthrough and presents no challenges, the user may become bored. If the game is
very difficult the user can get frustrated and give up. The game needs to be balanced.
This can be achieved by use of playtesting and being mindful of successful game design
patterns.

● Architecture
○ The Client-Server architecture was chosen because it best models how the system will

operate. The majority of the code and gameplay is on the local device, whether it’s the
desktop or the smartphone. The client will function properly, even if the web server is
not available.

○ The only feature the web server is used for is the online scoreboard system, where
players can sync their scores with the web server to upload their own high score and
download the high scores of other players for comparison. This feature is optional for
the player and does not affect the gameplay.

○ There are two risks with the server:
■ There is a possibility that the online scoreboard feature will not be completed on

time, if the development team runs into a time crunch or problem with the
functionality. It is not considered to be as high of a priority as other game
features.

■ There is a possibility that the web service may experience downtime, or the
player will not have a network connection available. The game client will need to
account for these possibilities and be able to handle them gracefully.

● Technical Risks
○ General:

■ The development team is composed of Computer Science students, several of
whom are also working part-time/full-time jobs while attending school. There is
a risk that work on the project may stall or slow if the schedules of team
members become too hectic.

■ There is also a risk that team members may become ill and unable to contribute
to the project. Since the work is being equally divided, the other team members
will help pick up the slack, if needed.

○ Project Specific:
■ The project is dependant on the GameMaker engine. If the GameMaker team

introduces a game-breaking bug into their engine, this could affect our game.
■ The project will work on the Microsoft Windows platform at a minimum, but the

goal is to support the Android platform as well. The GameMaker engine
supports multiple engines, including other platforms such as Mac OS. Our team is
relying on this feature to work correctly, but if it doesn’t then there is a risk that
the Android platform’s performance may suffer or not be released in time.

■ There is a risk that our online scoreboard service may become unavailable or
change its API, which would require us to update our application in order to keep
it functional. This risk depends on if an external or internal service is used. The
advantage of an external system, such as Google Play Services, is that it is
well-tested and potentially quicker to begin using. The disadvantage is that it
has the possibility of changing without the development team’s awareness,
which is not something that would occur if using a custom-made solution.

Detailed Design Information

1. State diagram: Using the application

2. Class diagram

3. High-level overview of system architecture

Trace of Requirements to Design

Requirement From SRS Implementation Location

1) The system shall allow the user to start the
software.

If the user double clicks on the Knight’s Guard
.exe, the software will start.

2) The system shall allow the user to start the
game.

If the user clicks on the start button on the screen
once the software is loaded, the game will start.

3) The system shall allow the user to quit the
software.

The exit button (the X) will be located to the
top-right of the game window. Also, pressing
Escape twice in a row will exit the game.

4) The system shall allow the spawning of
enemy units.

The spawning of enemy units is handled in
o_control’s Alarm 1 event, which spawns enemies
at various spawn points on the screen.

5) The system shall allow the user to place
towers.

If the user has an available tower to place, they
may place it by clicking on “mount points”, or
points where they are allowed to have towers.

6) The system shall allow the user to upgrade
towers.

If the player clicks directly on a placed tower, that
tower’s upgrade options will be displayed.

7) The system shall allow the user’s base to take
damage/be attacked.

If the enemies are close enough to the base to
attack it, they will begin doing damage to it until
they are destroyed by the user’s towers.

8) The system shall allow the user to pause the
game.

If the user presses “P”, the game will pause.

9) The system shall allow the user to restart the
game.

If the user presses “R”, the game will restart.

10) The system shall allow the user the option to
quit the current game.

If the user presses the Escape key, they will back
out to a menu. If they press it again, the game will
be exited.

11) The system shall allow the user to progress
through levels.

This is an automatic part of the gameplay as the
user finishes a level.

12) The system shall allow the user to finish the
game (Game Over).

This is an automatic part of the gameplay as the
user finishes all levels.

13) The system shall allow the user to interact
with the user interface.

The user will interact with the UI by clicking on
buttons on the screen and pressing keys on their
keyboard.

14) Development of the system shall take place
in an environment capable of coordinating with a
git repository.

GameMaker: Studio is compatible with using a git
repository. The “GitHub for Windows” software is
primarily used.

15) The game shall run on the Windows 7
operating system.

This is handled by the game engine
(non-interface).

16) The game shall run on the Android 2.3+
operating system.

This is handled by the game engine
(non-interface).

17) The system shall prevent the malicious
change of scores.

This is handled by the game engine and the code
base (non-interface).

18) The system shall provide the average player
a fun experience.

This is handled by play-testing and following
game design standards (non-interface).

19) The system shall be easy to learn to use and
play.

This is handled by play-testing and following
game design standards (non-interface).

20) The documentation shall be readable and
posted online.

Documentation will be available on the Group 1
public web site (non-interface).

21) The video game shall provide a guide on how
to install and play the game.

There will be a user manual included with the
game, located in the game’s install directory.

22) The system shall keep track of the number of
units spawned.

There will be a numEnemies variable that keeps
track of how many enemies have been spawned
and are currently alive on the screen.

23) The system shall keep track of the damage
done to the base.

The base will have a health variable that stores its
current health.

24) The system shall keep track of the number of
levels completed successfully.

There will be a numLevels variable that keeps
track of how many levels have been completed.
This number may be shown on the screen to the
user in-between levels.

25) The system shall be created by individuals
with at least basic knowledge using GameMaker:
Studio.

Non-interface requirement.

26) The system shall be created by individuals
with experience coding.

Non-interface requirement.

27) The system shall prevent users from changing
system settings.

Non-interface requirement. This is handled in the
code base and game engine.

28) The system shall be easy to navigate and This is handled by use of play-testing to identify

readable. issues and following conventional design
patterns.

29) The video game must play smoothly. The code will be inspected for inefficient
methods of solving problems and be emptied of
them to the best of the coders’ knowledge and
abilities.

30) The video game must be well tested. This is handled by extensive play-testing by the
development team and volunteers.

31) The video game input should feel responsive. This is handled by extensive play-testing by the
development team and volunteers, along with
following coding practices optimized for
performance.

32) The project must meet the client’s
expectations.

The game will be fun and simple to learn.

