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INTRODUCTION 

Garbage collection--the process of reclaim- 
ing unused storage space--can be done by 
various algorithms. Since the late fifties 
and early sixties, when the first list-process- 
ing languages were implemented, many 
such algorithms have been proposed and 
studied. 

Interest in garbage collection has in- 
creased considerably during the past dec- 
ade with the introduction of records and 
pointers as data structures in new program- 
ming languages. The efficiency of programs 
written in these languages depends directly 
on the availability of fast methods for gar- 
bage collection. {Experience with large 
LISP programs indicates that substantial 
execution time--10 to 30 percentwis spent 
in garbage collection [STEE75, WADL76].) 

Garbage collection has also become an 
important topic in data structures courses. 
Of the several books which have devoted 
entire sections to garbage collection 
[FOsT68, KNUT73, BERZ75, ELSO75, 
HoRo75, PFAL77, GOTL78, AUGR79, 
STAN80],  Knuth's book, Section 2.3.5, is the 
most comprehensive. It contains detailed 
descriptions and analyses of some of the 
garbage collection algorithms that ap- 
peared prior to 1968, and, despite its age, it 
remains a standard reference for algorithms 
proposed before the seventies. Numerous 
papers have appeared since 1973.1 How- 
ever, no presentation has summarized and 

~The book by Standish [STANS0], which appeared 
since this paper was submitted for pubhcation, is a 
valuable reference on more recent work done in gar- 
bage collection. 
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classified the work done in the area. The 
purpose of this paper is to provide such a 
presentation. More specifically, the objec- 
tives of this paper are 

(1) to review the classical algorithms for 
collecting linked data structures; 

(2) to provide a unified description of re- 
cent garbage collection algorithms and 
to explain how they relate to the class- 
ical ones; 

(3) to survey the related topics of real-time 
garbage collection, analyses of garbage 
collection algorithms, and language fea- 
tures which influence implementation; 

(4) to present a comprehensive bibliog- 
raphy on the subject. 

Although storage allocation and garbage 
collection are interrelated, the emphasis of 
this paper is on garbage collection proper, 
that is, on reclaiming storage; buddy sys- 
tems [KNUT73] and related work are not 
covered. 

It is assumed that  the reader is familiar 
with at least one list-processing language 
and has some understanding of its imple- 
mentations. (This level of proficiency may 
be acquired by studying the initial chapters 
of Weissman's book [WEre67] and the in- 
terpreter described in CO~E72.) This paper 
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should be useful to readers interested in 
data structures and their application in 
compiler construction, language design, and 
database management. 2 

A cell is a number (>_1) of contiguous 
computer words which can be made avail- 
able to a user. Cells are requested by the 
user's program from a supervisory program 
known as the storage allocator. Since the 
number of available cells is finite, a time 
may come when no cells remain available. 
When this occurs, experience indicates that  
some of the previously requested cells will 
be unused and can therefore be returned to 
the allocator. A cell becomes unused, or 
"garbage," when it can no longer be ac- 
cessed through the pointer fields of any 
reachable cell. It is the garbage collector's 
task to reclaim this unused storage space. 

Garbage collection is usually triggered 
automatically either when the allocator 
runs out of space or shortly before. Higher 
level languages often contain primitives for 
requesting groups of words from the allo- 
cator. Garbage collection may be triggered 
when one of these primitives is executed. 
For example, in LISP, the function cons 
also calls the garbage collector. 

A most vexing aspect of garbage collec- 
tion is that  program execution comes to a 
halt while the collector attempts to reclaim 
storage space. On modem fast computers, 
the program interruption is noticeable even 
to interactive users of dedicated processors. 
Users of time-sharing systems may experi- 
ence interruptions lasting minutes. In ex- 
treme cases, successive collections may 
take place with little actual program exe- 
cution between them, making continued ex- 
ecution impractical. Because of this neces- 
sary halt, until recently, languages allowing 
automatic collection of linked structures 
could not be used to write programs with 
real-time constraints. 

Methods for garbage collection usually 
comprise two separate phases: 

(a) Identifying the storage space that  may 
be reclaimed. 

(b) Incorporating this reclaimable space 
into the memory area available to the 
user. 

2 Collections m very large databases or file systems are 
not covered m thin survey 
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Phase (a) can be performed using one of 
two methods: 

(al) By keeping counters indicating the 
number of times cells have been ref- 
erenced. Identification in this case 
consists of recognizing inaccessible 
cells (those whose reference count is 
zero). 

(a2) By keeping a list of immediately ac- 
cessible cells and following their links 
to trace and mark every accessible cell. 
This method of identification is usu- 
ally called marking. 

Phase (b) can also be subdivided into two 
classes: 

(bl) Incorporation into a free list in which 
available cells are linked by pointers. 

(b2) Compaction of all used cells in one 
end of the memory, the other end 
containing contiguous words which 
are made available to the allocator. 
There are various types of compac- 
tion, classified by the relative posi- 
tions in which cells are left after com- 
paction: 

(b2.1) Arbitrary. Cells which originally 
point to one another do not neces- 
sarily occupy contiguous positions 
after compaction. 

(b2.2) Linearizmg. Cells which originally 
point to one another (usually) be- 
come adjacent after compaction. 

(b2.3) Sliding. Cells are moved toward 
one end of the address space without 
changing their linear order. 

It is also convenient to classify garbage 
collection according to the type of cells 
which are reclaimed. The early methods 
were ~applicable only to programs in which 
all cells were of the same size. With the 
introduction of records (or similar struc- 
tures) into programming languages, it be- 
came important to perform garbage collec- 
tion in programs involving cells of different 
sizes. 

1. COLLECTING SINGLE-SIZED CELLS 

1.1 Marking 

LISP cells illustrate the problems involved 
in marking single-size cells. Each LISP cell 
has two fields: left (or car) and right (or 
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procedure mark(p); (p  Is a pointer that is called by 
value} 

begin 
if  unmarked(p) then 

begin 
marknode(p); 
if  nonatomte{p) then 

begin 
mark(left(p)}, 
mark (rtght( p) ) 

end 
end 

end mark; 

Figure I 

cdr). These fields contain pointers either to 
other cells or to atoms, special kinds of cells 
containing no pointers. Each cell also con- 
tains two Boolean fields (bits): one to help 
differentiate between atomic and nona- 
tomic cells, 3 and the other to be used in 
marking. 

The algorithm shown in Figure 1 is a 
recursive procedure for marking LISP lists 
(including atoms). It utilizes three auxiliary 
procedures: 

nonatomic(p): Boolean function which 
tests whether the cell pointed to by p is 
nonatomic; 

unmarked(p): Boolean function which 
tests whether the cell pointed to by p is 
unmarked; 

marknode(p): Procedure which marks the 
cell pointed to by p by turning on its 
marking bit (marking bits are initially 
turned off). 

Note the similarity of the marking algo- 
rithm in Figure 1 with the classical preorder 
tree-traversal algorithm [KNUT73]. The 
one in Figure 1, however, can handle gen- 
eral lists, including circular ones. 

An efficient nonrecursive version of this 
algorithm uses an explicit stack which only 
stores pointers to the cells being marked. 
No return addresses need to be stacked. A 
pointer is pushed onto the stack just before 
marking the cell's right branch. The algo- 
rithm terminates when the stack is empty. 
Consequently, each node of the list is vis- 
ited twice: once before marking the left field 
and once before marking the right field. 

3 Some LISP systems carry this reformation in the 
pointers to the cells 
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The following predicament results from 
using the described algorithm in a collector 
operating exclusively in main memory: gar- 
bage collection is needed because of the 
lack of memory space; however, additional 
space is required by the stack of the mark- 
ing algorithm. If the storage area consists 
of n LISP cells, the maximum depth re- 
quired for the stack is then n. To reserve 
this much additional storage initially is un- 
economical. Several algorithms have been 
proposed to circumvent this difficulty; all 
of them involve reducing the required stor- 
age by trading it for longer time needed in 
which to perform the marking. 

The first of these algorithms (similar to 
Algorithm C, in KNUT73, p. 415) uses a 
stack of fixed length h, where h is substan- 
tially smaller than n. However, the pointers 
are stacked using mod h as the stack index. 
In other words, the stack can be thought of 
as being "circular," and when its index ex- 
ceeds h, the additional information is writ- 
ten over previously stored information. The 
stack therefore only "recalls" the most re- 
cently stored h items and "forgets" the 
other ones. 

First, the immediately accessible cells are 
marked. Marking then proceeds as in the 
algorithm in Figure 1. However, since some 
cells which should have been "remem- 
bered" have been "forgotten," the stack will 
become empty before the task is complete. 
When this happens, the memory is scanned 
from the lowest address, looking for any 
marked cell whose contents point to un- 
marked cells. If such a cell is found, marking 
resumes as before and continues until the 
stack becomes empty again. Eventually, a 
scan will find no marked cells referring to 
unmarked cells, and marking is complete. 

Actually, the scanning need not start 
from the beginning of the memory each 
time. During marking, the algorithm can 
record the minimum address f of the for- 
gotten nodes. The next scan will begin 
either just after the last address of the 
previous scan, or from f, whichever is 
smaller. 

An elegant algorithm which dispenses 
with the use of a stack but  which may 
require one additional bit per cell was de- 
veloped independently by Deutsch and by 
Schorr and Waite (see SCHO67 and 

Kr~uT73). The main idea of this algorithm 
is that the nodes of a tree or of a directed 
graph can be inspected without using a 
stack by reversing successive links until 
leaves (i.e., atoms) or already visited nodes 
are found. The link reversal can then be 
undone to restore the original structure of 
the tree or graph. (One can view the stack 
of the classical marking algorithm as 
"moved" into the cells by the link-reversal 
technique.) The additional bit per cell 
{called a tag bit) indicates the direction in 
which the restoration of reversed links 
should proceed (i.e., whether to follow the 
left or the right pointer). Knuth [KNUT73] 
suggests a method for avoiding using a tag 
bit by instead using the bit already neces- 
sary for testing whether a cell is atomic. 

Veillon [VEIL76] has shown that it is 
possible to transform the classical recursive 
algorithm in Figure 1 into the Deutsch- 
Schorr-Waite algorithm. First, the param- 
eter of the recursive procedure is eliminated 
by introducing the link reversal feature. 
The two recursive calls of the resulting 
parameterless procedure, needed to mark 
the left and right fields, are eliminated by 
introducing the tag bits to differentiate be- 
tween the returns from the two calls. 

Knuth (KNuT73, p. 591) proves by induc- 
tion the correctness of the link-reversal 
marking algorithm of I)eutsch-Schorr- 
Waite. An alternate proof may be obtained 
by noting that the transformations sug- 
gested by Veillon preserve correctness. 
Other proofs have recently appeared in 
GERH79, GRIE79, LEE79, KOWA79, and 
ToPo79. Yelowitz and Duncan [YELO77] 
present proofs of correctness of several 
marking algorithms. Their approach con- 
sists of first proving the correctness of a 
general abstract marking algorithm and 
then extending that proof to cover specific 
concrete algorithms derived from the ab- 
stract one. 

Wegbreit [WEGB72b] proposes a modifi- 
cation of the Deutsch-Schorr-Waite algo- 
rithm which uses a bit stack instead of a 
tag bit per cell. In the light of Veillon's 
program transformation, one sees that 
Wegbreit's stack simply implements the re- 
turns from the parameterless recursive pro- 
cedure derived from Figure 1. 

In the algorithm of Figure 1, each cell is 
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visited twice. In the Deutsch-Schorr-Waite 
algorithm, the cells are visited three times. 
This additional visit and the overhead for 
restoring pointers and for checking and set- 
ting bits render this algorithm less efficient 
than the classical algorithm. {Benchmarks 
taken by Schorr and Waite showed that 
this is indeed true.) Schorr and Waite then 
proposed using a hybrid algorithm which 
combines a fixed-size stack with their link- 
reversal technique. It consists of using the 
stack algorithm whenever possible. If stack 
overflow occurs, the tracing and marking 
proceed by the method of link reversal (see 
KNUT73, p. 592). 

Other marking algorithms which use a 
fixed-length stack have been proposed. The 
one by Kurokawa [KuRo75] also uses a tag 
bit, but differently. When the fixed-length 
stack overflows, it is possible to remove 
some of the pointers from the stack and 
preserve the information by turning on the 
tag bit of the unstacked cells. These cells 
form a chain, the pointer to which is left on 
the stack. The removal of stack elements 
makes more space available for resuming 
the marking scheme. Later, when a pointer 
is unstacked, it is examined to determine 
whether the cell it points to is tagged. If so, 
the linked tagged cells are retraced. Kuro- 
kawa also proposes a variant of the algo- 
rithm which dispenses with the tag bits, 
using the mark bits instead. 4 

Peter Bishop has proposed a variant of 
Kurokawa's algorithm which deserves fur- 
ther investigation: When the stack over- 
flows, its contents are "moved" into the 
cells according to the link-reversal tech- 
nique. Marking then proceeds using the 
now-free area of the stack. If stack under- 
flow occurs, an element can be popped (in 
the manner of the Deutsch-Schorr-Waite 
algorithm) from the portion of the stack 
stored in the cells. A careful comparison of 
Kurokawa's and Bishop's algorithms has 
not yet been done, nor has either yet been 
proved correct. 

We have seen that, at most, three bits 
per cell are necessary to perform LISP's 

4 LIND74 had  shown  how mark ing  can be done wi thout  
tag bits  or a stack, a t  the  expense of adchtional proc- 
essing time. 

garbage collection. The first two are used 
in recognizing atoms and in marking; the 
third one is used as a tag bit, if needed by 
the algorithm. It should be pointed out that 
these three bits need not be located within 
or near their corresponding cells. Special 
areas of the memory (bit maps or tables) 
may be allocated for this purpose. Whether 
or not this should be done is, of course, 
machine dependent. Some LISP proces- 
sors, for example, avoid the need for an 
{explicit) atom bit by placing atomic cells 
in a special region of the memory. 

A convenient manner of implementing 
the tag bit in certain machines is described 
in COHE72. It takes advantage of the fact 
that all pointers refer to only odd (or only 
even) addresses, since two words are always 
used to implement a LISP cell. Turning on 
a tag bit can thus be accomplished simply 
by adding one to the address contained in 
the right part of the cell. 

The algorithms described in this section 
can be generalized to cover cells of a single- 
size m, with m > 2. The generalized version 
of the algorithm in Figure 1 would involve 
recursively marking each of the m fields of 
the cell. A generalized variant of the 
Deutsch-Schorr-Waite algorithm would 
require an additional log2 rn tag bits per 
cell, the number necessary to represent m. 

1.2 Reclaiming Marked Cells 

The simplest method for reclaiming the 
marked cells (see phase (bl) of the Intro- 
duction) consists of linearly sweeping the 
entire memory. After turning off their mark 
bit, unmarked cells are incorporated into 
the free list administered by the storage 
allocator. 

If compacting is preferred (phase (b2)), it 
can be performed by scanning the memory 
twice. In the first scan, two pointers are 
used, one starting at the bottom of the 
memory (higher address), the other at the 
top. The top one is incremented until it 
points to an unmarked cell; the bottom 
pointer is then decremented until it points 
to a marked cell. The contents of the 
marked cell are thereupon moved to the 
unmarked cell, a pointer to the new cell is 
placed in the old, and the mark bits are 
turned off. By the time the two pointers 
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meet, all marked cells have been compacted 
in the upper part of the memory. ° 

The second scan is needed for readjusting 
the pointers: since some cells have been 
moved, it is essential to update any pointers 
to obsolete cell locations. This scan sweeps 
only the compacted area. Pointers are read- 
justed whenever they point to cells whose 
contents have been moved from the liber- 
ated area to the compacted area of the 
memory. Each of these pointers is replaced 
by the contents of the cell to which it was 
pointing. According to Knuth [KNUT73, 
p. 421], this method was first proposed by 
D. Edwards. LISP and ALGOL 60 pro- 
grams describing in detail this method of 
compacting have appeared in HART64 and 
COHE67b. Note that  the two-pointer com- 
pactor is of the arbitrary type; after com- 
paction, cells which originally point to one 
another do not necessarily occupy contig- 
uous positions of the memory. 

1.3 Moving Collectors 

An obvious algorithm for garbage collection 
would be to output all useful (i.e., reacha- 
ble) data to the secondary storage area 
and then to read them back to the main 
memory. This, however, has several 
drawbacks: 

(1) It may require additional storage 
equally as large as the main memory. 

(2) The time overhead for transferring be- 
tween memories is (usually) consider- 
able. 

(3) Unless special precautions are taken, 
shared cells would be output more than 
once, in which case the main memory 
may not be sufficiently large for reading 
back the information. (This situation 
becomes critical when the main mem- 
ory contains loops of pointers.) 

Minsky [Miss63] proposes an algorithm 
which eliminates the difficulties described 
in (3). His algorithm does not use a stack, 
but requires one marking bit per LISP cell. 
Each cell is traced and marked if unmarked. 
Triplets (the new address of a cell and the 

contents of its left and right fields) are 
computed and output to the secondary stor- 
age. The new address is also placed in the 
marked cell, and whenever a pointer to that  
cell is encountered, the pointer is adjusted 
to reflect the move. When the triplets are 
subsequently read back into the main mem- 
ory, the contents of the fields are stored in 
the specified new address. Minsky's algo- 
rithm has the advantage of compacting the 
useful information into one area of the main 
memory. After compaction, list elements 
which are linked are positioned next to each 
other, making Minsky's algorithm a linear- 
izing compactor. These two properties are 
very important when virtual memory is 
used, as will be discussed in Section 3. 

In Minsky's algorithm, fields of the orig- 
inal list are used to store information about 
the output list; consequently, the original 
list is destroyed. In this respect, it is con- 
venient to distinguish between the terms 
moving and copying. The former implies a 
possible destruction of the original struc- 
ture, whereas the latter does not. Minsky's 
algorithm can be used to move lists in con- 
texts other than garbage collection. Since 
its appearance, several other algorithms 
have been proposed to perform moving or 
copying. They can be used for garbage col- 
lection purposes as well. Most are designed 
to move or to copy lists without resorting 
to mark bits or to a stack. 6 As in Minsky's 
algorithm, (1) a forwarding address is usu- 
ally left in the old cell, and pointers refer- 
ring to that  cell are readjusted accordingly, 
and (2) the moved lists are compacted in 
contiguous positions of the memory. 

A few algorithms have been proposed 
for copying lists without using a stack or 
mark bits. They differ from the moving 
algorithms in that  the altered contents 
of old lists are later restored to their ori- 
ginal values. Lindstrom [LIND74], Robson 
[ROBS77], Clark [CLAR75, CLAR78a], and 
Fisher [FISH75] discuss the copying of trees 
and general lists. 

Fenichel and Yochelsen [FENI69] suggest 
a variant of Minsky's collector which uses 

This type of compaction is similar to that  performed 
m solving a problem proposed by D1jkstra (see the 
Dutch flag problem in DIJK76a) 

The similar but  simpler problem of traversmg trees 
without a stack or mark bits has been considered m 
SIKL72, DWYE73, LIND73, ROBS73, and LEE80. A re- 
cent book by Standish [STaNS0] contains detailed 
descriptions of some of these algorithms 
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an implicit stack but  does not  require mark 
bits. T h e y  divide the available memory  into 
two areas called semispaces. At a given 
time, only one area is used by the allocator. 
When its space is exhausted, the reachable 
lists are moved to the other  space in a 
linearized compacted form. The  algorithm 
is intended for use in a paging environment.  

Cheney's  algori thm [CHEN70, WALD72], 
R e i ngo l d ' s  a l g o r i t h m  [REIN73],  and  
Clark's algori thm [CLAR76, GOTL78] all rep- 
resent  improvements  over the previous al- 
gorithm: they require nei ther  a stack nor 
mark bits. Cheney 's  algori thm is done by 
moving the list to a contiguous area; a 
simple test  can establish whether  a pointer  
refers to the old or the new region of the 
memory.  Reingold's algori thm is achieved 
by using the Deu t sch-Schor r -Wai te  link- 
reversal technique ment ioned in Section 
1.1. And Clark's algori thm moves a list into 
a contiguous area of the memory  with the 
stack implicit in the list being moved. Clark 
shows tha t  his algori thm is in most  cases 
more efficient than  both  Cheney's  and 
Reingold's. 

Moving (or copying) algorithms may be 
classified according to the type of traversal  
used when inspecting the list being moved. 
Let  us assume tha t  most  of the cells in a 
list are linked by their  right fields, as is 
typical of LISP programs. A nonrecursive 
version of the marking algori thm of Figure 
1 uses a list (stack) containing the addresses 
of cells whose left field has not  yet  been 
processed. 7 This  list may  be administered 
ei ther as a t rue stack (on a "last-in, first- 
out," LIFO order) or as a queue (on a "first- 
in, first-out," FIFO order). According to 
this classification, the algorithms by Min- 
sky, Fenichel-Yochelson,  Reingold, and 
Clark use a LIFO order, whereas the one by 
Cheney uses a FIFO order. All of these 
algorithms move into adjacent  locations the 
cells which originally were linked by the 
right field. These  algorithms may therefore  
be classified as performing a linearizing 
type of compaction. Note tha t  the algo- 
r i thms which use a LIFO order will move 
closer together  the cells corresponding to 
the sublists which terminate  a list. 

7 This corresponds to calling mark(r~ght (p)) before 
mark(left (p)) 
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procedure mark(p); {pm a pointer that is called by 
value} 

begin integer t; 
if unmarked(p) then 

begin 
marknode( p), 
if nonatomw(p) then 

begin 
for ~ *-- I until number(p) do 

mark(#eld (p, D) 
end 

end 
end mark, 

Figure 2 

2. COLLECTING VARISIZED CELLS 

2.1 Marking 

Figure 2 shows a marking algorithm similar 
to tha t  of Figure 1, but  applicable to vari- 
sized cells. Two additional auxiliary proce- 
dures are used: 

number (p): an integer function yielding 
the number  of contiguous words (items) 
in the cell to which p points {this infor- 
mation may  be stored in the cell itself); 
and 

field (p, i): a function yielding the i th  i tem 
of the cell pointed to by p. 

It  is assumed tha t  p always points to the 
first i tem of the cell. The  algori thm can be 
modified to handle pointers to cell parts. If  
so, care should be taken to avoid collecting 
chunks of cells. Under  the modified algo- 
r i thm each i tem of the cell needs to be 
marked; thus bit tables are economical. 
{Note tha t  bit tables would be less useful in 
conjunction with the algori thm of Figure 
2.) 

The  algori thm in Figure 2, like tha t  in 
Figure 1, requires stack storage space when 
none may be available. If  the memory  con- 
tains n cells of various sizes, the maximum 
depth  required for the stack is n. When 
most  of the cells contain several items, it 
might be worthwhile to reserve two addi- 
tional fields per cell for distributing stack 
storage among the cells. Essentially, these 
fields contain the quant i t i esp  and i needed 
to implement  the recursive calls of the pro- 
cedure in Figure 2. A description of an 
algori thm of this kind appears in TuOR72. 

The  marking algorithms of Section 1 
which use a fixed-length stack can also be 
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adapted to process varisized cells. They 
may then use a fixed-length stack of height 
h with stack index = mod h as before, but 
each stack position will contain information 
corresponding to p and i in the algorithm 
of Figure 2. 

Variants of the Deutsch-Schorr-Waite 
link-reversal algorithm applicable to vari- 
sized cells are described in THOR72 and 
THOR76. Instead of using one tag bit, some 
of these algorithms use log2 maxm bits per 
cell, where maxm is the size of the largest 
cell. Other variants of the Deutsch-Schorr- 
Waite algorithm applicable when marking 
varisized cells have appeared in HANS77, 
MARS71, and WODO71. 

2.2 Reclaiming Marked Cells 

In opening, it should be mentioned that the 
method of compacting described in Section 
1.2 is not applicable to varisized cells, since 
marked and unmarked cells cannot be 
swapped if they are of different sizes. 

Several algorithms have been proposed 
for compacting varisized cells. One of the 
earliest is that of Haddon and Waite 
[HADD67, WAIT73]. This compactor is of 
the sliding type (see Section 1) and per- 
forms two scans of the entire memory. The 
objective of the first scan is to perform the 
compaction and to build a "break table," 
which the second scan uses to readjust the 
pointers. 

The break table contains the initial ad- 
dress of each "hole" (sequence of unmarked 
cells) and the hole's size. An interesting 
feature of Haddon and Waite's algorithm is 
that no additional storage is needed to con- 
struct the break table since it can be proved 
that the space available in the holes suffices 
to store the table. However, from time to 
time the break table must be "rolled," that 
is, moved from one hole to a bigger one 
created through compaction. At the end of 
the first scan the break table occupies the 
liberated part of the memory. It is then 
sorted to speed up the pointer readjustment 
done by the second scan. Readjustment 
consists of examining each pointer, consult- 
ing the table (using a binary search) to 
determine the new position of the cell it 
used to point to, and changing the pointer 
accordingly. 

The most unfavorable condition for Had- 
don and Waite's algorithm is when unit-size 
active cells alternate with unit-size inactive 
cells. It can be shown that  the algorithm 
would take O(n log n) time, where n is the 
size of the storage (see FITC78). 

Other compacting algorithms for vari- 
sized cells have been proposed. The LISP 
2 garbage collection algorithm described in 
KNUT73, pp. 602-603, and those presented 
in WEGB72a and THOR76 have the follow- 
ing features in common. 

Three (or more) linear scans are used. In 
the first scan the holes (inaccessible cells) 
are linked to form a free list. Two fields are 
reserved in each hole to store its size and a 
pointer to the next hole. A subsequent scan 
may combine adjacent holes into a single 
larger hole. The second scan consists of 
recognizing pointers and using the infor- 
mation contained in the free list to adjust 
them. This involves finding the ith hole 
whose address as is such that a~-i < p < a,, 
where p is the pointer being readjusted. 
The new value of the pointer can be com- 
puted by subtracting from p the sum of the 
sizes of the 1st, 2nd . . . . .  (i - 1)th holes. 8 
Once the pointers have been readjusted, a 
third scan takes care of moving the acces- 
sible cells to the compacted area. This com- 
pactor is therefore of the sliding type. 

The second scan, which interpretively 
readjusts pointers, is the most time con- 
suming of the three scans. Wegbreit 
[WEGB72a] proposes variants of this algo- 
rithm which make this scan more efficient. 
One variant consists of constructing a break 
table (called directory) which summarizes 
the information contained in the free list of 
holes. However, storage for the directory 
may be unavailable. Wegbreit suggests 
trying to use the largest hole for this pur- 
pose. When this is possible, binary search 
can speed up pointer readjustment. 

Lang and Wegbreit [LANG72] suggest an- 
other variant of the algorithm, which sub- 
divides the memory into a fixed number of 
equal segments. This variant requires a 
small additional area of memory to store 
the reduced break table, its initial address, 

8 I t  is therefore  convenient  to store these cumula t ive  
sums ins tead  of recomput lng  t h e m  every t ime  they  are 
needed 
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and its size for each segment. A first scan 
compacts each segment toward its lower 
address and constructs its break table. 
Whenever possible, that  break table is cop- 
ied into the liberated area of the segment; 
otherwise, marks are set to indicate that 
the reduced break table is stored in the 
liberated area of another segment. The sec- 
ond scan performs pointer readjustments 
using the information in the individual 
break tables. A third and final scan com- 
pacts the segments. 

Another variant for collecting varisized 
cells was proposed in ZAVE75. It requires 
that  each cell have an additional field. In 
the marking phase, all active cells are 
strung together using the additional field. 
This list of active cells is sorted by increas- 
ing addresses. 9 Pointers can then be read- 
justed by consulting the addresses in the 
list. The final scan compacts the active 
cells. 

Terashima and Goto [TERA78] propose 
two algorithms for the compacting phase of 
the collection of varisized cells. In the first, 
pointers are readjusted by recomputing, for 
each pointer, the needed part of the break 
table. This computation is sped up by or- 
ganizing the holes in a balanced binary tree, 
with the necessary pointers stored within 
the holes themselves. The balanced tree 
form minimizes computation of the read- 
justments. An intermediate scan is needed 
to construct the balanced tree from the 
linear list of holes obtained just after the 
marking phase. 

The second compacting collector pro- 
posed by Terashima and Goto assumes that 
all elements of a cell are marked, and a 
separate bit table is used for marking. The 
memory is subdivided into a number of 
equal segments, each as long as the number 
of bits in a word of the bit table. Thus the 
size of the free space within a segment can 
be efficiently computed by counting the 
number of inactive bits in a word of the bit 
table. Pointer readjustment is based on 
these bit counts. This method is suitable 
for hardware implementation. 

An interesting algorithm for readjust- 
ing pointers and compacting varisized ceils 

This  sortmg may be expensive ff the  memory is 
fragmented. 

has recently been proposed by Morris 
[MORR78, MORR79]. It performs the com- 
pacting in linear time and it requires only 
one additional bit per pointer. No break 
tables are used. The algorithm is based on 
the following property: Assume that  the 
contents of locations al . . . .  , a ,  point to 
location z. No information is lost if this tree 
structure with root z is transformed into a 
linear list by stringing together locations z, 
al, a2 . . . .  and placing the contents of z in 
an. Once the new position of z, say, z', is 
known, it is simple to reconstruct the orig- 
inal tree by making the a{s point to z'. The 
extra bit is used to process the tree struc- 
tures. 

Morris' algorithm is of the sliding type 
and requires two scans. The first only read- 
justs forward-pointing references. The sec- 
ond updates references pointing backward 
and performs the compaction. Although 
Morris proves the correctness of the algo- 
rithm, no data are available comparing its 
efficiency to that of other compacting al- 
gorithms. An algorithm similar to Morris' 
but requiring only forward scans and no 
additional bits has been proposed by Jon- 
kers [JosE79]. 

Marking, pointer readjustment, and com- 
pacting can be made simpler if the list 
processing "preserves address ordering." 
This means that  nodes are allocated se- 
quentially, from low to high address: when 
a cell is created, its descendants have ad- 
dresses which are aIways smaller than its 
own, and circular lists are therefore ex- 
cluded. Under these conditions, marking 
can be performed in a single scan through 
the entire memory without using a stack. 
This scan also finds the number of active 
cells, which the second scan then uses for 
readjusting the pointers. The third and fi- 
nal scan performs the compaction which is 
of the sliding type. Details are given in 
FISH74. 

Proposals have been made to try to post- 
pone, as much as possible, the compaction 
of varisized cells [KNUT73, Section 2.5; 
PANE68]. This may be accomplished by 
keeping several free lists, one for each cell 
size commonly used in a program. These 
are called homogeneous free lists, or simply 
H-lists. In addition, another free list, the 
M-list, contains cells of miscellaneous sizes. 
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The cells in the M-list are linked according 
to increasing addresses; the ordering in the 
H-lists is irrelevant. An unused cell is re- 
turned to one of the H-lists if possible. 
Otherwise, the cell is returned to its appro- 
priate position in the M-list. 

Requests for new cells are handled ac- 
cording to their size. If there is a nonempty 
H-list of the desired size, the new cell is 
taken from that list. If not, the cell is taken 
from the first M-list cell as large or larger 
than the desired size. If the M-list cell is 
larger than needed, it is split into two cells, 
with the first used to satisfy the request, 
and the second returned to one of the free 
lists. 

If a cell of the requested size cannot be 
found in the M-list, a semicompaction is 
attempted. It consists of returning all ele- 
ments of the H-lists to their appropriate 
positions in the M-list, and whenever two 
or more cells in the M-list are adjacent, 
combining them into a single larger cell. 
The test for adjacency is simple since the 
M-list is ordered by address. It is of course 
possible that even after semicompaction, a 
cell with the requested size remains un- 
available. Standard (full) compaction may 
then be the only way to avoid program 
termination. 

2.3 Moving Collectors 

Some of the moving algorithms mentioned 
in Section 1.3 may be adapted to handle 
varisized cells. A representative of this class 
of algorithms [FENI69, CHEN70, BAKE78b] 
is described in the next section since it is 
particularly suitable for operation in virtual 
memory. 

An algorithm for copying varisized cells 
is described in STAN80. It requires cells to 
have an additional field large enough to 
store an address. A first pass consists of 
linking all used cells via the additional field 
(see THOR72). A second pass copies each 
cell c, in the linkage and inserts the copy, 
c~, as the successor of c,. The successor of 
c~ becomes the cell c,+1. After this copying, 
the odd-numbered elements of the new 
linkage contain the original cells and the 
even-numbered ones contain the copies. Fi- 
nally, a third pass is used to readjust the 
pointers in each copied element and to sep- 

arate the copy from the original. The degree 
of linearization achieved by this algorithm 
depends on the manner by which the cells 
are linked during the first pass. (Fisher 
[FISH75] and Robson [RoBs77] also de- 
scribe algorithms for copying LISP cells 
which can be generalized for copying var- 
isized cells.} 

3. COLLECTING IN VIRTUAL MEMORY 

The ratio of the size of secondary memory 
to the size of main memory is an important 
factor in designing collectors which operate 
in virtual memory. When this ratio is small, 
some of the algorithms described in the 
previous sections may be used. The meth- 
ods described in this section, though, are 
suitable when the ratio is large. 

The use of secondary storage through 
paging [COHE67a] changes the design con- 
siderations for implementing garbage col- 
lection algorithms in important ways. First, 
it is no longer necessary to try to avoid 
using additional storage for a stack, since 
the size of the available virtual memory in 
current systems is considerable, l° Avoiding 
page faults and thrashing (caused by having 
structures whose cells are scattered in many 
pages), on the other hand, becomes a criti- 
cal factor in improving the efficiency of 
garbage collection. Compaction is for this 
latter reason important when collecting in 
this environment. Cohen and Trilling 
[COHE67b] show that  garbage collection 
with compaction brings about significant 
time gains in performance of LISP pro- 
grams. They also found that  a direct tran- 
scription of the classical garbage collection 
algorithms to a virtual memory environ- 
ment can lead to unbearably slow collection 
times. CLAR79 contains additional use- 
ful information about the performance of 
compacting collectors operating in virtual 
memory. 

Compaction of cells in virtual memory 
should not only eliminate unused holes but 
should also construct the compacted area 
so that  pointers refer, if possible, to neigh- 
boring cells. As mentioned in Section 1.3, 

~o It  is therefore doubtful that  the link-reversal tech- 
nique of Deutsch-Schorr -Wai te  should be used for 
marking 
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Minsky's algorithm [MINS63] satisfies this 
requirement. 

Measurements in actual LISP programs 
show that about 97 percent of list cells have 
just one reference to them [CLAR77, 
CLAR78b]. This property is important when 
designing garbage collection algorithms 
which operate in virtual memory. 

Bobrow and Murphy [BoBR67] show that 
the use of a selective cons (the LISP func- 
tion which requests a cell from the alloca- 
tor) can improve the efficiency of subse- 
quent processing and garbage collection. 
Basically, they advocate keeping one free- 
list per page. A new cell requested by a call 
of cons[x, y] is taken from the free area of 
a page according to the following strategy. 

(1) First, if possible, take from the page 
containing the cell pointed to by y; 
otherwise, 

(2) take from the page containing the cell 
pointed to by x; otherwise, 

(3) take from the page containing the most 
recently created cell; otherwise, 

(4) take from any page containing a fair 
number (say, 16) of free cells. 

The purpose is to minimize page faults in 
manipulating linked lists. Additional infor- 
mation on garbage collection using virtual 
memory can be found in BOBR67, BOBR68a, 
BOBR68b, ROCH71, and BAEC72. 

An important design consideration for 
implementing garbage collection algo- 
rithms in a paging environment is deciding 
when collection should be invoked. Since 
very large memories are currently available, 
it seems reasonable to collect whenever 
page faults render the program processing 
unbearably slow. 

A class of algorithms suitable for use 
in virtual memory is the one described 
by Baker [BAKE78b]. It is based on the 
copying collector proposed by Fenichel- 
Yochelson [FENI69] and by Cheney 
[CHEN70] which was briefly described in 
Section 1.3. What follows is a more detailed 
presentation of this type of algorithm. Al- 
though it is applicable in collecting vari- 
sized cells, this presentation applies only to 
LISP cells. 

The available memory is divided into two 
areas called semispaces. At a given time, 
only one is used by the allocator. During 

pointer procedure move(p) ,  
begin 

if newspace(p)  
then return p 
else 

begin  
if  old space(left[ p]) 

then left[p] ~-- copy(p); 
return left[p] 

end 
end move, 

pointer procedure copy(p),  
begin pointer q; 

[The following statement assigns to q the address 
of a new cell taken from a contiguous area in the 
new space; as explained m the text thrs action 
imphes incrementing the pointer B} 

q (-- new, 
left[q] (-- left[p]; 
rtght[q] (-- right[p],  
return q 

end copy, 

Figure 3 

garbage collection, the reachable lists are 
moved to the other space in a compacted 
form. The heart of the algorithm is the 
procedure move presented in Figure 3. The 
following description is based on Baker's 
paper [BAKE78b]. 

The procedure move moves a cell from 
the old semispace to the new one. The 
Boolean functions oldspace(p)  and new- 
space(p) are used to test whether the cell 
pointed to by p is in the corresponding 
semispace. The auxiliary function copy(p) 
copies the cell whose address is p into the 
new semispace. After the copying, the pro- 
cedure move stores the address of the new 
cell into the left field of the old cell. 

The collector calls the procedure 
move(p)  for all accessible cellsp in the old 
semispace. This task is similar to that of 
marking, but in this case the cells are 
moved instead of marked. A stack is 
avoided by using two pointers, B and S, 
both of which initially point to the bottom 
of the new semispace. B points to the next 
free cell in the new semispace and is thus 
incremented by copy. First the immediately 
accessible cells are moved to the new semi- 
space. The area between S and B now con- 
tains cells which have been moved into the 
new space but whose contents have not. 
This area is scanned (by incrementing S), 
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and the contents of the area's cells are 
updated by calls to the procedure move. 
This in turn may result in incrementing B. 
Collection ends when S meets B. 

In his dissertation, Bishop [BISH77] pro- 
posed an approach for designing collectors 
which operate in a very large virtual mem- 
ory (of the order of 1012 bits). Even using 
the real-time approaches discussed in Sec- 
tion 5, it would be impractical to garbage 
collect the entire memory at one stretch. 
Since large portions of memory may remain 
unchanged during program execution, 
Bishop suggests collecting only in parts 
of the address space rather than in the 
entire space. (A similar approach is used in 
Ross' AED system [Ross67].) The memory 
is divided into areas which can be collected 
independently, and a variant of the Feni- 
chel and Yochelson collector is used. This 
collector increases the locality of refer- 
ence, an important factor in a paging 
environment. 

Tracing and copying are performed only 
within a given area. The system keeps lists 
of all interarea references, both incoming 
and outgoing. Incoming references are mod- 
ified to point to the area's new copy; they 
define the immediately accessible cells from 
which collection starts. Before discarding 
the old copy of an area, its useless outgoing 
references are removed from the corre- 
sponding lists of incoming references. 

Bishop developed a method for maintain- 
ing the lists of interarea references and 
indicated that  this can be done automati- 
cally without incurring substantial run-time 
overhead. He advocates altering the virtual 
memory mechanism to cause traps when 
interarea references are stored into cells, 
and shows how virtual memory hardware 
can be constructed to perform this extra 
service efficiently. 

4. REFERENCE COUNTERS 

The use of reference counters (advocated 
by COLL60 and WEIZ63) has recently at- 
tracted renewed interest. An extra field, 
called refcount, is required for each cell to 
indicate the number of times the cell is 
referenced. This field has to be updated 
each time a pointer to the cell is created or 
destroyed. When refcount becomes equal 

to zero, the cell is inactive and can be 
collected. At least theoretically, refcount 
must be large enough to hold the number 
of cells in the memory and therefore must 
be as large as a pointer. The disadvantages 
of this approach are (1) the extra space 
needed for the counters, (2) the overhead 
required to update the counters, and (3) the 
inability to reclaim general cyclic struc- 
tures.ll 

However, reference counters can conven- 
iently be used to distribute garbage collec- 
tion time as an overhead to processing. 
Every time a cell becomes inactive, it is 
pushed into a stack. When the cell is 
needed, it is popped from the stack and 
then the refcounts of its descendants are 
decremented. An advantage of this arrange- 
ment is that  no new space is needed for the 
stack, since it can be simulated by stringing 
together the freed cells using the refcount 
fields. (Recall that  these fields have to be 
big enough to hold a pointer.) 

Deutsch [DEUT76], Knuth [KNUT73], 
and Weizenbaum [WEIz69] suggest com- 
bining the reference counter technique with 
classical garbage collection. The former 
would be utilized during most of the proc- 
essing time; the latter, being more expen- 
sive, would be performed as a last resort. 
This allows the use of small refcounts {thus 
reducing the storage requirements) because 
counters which reach their maximum value 
remain unmodified. Classical garbage col- 
lection, called when the free list is ex- 
hausted, starts by resetting all counters to 
zero. The counters of the accessible cells 
are restored during the marking phase of 
the collection by incrementing a cell's 
counter every time the cell is visited. The 
collection reclaims inactive circular list 
structures and cells with maximum ref- 
count which have become unreachable. A 
recent paper [WISE79] shows that  this res- 
toration can be done efficiently when using 
Morris's compaction algorithm (see Section 
2.2 and MORR78). 

The hybrid approach suggested by 
Deutsch and Bobrow [DEUT76] is particu- 

11 BoBRS0 and FRIE79 describe how reference counting 
can be used to manage certain classes of cychc struc- 
tures. 
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lady applicable to LISP. It is based on 
statistical evidence [CLAR77, CLAR78b] 
that in most LISP programs, most reference (b) 
counts (about 97 percent) are one. The 
authors propose three hash tables (see 
BOBR75): (C) 

(1) The multiple reference table (MRT). 
Its key is a cell address and the associ- 
ated value is the cell's reference count. 
Only cells whose reference counts are 
two or greater are listed in the MRT. 

(2) The zero count table (ZCT) containing 
the addresses of cells whose refcount is 
zero. These cells may be of two types: 
those which are referred to only by the 
variables of a program {still active), and 
those which are truly unreferenced and 
can be reclaimed. It follows from (1) 
and (2) that if a cell's address is not in 
the MRT or the ZCT, its reference 
count is one. 

(3) The variable reference table (VRT) 
contains the addresses of cells referred 
to by program variables {including the 
temporary variables in the recursion 
stack). 

Deutsch and Bobrow note that  there are 
three types of operations, called transac- 
tions, which may affect the accessibility of 
data. These are (1) allocation of a new cell, 
(2) creation of a pointer, and (3) destruction 
of a pointer. 

Instead of updating the hash tables as 
the transactions occur, Deutsch and Bob- 
row propose storing them in a sequential 
file. The transactions are examined at suit- 
able time intervals and then the tables are 
updated. This scheme has the advantage of 
minimizing paging overhead. 

When a new cell is allocated, its address 
should be placed in the ZCT. Since this is 
usually followed by the creation of a pointer 
to the newly allocated cell {which implies 
removal from the ZCT), the pair of trans- 
actions can be ignored. 

When a pointer is created, it is examined 
prior to its insertion into a cell or pointer 
variable. Three cases are possible: 

(a) The pointer refers to a cell in the MRT. 
The corresponding refcount value is 
then increased by one if it has not al- 

ready reached its maximum; otherwise, 
it is left unchanged. 
The pointer refers to a cell in the ZCT. 
The cell is then removed from that  
table, since its count becomes one. 
If tests (a) and (b) fail, the pointer 
refers to a cell having a refcount of one. 
It must then be placed in the MRT 
with a refcount of two. 

When a pointer is destroyed {removed 
from a cell), two cases are possible: 

(a) The pointer refers to a cell in the MRT. 
The cell's refcount value is decreased 
by one, except when it has reached its 
maximum, in which case it is left un- 
changed. If the new value of refcount is 
one, the cell is removed from the MRT. 

(b) The pointer does not refer to a cell in 
the MRT. Its count is one by default, 
and should be reduced to zero. The cell 
is therefore entered in the ZCT. 

The VRT is used when incorporating new 
cells into the free list. Since the stack is 
constantly being updated, the VRT is only 
computed periodically. A cell is reclaimed 
when its address is listed in the ZCT but 
not in the VRT. The ZCT is updated by 
eliminating the entries of reclaimed cells 
which are not pointed to by program vari- 
ables. 

Deutsch and Bobrow [DEUT76] designed 
their hybrid collector for operating in a 
paging environment, so that  space availa- 
bility is not at stake. For the classical col- 
lection they~advocate using a variant of the 
two-semispace collector of Fenichel and 
Yochelson [FEsI69]. The authors also point 
out that  an auxiliary processor could speed 
up the collection. Its task would be to scan 
the ZCT and VRT tables to determine 
which cells could be incorporated into the 
free list. 

Wise and Friedman [WISE77] propose a 
variant of the hybrid algorithm of Deutsch 
and Bobrow which is useful when only fast 
memory is available. Only one bit is as- 
signed to the field refcount, and when that  
bit is one, the cell is referenced more than 
once. This is analogous to storing the cell 
in the MRT of the Deutsch-Bobrow algo- 
rithm. 
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Nodes whose reference counts are greater 
than two can be reclaimed only by a class- 
ical collection with a marking phase. An 
interesting feature of the one-bit re f coun t  
is that this bit can be re-used as a tag bit 
when using the link-reversal marking tech- 
nique of Deutsch, Schorr, and Waite (see 
Section 1). 

In order to delay the classical collection 
as much as possible, Wise and Friedman 
propose using tables to temporarily list cells 
whose re f coun t s  are still one but are likely 
to be changed to two or zero. This situation 
occurs when performing assignments of the 
kind r ~-  f (r) ,  where r is a pointer. Assign- 
ments of this type are quite common in 
LISP, for example, r (--- cons(a,  r) and r (-- 
r ight (r ) .  The first often increases to two 
the re f coun t  of the cell originally referred 
to by r. The second often reduces the count 
to zero. Unfortunately, no experimental 
data are available on the efficiency of 
the hybrid techniques described in this 
section. 

Barth [BART77] considers reference 
counters in relation to shifting garbage col- 
lection overhead to compile time. He shows 
that savings in collection time are some- 
times possible by carefully studying, at 
compile time, the program's assignments. 
For example, in the case of r ¢-  r i g h t ( r ) ,  
the cell originally pointed to by r may be 
incorporated into the free list if it is known 
that it will not be referenced by other 
pointers. 

5. PARALLEL AND REAL-TIME 
COLLECTIONS 

Two proposals have been made to circum- 
vent the onerous garbage collection inter- 
ruptions. The first is to allow garbage col- 
lection to proceed simultaneously with pro- 
gram execution by using two parallel proc- 
essors: one is responsible for collection, the 
other for program execution. When collec- 
tion actually takes place, it is bound by a 
known, tolerable, maximum time. 

Minsky is credited by Knuth with initi- 
ating the development of algorithms for 
time-sharing garbage collection and list- 
processing tasks (see KNUT73, pp. 422, 594). 
If tWO processors are available, these tasks 
can be performed in parallel, with one of 

these processors, the collector, responsible 
for actual garbage collection, and the other 
performing the list processing and provid- 
ing the storage requested by a user's pro- 
gram. Dijkstra [DIJK76b] calls this latter 
processor the muta to r .  The collector per- 
forms the basic tasks of marking and incor- 
porating unmarked cells to a free list (see 
Section 1), during which time the mutator 
is active. The mutator may not, therefore, 
request cells until the collector makes them 
available. 

The marking phase of Dijkstra's algo- 
rithm is more complex than the classical 
serial marking explained in Section 1. Two 
mark bits are required (instead of one) be- 
cause a cell may be in one of three states. 
These states are represented by colors: 
w h i t e  (unmarked), b lack  (marked), and 
g r a y  (indicating that  the cell has been re- 
quested and used by a program). Intui- 
tively, gray nodes are good candidates for 
becoming black. The mutator helps the 
marking phase of the collector by turning 
a white cell gray when the cell is requested 
and used by a program. The mutator is also 
responsible for triggering an interruption 
whenever the free list contains only one 
cell. Mutator processing resumes when the 
collector returns at least one more cell to 
the free list. 

One of the collector's tasks is to mark the 
used cells, the cells in the free list, and any 
gray cells. This is done by initially graying 
the first used cell and the first free-list cell. 
Tracing proceeds by graying any ceils 
linked to a gray cell c, and then blackening 
c. When the tracing ends, the white cells 
are incorporated to the free list and the 
black cells are whitened. As a result, inac- 
tive gray cells are first blackened by the 
collector and then whitened. During the 
n e x t  cycle of the collector these cells are 
incorporated into the free list. 

France [FRAN78], Gries [GRIE77], and 
Muller [MULL76] provide detailed descrip- 
tions of Dijkstra's algorithm, but their main 
concern is to prove correctness. An exten- 
sion of Dijkstra's algorithm with multiple 
mutators is considered in LAMP76. 

Steele [STEE75] has independently de- 
veloped a method for parallel garbage col- 
lection based on the Minsky-Knuth sugges- 
tion. He was one of the first to propose 
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actual algorithms for collecting in parallel. 
Steel's collector makes exclusive use of 
semaphores and requires two bits per cell, 
which are used not only for marking but 
also for compacting and for readjusting 
pointers. Compaction is done using the two- 
pointer technique described in Section 1.2. 

Comparing Dijkstra's to Steele's algo- 
rithm is difficult because these authors had 
different objectives. The former wanted to 
assure the correctness of his algorithm (re- 
gardless of its efficiency), whereas the latter 
had in mind an implementation using spe- 
cial hardware, possibly microcoded. 

In a recent paper, Kung and Song 
[KUNG77] propose a variant of Dijkstra's 
method which uses four colors for marking 
and which does not need to trace the free 
list. The authors prove the correctness of 
the algorithm and show that it is more 
efficient than Dijkstra's. To this author's 
knowledge, none of the parallel garbage 
collection algorithms has been imple- 
mented, nor are any detailed results from 
simulation yet available. 12 

An alternative to using two processors is 
to have one processor time-share the duties 
of the mutator and the collector. Wadler 
[WADL76] shows (analytically) that algo- 
rithms for performing garbage collection 
with time-sharing demand a greater per- 
centage of the processing time than does 
classical sequential garbage collection. This 
is because the collection effort must pro- 
ceed even when there is no demand for it. 

A second approach for avoiding substan- 
tial program interruptions due to garbage 
collection has been proposed by Baker 
[BAKE78a, BAKE78b]. His method is an in- 
teresting modification of the collector de- 
scribed in Section 3. Baker's modification 
is such that each time a cell is requested 
(i.e., a cons  is executed) a fixed number of 
cells, k, are moved from one semispace to 
the other. This implies that the two semi- 
spaces are simultaneously active. In a pag- 
ing environment, the extra memory re- 
quired is of less significance than the pos- 
sible increase in the size of the average 
working set. Since the moved lists are com- 
pacted, page faults are likely to be mini- 
mized. 

~2 A simulation is brmfly reported m KUNG77 

The moving of k cells during a cons  cor- 
responds to the tracing of that  many cells 
in classical garbage collection. By distrib- 
uting some of the garbage collection tasks 
during list processing, Baker's method pro- 
vides a guarantee that actual garbage col- 
lection cannot last more than a fixed {tol- 
erable) amount of time: the time to flip the 
semispaces and to readjust a fixed number 
of pointers declared in the user's program. 
Thus his algorithm may be used in real- 
time applications. 

A characteristic of Baker's real-time al- 
gorithm is that the size of the semispaces 
may have to be increased, depending on the 
value of k and the type of list processing 
done by the program. In other words, the 
choice of k expresses the trade-off between 
the time to execute a cons  and the total 
storage required. For example, for k = ~, a 
cell is moved every third time a cons  is 
called. This would speed up the computa- 
tion but increase the amount of storage 
required. 

In his paper Baker offers an informal 
proof of his algorithm's correctness and 
shows how it can be modified to handle 
varisized cells and arrays of pointers. He 
also presents analyses of storage require- 
ments of the algorithm and how they com- 
pare with those of other garbage collection 
methods. A LISP machine built at M.I.T. 
used Baker's approach [BAWD77]; 13 its 
memory is subdivided into areas, and a list 
of outgoing references is kept for each. 
Those areas which do not change during 
program execution are not copied: tracing 
starts from their corresponding list of out- 
going references. This approach, which has 
been further developed by Bishop (see Sec- 
tion 3 and BISH77), is a possible alternative 
for real-time collection. Another alternative 
is the use of an auxiliary processor as sug- 
gested by Deutsch and Bobrow [DEUT76] 
in their incremental garbage collection 
technique mentioned in the previous sec- 
tion. 

~ Thin machine is a dedicated processor now m exper- 
imental operation The builders report  that, immedi- 
ately following a semmpace flip, the system perform- 
ance may be degraded. Thin m due to the copying of 
objects from the old semmpace into the new one. A 
variant of Baker 's  apprgach [LIEB80] m now bemg 
implemented m the M I T  LISP machine 
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6. ANALYSES 

Execution of a list-processing program typ- 
ically involves many  garbage collections. 
Le t  n be the average number  of cells which 
are marked in one classical collection of 
single-sized cells. Le t  m be the total  number  
of cells in the memory.  Therefore ,  on the 
average, m - n cells are recovered during 
one garbage collection. Collection t ime can 
be expressed by 

collection t ime = an + fl(m - n), 

where a is the average t ime taken to mark 
(and subsequently unmark)  a used cell and 
fl is the average t ime taken to collect a free 
cell. Each  inaccessible cell is inspected only 
once. Since the t ime for marking is much  
greater  than  the t ime for reclaiming inac- 
cessible cells, it is not  unreasonable to as- 
sume tha t  fl is considerably smaller than  
a. If compact ion is used, the pointers of n 
cells may  have to be readjusted,  thereby  
increasing even more the ratio of the coef- 
ficient of n and m - n. Detai led est imates 
for a and fl have appeared in KNUT73, p. 
592, and in BAER77. 

The  cost of collection per collected word 
is 

collection cost per collected word 

_ _  ap + f l ,  1 - - p  

where p is the ratio n /m.  If p = ¼, the 
memory  is one-fourth full, and the cost is 
~a + ft. A larger value of p, for example, a, 
yields a larger cost (3a + fl). This  type of 
analysis, presented in KNUT73, shows how 
inefficient garbage collection can be when 
the memory  becomes full. 

Two new quanti t ies N and T are now 
introduced. N stands for the total  number  
of cells collected in the entire run of the 
program. T is the total  t ime spent  in useful 
program execution, excluding garbage col- 
lection. The n  the total  t ime for program 
execution is 

total  program execution t ime 

= N  1 - 0  

Let  ~, be the ratio T / N ,  tha t  is, the  useful 
computing t ime per word collected. Hoare  

[HOAR74] posits tha t  the total  cost of a 
program is proport ional  to the product of 
space and time: 

cost Nm 1 0 

This  function reaches a min imum with re- 
spect to m when 

1 
where r = ~ /B 

a 

P - l + r  _ _  -+y 

Hoare 's  paper  presents  curves indicating 
how the cost varies with 1/p for various 
values of r. He  points out  tha t  when a = 1 
and fl is small compared to a, the extreme 
values of r are 1, and ¼. For  these values of 
r, the cost curves are ra ther  shallow around 
the optimum. Hoare  suggests tha t  a simple 
s trategy for minimizing costs is to ensure 
that,  after  each collection, p lies between 
0.6 and 0.8. If  this does not  occur, he rec- 
ommends  expanding or releasing the avail- 
able memory  so tha t  p becomes approxi- 
mately  equal to 0.7. Hoare ' s  analysis also 
indicates tha t  the  use of reference counters  
is justified only for programs whose value 
of r is close to one (i.e., y is small). 

Campbell  [CAMP74] argues tha t  Hoare 's  
hypothesis  of costs proport ional  to the 
product  of t ime and space may  be unreal- 
istic. Campbell  claims that ,  in certain large 
symbolic computations,  time, ra ther  than  
the product  of space and time, should be 
minimized, since the amount  of space 
needed to solve a problem is not  subject  to 
reduction. In these cases, the optimal strat- 
egy is to maximize the ratio of T to garbage 
collection time, tha t  is, 

Y 
a p / ( 1  - p) + / ~  

The  above function has no extremum; ac- 
cording to Campbell,  the recommended  
strategy is the "counsel  of despair": choose 
m, the number  of available cells, as large as 
possible. 

Campbell  also proposes a ref inement  of 
Hoare 's  analysis, tha t  is, the  one which 
minimizes the product  of space and time. 
He notes tha t  after  a collection, a certain 
percentage, f, of  the free list remaining from 
the previous collection is still free. Another  
percentage, g, of the rest  of the storage 
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corresponds to allocated but inactive cells. 
Let F~ be the size of the free list after the 
j t h  collection. Then 

and 

Fj = TFj-1 + g ( m  - F~-I) 

= g m  + hFj-1 

F 0 = m .  

Campbell uses the above difference equa- 
tion in connection with Eq. (1) to obtain 
optimal strategies similar to Hoare's but 
involving the quantities f and g. He claims 
that when f - -  0.4 and h = 0.2, the optimal 
costs correspond to values of p below 0.6. 
Campbell then suggests that the best rule 
of thumb is to consider p = ½--to insure 
that, after each collection, half of the total 
number of cells be available in the free list. 

In the final part of his paper, Campbell 
proposes yet another variant of Hoare's 
analysis. This variant is applicable when a 
user knows the approximate total number 
of cells, W, the program will request during 
its execution. Campbell points out that 
there are several symbolic computations for 
which W can be estimated, and this may be 
used to develop optimal strategies for se- 
lecting p. 

Arnborg's analytical study of optimal 
strategies [ARNB74] yields results similar to 
Hoare's. Arnborg considers the time to col- 
lect to be a linear function of n only, n being 
the number of marked (or active) cells. Like 
Campbell, he establishes difference equa- 
tions which express storage availability be- 
tween successive collections. Arnborg, how- 
ever, uses smooth functions to approximate 
the difference equations. His results are 
obtained by minimizing an integral which 
expresses the total costs of collecting and 
actual computing. Arnborg's strategy, like 
Hoare's, is to determine the best size for 
storage after each collection. The strategy 
has been implemented in a SIMULA com- 
piler running on a PDP-10. He claims that  
his strategy gave consistently better results 
than ad hoc policies designed for specific 
programs. 

In a recent paper, Larson [LARS77] pro- 
poses still another method for minimizing 
garbage collection time by suitably choos- 

ing the size m of storage available. Collec- 
tion time is expressed by 

collection time = a' n + fl' m,  

where a' and fl' are quite similar to a and 
b as defined in the beginning of this section: 
a' is the time to mark, compact, readjust 
pointers, and unmark an active cell; fl' is 
the time to inspect each cell. As indica- 
ted previously, a' is substantially greater 
than B'. 

Larson measures the computation effort 
by the amount of data which are produced 
by a program. In LISP, for example, this 
corresponds to the number of cons. Larson 
proposes using a smooth function n ( x )  ex- 
pressing the number of active cells at the 
point in the computation at which x cells 
have been produced. 

The total garbage collection time is ex- 
pressed by an integral of a function of n(x), 
a', fl', and m. When a' and fl' are independ- 
ent of m, the minimization of the integral 
leads to a strategy identical to Campbell's: 
m should be as large as possible. The results 
are somewhat different when a' and fl' vary 
with m. This occurs when virtual memory 
is used, since the values of a' and fl' depend 
on the relative amounts of fast and slow 
memory available. Larson's strategy is sum- 
marized as follows: if the number of active 
cells n approaches the number of cells in 
the fast memory (m0), minimization occurs 
when m = too, and it is therefore preferable 
to use fast storage only. 

The cost of garbage collection when using 
very large virtual memories has been stud- 
ied by Bishop [BmH77]. He argues that  
there are two components of the cost: the 
time to perform the collection, and the 
overhead caused by the increase in page 
faults when garbage is left uncollected. As 
seen previously, the first component in- 
creases linearly with the number of active 
cells. Bishop claims that the second com- 
ponent increases more than linearly with 
the amount of existing garbage. He ex- 
presses the second component in the form 
cx a, where x is the number of uncollected 
cells and c and a are parameters. Another 
important variable is r, the rate at which 
garbage is generated by a program. Bishop 
assumes that  garbage collection is per- 
formed periodically, and he minimizes the 
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cost of collection with respect to the collec- 
tion frequency. The optimal frequency is 
expressed as a function of the parameters 
a, c, r and the number of active cells n. 
Bishop's main result is that when a ~ 1 the 
cost of garbage collection (per cell col- 
lected) is proportional to n but inversely 
proportional to r, the rate of garbage gen- 
eration. He then shows that the cost of 
collection can be reduced by segregating 
cells with different rates of garbage gener- 
ation in separate areas of the memory. 

Wadler [WADL76] presents two analyses 
of algorithms for real-time garbage collec- 
tion. One applies to the Dijkstra-Steele 
method, which uses two parallel processors: 
the mutator and the collector. A c-time is 
defined by Wadler as the beginning of the 
collector's cycle. He also defines a f loat ing 
cell as a cell which is marked by the mu- 
tator or collector at a c-ttme but is released 
before the beginning of the next cycle. 
Floating cells are momentarily useless since 
they are neither accessible by the collector 
nor available to the mutator. An extremely 
unfavorable situation for parallel garbage 
collection occurs when the only cells that 
are returned to the free list are the ones 
which were floating at a c-time. Even more 
unfortunately, Wadler's analytical study of 
the algorithm's average performance indi- 
cates that  this unfavorable situation hap- 
pens quite often. 

Wadler then proceeds to define power  
dra in  as the ratio of the collector time to 
the mutator time. Using this definition, it 
is easy to show that the ratio of power 
drains between parallel and classical gar- 
bage collection can even be infinite: Con- 
sider, for example, the case where no cells 
are used or released. In classical garbage 
collection, the power drain is zero since the 
collector is never called. In parallel garbage 
collection, the power drain is one since the 
collector is kept busy even if it cannot re- 
trieve any cells. 

Wadler shows that  when the two proc- 
essors operate at maximum capacity, TM the 
ratio of power drains is 2. This means that 
parallel garbage collection requires at least 
twice as much processing power as sequen- 
tial garbage collection. He claims that with 

14 Th in  m a x i m u m  c a p a o t y  is d e t e r m i n e d  a n a | y t m a l l y .  

the falling cost of processors, this drawback 
is amply offset by the advantage of avoiding 
garbage collection interruptions. 

Wadler also analyzes the algorithm in 
which the tasks of the mutator and the 
collector are time-shared by a single proc- 
essor. He finds that in this case also, the 
power drain is 2 if the collector is not wast- 
ing time attempting to do unnecessary gar- 
bage collection. 

7. REMARKS ON LANGUAGE 
IMPLEMENTATION 

Recursion is frequently utilized in programs 
which manipulate linked-list structures. A 
stack is indispensable for executing these 
programs. Therefore, separate regions for 
the allocated cells and for the stack must 
coexist in the memory. It is true that stacks 
can be "simulated" by linked lists, so that 
the memory stores only list structures. 
However, this is both space- and time-con- 
suming, because an extra field is required 
to link together the data in the stack and 
more complex operations are needed for 
pushing and popping. It is therefore simpler 
to implement the stack in contiguous posi- 
tions of the memory. 

It has become current practice to divide 
the available memory into two areas which 
are allowed to grow from opposite ends. 
One of these is reserved for a stack using 
contiguous locations. The other, called the 
heap, is available to the allocator for pro- 
viding new cells, also from contiguous lo- 
cations. With this arrangement, a simple 
test can be used to trigger garbage collec- 
tion. When the pointer to the next free 
stack position meets the pointer to the next 
available position in the heap, collection 
with compaction is invoked to retrieve 
space for new cells or for stacking. There- 
fore, the functions p u s h  and new (for re- 
questing new cells) may trigger garbage 
collection. 

In the case of LISP programs, the func- 
tion new corresponds to a cons, and p u s h  is 
used internally by the compiler or inter- 
preter. Collection can be started either by 
a cons or by a stack overflow caused by 
situations such as great recursion depth or 
reading long atoms (see BERK64 and 
COHE72). 
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Since the stack is used in implementing 
recursion, it usually contains pointers to 
active, useful cells. The marking algorithms 
of Section 1 are used to mark not only the 
structures referred to by the pointer vari- 
ables of a program but also those structures 
which are referred to by pointers on the 
stack. Therefore, means must be provided 
to recognize whether a stacked quantity is 
a pointer (tag bits may be used for this 
purpose). 

LISP processors sometimes allow a user 
to invoke the collector. This is useful when 
he has an idea of the most propitious time 
for triggering the collection. Also, the func- 
tion return may be made available to the 
user. When a free list is used, the returned 
cells can be immediately incorporated into 
the list. However, when compaction is re- 
quired (e.g., with the heap and stack ar- 
rangement), the returned cells may not be 
available to the allocator until after the 
next collection. Another problem with the 
function return is that  a cell may be explic- 
itly returned even though there is still a 
pointer to it. {This is sometimes called the 
dangling reference problem.) Thus care 
must be taken not to reuse the cell until 
there are no pointers to it. 

Processors for languages like PL/ I  and 
PASCAL allow a user to call the function 
new and provide messages when storage is 
exhausted. The use of the functions return 
or collect is implementation dependent. 
This author is unaware of PASCAL run- 
time systems which perform fully auto- 
matic garbage collection. It is the user's 
responsibility to keep free lists of unused 
cells and to check whether a new cell may 
be obtained from a free list or must be 
requested from the allocator. The tech- 
niques for doing this kind of storage man- 
agement are beyond the scope of this paper. 

Arnborg [ARNB72] described the imple- 
mentation of a SIMULA compiler designed 
to operate in a virtual memory environ- 
ment. SIMULA is a language with block 
structure: variables declared in a block or 
procedure exist only when the block or 
procedure is activated. Although it would 
seem at first sight that one could collect the 
structures referred to by pointer variables 
upon exiting from the block in which they 
are declared, this is not the case. SIMULA 

also allows variables of such types as 
classes, arrays, and texts which may have 
longer life spans than their originating 
blocks; if these variables share linked struc- 
tures with local block variables, collection 
cannot be done when exiting from a block. 

Since Arnborg's proposed implementa- 
tion operated in a paging environment, one 
of the objectives of the collection is to re- 
duce the number of page faults. To perform 
the collection, Arnborg uses a variant of the 
method proposed by Fenichel and Yochel- 
son [FEN169] described in Section 3. The 
variant can handle varisized cells rather 
than only simple LISP cells. 

A SNOBOL implementation proposed by 
Hanson [HANs77] uses a variation of the 
garbage collection techniques for collecting 
varisized cells described in Section 2. It is 
assumed that additional space for the heap 
and for the stack can be requested from the 
operating system, although such requests 
should be kept to a minimum. An effort is 
made to reduce collection time by avoiding 
marking cells which are known to be used 
throughout the program's execution. 15 For 
this purpose the heap is subdivided into 
two areas of consecutive locations: heap 1 
and heap 2. The first contains information 
which is constantly active and never needs 
to be marked; the second may contain in- 
active cells which can be collected. New 
cells may be requested from either area. 

Collection is triggered when one of the 
heaps runs out of space. The phases of 
marking and compacting are applied only 
to the information in heap 2, although trac- 
ing and pointer readjustment in heap 1 may 
be necessary. A fourth phase, "moving heap 
2," may be necessary to make room for 
heap 1 when an overflow of the latter trig- 
gered the collection. The allocator of the 
operating system is called when no cells can 
be collected from heap 2.16 

Certain list processors, including SNO- 
BOL and LISP, need to keep symbol tables 
which are updated at execution time when 
new atoms are read. These symbol tables 

~5 Certain implementations of LISP's list of atoms may 
take advantage of thin feature. 
is Note that Bishop's technique of keeping hsts of 
mterarea hnks (see BIsH77) could be used to admin- 
ister these heaps. 
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often utilize hashing techniques and keep 
linear linked lists of identifiers (atoms) hav- 
ing the same hash value. The linear lists 
are stored in the heap, and means must be 
provided to reclaim inactive list elements. 
This reclamation may be crucial in appli- 
cations which use a large number of atoms. 
A scheme for collecting these atoms is pro- 
posed in FRIE76. A related problem is that 
of collecting LISP atoms whose property 
lists are shared by other atoms. A method 
for collecting nonshared atoms and their 
property lists is described in MooN74. 

Next to LISP, ALGOL 68 is the language 
for whose garbage collection implementa- 
tion the most literature exists. This is not 
surprising, since ALGOL 68 allows for a 
variety of complex situations because of the 
interaction of such features as block struc- 
ture, references that can point to different 
types of cells, linked structures that may 
reside in the stack or in the heap, and 
sharing of arrays (slices). Both the imple- 
mentor and the user of the language can 
take advantage of some of these features to 
minimize collection time. 

In ALGOL 68, each element of a cell 
must be marked since structures may share 
parts of cells. (A separate bit table may be 
used for this purpose.) Wodon [WODO69] 
suggests two possible approaches for mark- 
ing varisized cells in ALGOL 68. One is the 
"interpretive" approach represented by the 
program of Figure 2. The parameter p is 
specified by two components: the pointer, 
and the type of the cell being pointed to. 
This latter information could be stored in 
the cell itself, but it is more economical to 
precompute, at compile time, templates 
which list the characteristics of each cell 
type: size and a bit pattern specifying which 
elements of the cell are pointers. Determin- 
ing these quantities is more complex when 
a pointer can refer to cells of different types. 
(Templates may also contain pointers to 
other templates which describe the kind of 
cell referenced by each pointer.) This mark- 
ing approach is called interpretive because 
the information in the templates may have 
to be processed several times during exe- 
cution. 

The second approach suggested by Wo- 
don is to compile, for each program, a more 
efficient marking routine specific for tracing 

the cells used in that program. Detailed 
descriptions (in ALGOL 68) of the interpre- 
tive and compiling approaches appear in 
BRAN71 and WODO71. It is believed that 
the compiling approach is more efficient 
than the interpretive one but requires ad- 
ditional storage for the local marking rou- 
tines. The given references also propose 
using a compacting procedure requiring an 
external break table for readjusting 
pointers. 

The collectors for ALGOL 68 proposed 
by Marshall [MARS71] and by Goyer 
[GoYE71] are also based on the classical 
techniques described in Section 2. The first 
uses the link-reversal technique for mark- 
ing and Haddon and Waite's method 
[HADD67] for compaction and pointer read- 
justment. The second uses a stack for mark- 
ing and a simplified version of Haddon and 
Waite's compacting procedure which re- 
quires an external break table. Note that 
the space used by the stack can be reused 
later by the break table. This additional 
space is needed only during garbage collec- 
tion and can be returned to the operating 
system thereafter. 

Baecker [BAEc70] makes recommenda- 
tions on how to implement the ALGOL 68 
heap in a computer with multilevel storage 
and which uses segmentation (i.e., ad- 
dresses are given by an integer, referring to 
a segment, and an offset which specifies the 
location of a word within the segment). He 
also proposes introducing language con- 
structs to allow a user to define different 
heap areas and to request that cells be 
allocated in specific areas of his choice 
[BAEC75]. 

8. FINAL REMARKS 

Tables 1-5 summarize the characteristics 
of the main algorithms described in the 
corresponding Sections 1-5. The number of 
references presented in the bibliography 
bears witness to the importance of and in- 
terest in garbage collection. In spite of this 
activity, many facets of garbage collection 
remain to be investigated. In particular, no 
comparison has been made of the relative 
efficiencies of many of the algorithms de- 
scribed in Sections 1-5. 

New developments in hardware are likely 
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Table 3. Collecting m V,rtual Memory 

• 363 

Mare refer- 
Algorithm ences Auxiliary storage Comments Related work 

Baker BAKE78 None Uses two semlspaces FENI69, CHEN70 
Bishop BIsH77 Space for keeping mterarea Designed for use m v e r y  large 

lists virtual memories 

Table 4. Reference Counters (m is the number of available cells) 

Algo- Main references Storage needed Comments Related work 
n thm 

Classical COLL60, WEIZ63 An extra field (of size m) Cannot handle general KNUT73, WEIZ69 
per cell circular hsts 

Hybrid KNUT73, DEUT76 An extra field (of size m' Combines reference count- WINE77 
<< m) per cell Auxiliary ers with classical com- 
Tables pactlng garbage collection 

Table 5. Parallel and Real-Time Collechon 

Main ref- 
Algorithm erences Storage needed Comments Related work 

Parallel (Dijkstra) DIJK76b No stack and two bits Main objective is to prove MULL76, GRIE77, 
per cell correctness; uses a free FRAN78, KUNC77 

list 
Parallel (Steele) S T E E 7 5  Stack, two bits per cell, Designed to be microcoded, WADL76, DIaK76b 

and several sema- does compacting as well 
phores 

Baker BAKE78 Two semlspaces whose Moving of accessible cells is MINS63, 17ENI69, 
sizes vary at execu- done when a new cell Is CHEN70 
tlon time requested 

to play an important role in speeding up 
collection. It has already been suggested 
that new machines should contain extra 
bits per word to be used for marking, tag- 
ging, or counting references. Machines with 
special hardware for segmentation and list 
processing have recently been constructed 
[BAWD77] and are now in experimental op- 
eration. 

There has been an undeniable trend to- 
ward designing and implementing collec- 
tors for varisized cells stored in large virtual 
memories. No explicit guidance based on 
experimental evidence is yet available on 
how to do this collection efficiently or in 
real time. Two promising directions, dis- 
cussed in Section 5, involve either using 
parallel processors or distributing some of 
the garbage collection tasks during the ac- 
tual processing. It is hoped that this will 
allow the collection to be performed within 
a known, tolerable, maximum time. 

Collection in very large virtual memories 
is another subject which will become in- 
creasingly important. The suggested ap- 
proaches for these collections deserve fur- 
ther study [BIsH77]. 

If these efforts in the direction of achiev- 
ing efficient garbage collection succeed, 
they are bound to have an impact on the 
design of future programming languages. 
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