
Garbage Collection of Linked Data Structures

JACQUES COHEN

Department of Physws, Brande~s Unwers~ty, Waltham, Massachusetts 02254

A concise and unified view of the numerous existing algorithms for performing garbage
collection of linked data structures is presented. The emphasm is on garbage collection
proper, rather than on storage allocatlon. First, the classical garbage collection algorithms
are reviewed, and their marking and collecting phases, with and without compacting, are
discussed. Algorithms descnbing these phases are classified according to the type of cells
to be collected: those for collecting single-sized cells are simpler than those for varimzed
cells. Recently proposed algorithms are presented and compared with the classical ones.
Special topics in garbage collection are also covered: the use of secondary and virtual
storage, the use of reference counters, parallel and real-time collections, analyses of
garbage collection algorithms, and language features whlch influence the design of
collectors. The bibhography, wlth topical annotations, contains over 100 references.

Key Words and Phrases: garbage collection, list processing, marking, compactmn,
varisized cells, reference counters, secondary storage, parallel and real-time collection,
analyses of algorithms, language implementation

CR Categories: 1.3, 4.10, 4.20, 4.34, 4.40

INTRODUCTION

Garbage collection--the process of reclaim-
ing unused storage space--can be done by
various algorithms. Since the late fifties
and early sixties, when the first list-process-
ing languages were implemented, many
such algorithms have been proposed and
studied.

Interest in garbage collection has in-
creased considerably during the past dec-
ade with the introduction of records and
pointers as data structures in new program-
ming languages. The efficiency of programs
written in these languages depends directly
on the availability of fast methods for gar-
bage collection. {Experience with large
LISP programs indicates that substantial
execution time--10 to 30 percentwis spent
in garbage collection [STEE75, WADL76].)

Garbage collection has also become an
important topic in data structures courses.
Of the several books which have devoted
entire sections to garbage collection
[FOsT68, KNUT73, BERZ75, ELSO75,
HoRo75, PFAL77, GOTL78, AUGR79,
STAN80], Knuth's book, Section 2.3.5, is the
most comprehensive. It contains detailed
descriptions and analyses of some of the
garbage collection algorithms that ap-
peared prior to 1968, and, despite its age, it
remains a standard reference for algorithms
proposed before the seventies. Numerous
papers have appeared since 1973.1 How-
ever, no presentation has summarized and

~The book by Standish [STANS0], which appeared
since this paper was submitted for pubhcation, is a
valuable reference on more recent work done in gar-
bage collection.

Permmsion to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific permission.
© 1981 ACM 0010-4892/81/0900-0341 $00.75

Computing Surveys, Vol. 13, No. 3, September 19~1

342 • Jacques Cohen

CONTENTS

INTRODUCTION
1 COLLECTING SINGLE-SIZED CELLS

1 1 Marking
1 2 Reclaiming Marked Cells
1 3 Moving Collectors

2 COLLECTING VARISIZED CELLS
2 1 Marking
2 2 Reclmmmg Marked Cells
2 3 Mowng Collectors

3 COLLECTING IN VIRTUAL MEMORY
4 REFERENCE COUNTERS
5 PARALLEL AND REAL-TIME

COLLECTIONS
6 ANALYSES
7 REMARKS ON LANGUAGE IMPLEMENTA-

TION
8 FINAL REMARKS
ACKNOWLEDGMENTS
REFERENCES

v

classified the work done in the area. The
purpose of this paper is to provide such a
presentation. More specifically, the objec-
tives of this paper are

(1) to review the classical algorithms for
collecting linked data structures;

(2) to provide a unified description of re-
cent garbage collection algorithms and
to explain how they relate to the class-
ical ones;

(3) to survey the related topics of real-time
garbage collection, analyses of garbage
collection algorithms, and language fea-
tures which influence implementation;

(4) to present a comprehensive bibliog-
raphy on the subject.

Although storage allocation and garbage
collection are interrelated, the emphasis of
this paper is on garbage collection proper,
that is, on reclaiming storage; buddy sys-
tems [KNUT73] and related work are not
covered.

It is assumed that the reader is familiar
with at least one list-processing language
and has some understanding of its imple-
mentations. (This level of proficiency may
be acquired by studying the initial chapters
of Weissman's book [WEre67] and the in-
terpreter described in CO~E72.) This paper

C o m p u t i n g Surveys , Vol 13, N o 3, S e p t e m b e r 1981

should be useful to readers interested in
data structures and their application in
compiler construction, language design, and
database management. 2

A cell is a number (>_1) of contiguous
computer words which can be made avail-
able to a user. Cells are requested by the
user's program from a supervisory program
known as the storage allocator. Since the
number of available cells is finite, a time
may come when no cells remain available.
When this occurs, experience indicates that
some of the previously requested cells will
be unused and can therefore be returned to
the allocator. A cell becomes unused, or
"garbage," when it can no longer be ac-
cessed through the pointer fields of any
reachable cell. It is the garbage collector's
task to reclaim this unused storage space.

Garbage collection is usually triggered
automatically either when the allocator
runs out of space or shortly before. Higher
level languages often contain primitives for
requesting groups of words from the allo-
cator. Garbage collection may be triggered
when one of these primitives is executed.
For example, in LISP, the function cons
also calls the garbage collector.

A most vexing aspect of garbage collec-
tion is that program execution comes to a
halt while the collector attempts to reclaim
storage space. On modem fast computers,
the program interruption is noticeable even
to interactive users of dedicated processors.
Users of time-sharing systems may experi-
ence interruptions lasting minutes. In ex-
treme cases, successive collections may
take place with little actual program exe-
cution between them, making continued ex-
ecution impractical. Because of this neces-
sary halt, until recently, languages allowing
automatic collection of linked structures
could not be used to write programs with
real-time constraints.

Methods for garbage collection usually
comprise two separate phases:

(a) Identifying the storage space that may
be reclaimed.

(b) Incorporating this reclaimable space
into the memory area available to the
user.

2 Collections m very large databases or file systems are
not covered m thin survey

Garbage Collection of Linked Data Structures

Phase (a) can be performed using one of
two methods:

(al) By keeping counters indicating the
number of times cells have been ref-
erenced. Identification in this case
consists of recognizing inaccessible
cells (those whose reference count is
zero).

(a2) By keeping a list of immediately ac-
cessible cells and following their links
to trace and mark every accessible cell.
This method of identification is usu-
ally called marking.

Phase (b) can also be subdivided into two
classes:

(bl) Incorporation into a free list in which
available cells are linked by pointers.

(b2) Compaction of all used cells in one
end of the memory, the other end
containing contiguous words which
are made available to the allocator.
There are various types of compac-
tion, classified by the relative posi-
tions in which cells are left after com-
paction:

(b2.1) Arbitrary. Cells which originally
point to one another do not neces-
sarily occupy contiguous positions
after compaction.

(b2.2) Linearizmg. Cells which originally
point to one another (usually) be-
come adjacent after compaction.

(b2.3) Sliding. Cells are moved toward
one end of the address space without
changing their linear order.

It is also convenient to classify garbage
collection according to the type of cells
which are reclaimed. The early methods
were ~applicable only to programs in which
all cells were of the same size. With the
introduction of records (or similar struc-
tures) into programming languages, it be-
came important to perform garbage collec-
tion in programs involving cells of different
sizes.

1. COLLECTING SINGLE-SIZED CELLS

1.1 Marking

LISP cells illustrate the problems involved
in marking single-size cells. Each LISP cell
has two fields: left (or car) and right (or

• 343

procedure mark(p); (p Is a pointer that is called by
value}

begin
if unmarked(p) then

begin
marknode(p);
if nonatomte{p) then

begin
mark(left(p)},
mark (rtght(p))

end
end

end mark;

Figure I

cdr). These fields contain pointers either to
other cells or to atoms, special kinds of cells
containing no pointers. Each cell also con-
tains two Boolean fields (bits): one to help
differentiate between atomic and nona-
tomic cells, 3 and the other to be used in
marking.

The algorithm shown in Figure 1 is a
recursive procedure for marking LISP lists
(including atoms). It utilizes three auxiliary
procedures:

nonatomic(p): Boolean function which
tests whether the cell pointed to by p is
nonatomic;

unmarked(p): Boolean function which
tests whether the cell pointed to by p is
unmarked;

marknode(p): Procedure which marks the
cell pointed to by p by turning on its
marking bit (marking bits are initially
turned off).

Note the similarity of the marking algo-
rithm in Figure 1 with the classical preorder
tree-traversal algorithm [KNUT73]. The
one in Figure 1, however, can handle gen-
eral lists, including circular ones.

An efficient nonrecursive version of this
algorithm uses an explicit stack which only
stores pointers to the cells being marked.
No return addresses need to be stacked. A
pointer is pushed onto the stack just before
marking the cell's right branch. The algo-
rithm terminates when the stack is empty.
Consequently, each node of the list is vis-
ited twice: once before marking the left field
and once before marking the right field.

3 Some LISP systems carry this reformation in the
pointers to the cells

Computing Surveys, Vol 13, No 3, September 1981

344 • Jacques Cohen

The following predicament results from
using the described algorithm in a collector
operating exclusively in main memory: gar-
bage collection is needed because of the
lack of memory space; however, additional
space is required by the stack of the mark-
ing algorithm. If the storage area consists
of n LISP cells, the maximum depth re-
quired for the stack is then n. To reserve
this much additional storage initially is un-
economical. Several algorithms have been
proposed to circumvent this difficulty; all
of them involve reducing the required stor-
age by trading it for longer time needed in
which to perform the marking.

The first of these algorithms (similar to
Algorithm C, in KNUT73, p. 415) uses a
stack of fixed length h, where h is substan-
tially smaller than n. However, the pointers
are stacked using mod h as the stack index.
In other words, the stack can be thought of
as being "circular," and when its index ex-
ceeds h, the additional information is writ-
ten over previously stored information. The
stack therefore only "recalls" the most re-
cently stored h items and "forgets" the
other ones.

First, the immediately accessible cells are
marked. Marking then proceeds as in the
algorithm in Figure 1. However, since some
cells which should have been "remem-
bered" have been "forgotten," the stack will
become empty before the task is complete.
When this happens, the memory is scanned
from the lowest address, looking for any
marked cell whose contents point to un-
marked cells. If such a cell is found, marking
resumes as before and continues until the
stack becomes empty again. Eventually, a
scan will find no marked cells referring to
unmarked cells, and marking is complete.

Actually, the scanning need not start
from the beginning of the memory each
time. During marking, the algorithm can
record the minimum address f of the for-
gotten nodes. The next scan will begin
either just after the last address of the
previous scan, or from f, whichever is
smaller.

An elegant algorithm which dispenses
with the use of a stack but which may
require one additional bit per cell was de-
veloped independently by Deutsch and by
Schorr and Waite (see SCHO67 and

Kr~uT73). The main idea of this algorithm
is that the nodes of a tree or of a directed
graph can be inspected without using a
stack by reversing successive links until
leaves (i.e., atoms) or already visited nodes
are found. The link reversal can then be
undone to restore the original structure of
the tree or graph. (One can view the stack
of the classical marking algorithm as
"moved" into the cells by the link-reversal
technique.) The additional bit per cell
{called a tag bit) indicates the direction in
which the restoration of reversed links
should proceed (i.e., whether to follow the
left or the right pointer). Knuth [KNUT73]
suggests a method for avoiding using a tag
bit by instead using the bit already neces-
sary for testing whether a cell is atomic.

Veillon [VEIL76] has shown that it is
possible to transform the classical recursive
algorithm in Figure 1 into the Deutsch-
Schorr-Waite algorithm. First, the param-
eter of the recursive procedure is eliminated
by introducing the link reversal feature.
The two recursive calls of the resulting
parameterless procedure, needed to mark
the left and right fields, are eliminated by
introducing the tag bits to differentiate be-
tween the returns from the two calls.

Knuth (KNuT73, p. 591) proves by induc-
tion the correctness of the link-reversal
marking algorithm of I)eutsch-Schorr-
Waite. An alternate proof may be obtained
by noting that the transformations sug-
gested by Veillon preserve correctness.
Other proofs have recently appeared in
GERH79, GRIE79, LEE79, KOWA79, and
ToPo79. Yelowitz and Duncan [YELO77]
present proofs of correctness of several
marking algorithms. Their approach con-
sists of first proving the correctness of a
general abstract marking algorithm and
then extending that proof to cover specific
concrete algorithms derived from the ab-
stract one.

Wegbreit [WEGB72b] proposes a modifi-
cation of the Deutsch-Schorr-Waite algo-
rithm which uses a bit stack instead of a
tag bit per cell. In the light of Veillon's
program transformation, one sees that
Wegbreit's stack simply implements the re-
turns from the parameterless recursive pro-
cedure derived from Figure 1.

In the algorithm of Figure 1, each cell is

Computing Surveys, Vol 13, No 3, September 1981

Garbage Collection of Linked Data Structures • 345

visited twice. In the Deutsch-Schorr-Waite
algorithm, the cells are visited three times.
This additional visit and the overhead for
restoring pointers and for checking and set-
ting bits render this algorithm less efficient
than the classical algorithm. {Benchmarks
taken by Schorr and Waite showed that
this is indeed true.) Schorr and Waite then
proposed using a hybrid algorithm which
combines a fixed-size stack with their link-
reversal technique. It consists of using the
stack algorithm whenever possible. If stack
overflow occurs, the tracing and marking
proceed by the method of link reversal (see
KNUT73, p. 592).

Other marking algorithms which use a
fixed-length stack have been proposed. The
one by Kurokawa [KuRo75] also uses a tag
bit, but differently. When the fixed-length
stack overflows, it is possible to remove
some of the pointers from the stack and
preserve the information by turning on the
tag bit of the unstacked cells. These cells
form a chain, the pointer to which is left on
the stack. The removal of stack elements
makes more space available for resuming
the marking scheme. Later, when a pointer
is unstacked, it is examined to determine
whether the cell it points to is tagged. If so,
the linked tagged cells are retraced. Kuro-
kawa also proposes a variant of the algo-
rithm which dispenses with the tag bits,
using the mark bits instead. 4

Peter Bishop has proposed a variant of
Kurokawa's algorithm which deserves fur-
ther investigation: When the stack over-
flows, its contents are "moved" into the
cells according to the link-reversal tech-
nique. Marking then proceeds using the
now-free area of the stack. If stack under-
flow occurs, an element can be popped (in
the manner of the Deutsch-Schorr-Waite
algorithm) from the portion of the stack
stored in the cells. A careful comparison of
Kurokawa's and Bishop's algorithms has
not yet been done, nor has either yet been
proved correct.

We have seen that, at most, three bits
per cell are necessary to perform LISP's

4 LIND74 had shown how mark ing can be done wi thout
tag bits or a stack, a t the expense of adchtional proc-
essing time.

garbage collection. The first two are used
in recognizing atoms and in marking; the
third one is used as a tag bit, if needed by
the algorithm. It should be pointed out that
these three bits need not be located within
or near their corresponding cells. Special
areas of the memory (bit maps or tables)
may be allocated for this purpose. Whether
or not this should be done is, of course,
machine dependent. Some LISP proces-
sors, for example, avoid the need for an
{explicit) atom bit by placing atomic cells
in a special region of the memory.

A convenient manner of implementing
the tag bit in certain machines is described
in COHE72. It takes advantage of the fact
that all pointers refer to only odd (or only
even) addresses, since two words are always
used to implement a LISP cell. Turning on
a tag bit can thus be accomplished simply
by adding one to the address contained in
the right part of the cell.

The algorithms described in this section
can be generalized to cover cells of a single-
size m, with m > 2. The generalized version
of the algorithm in Figure 1 would involve
recursively marking each of the m fields of
the cell. A generalized variant of the
Deutsch-Schorr-Waite algorithm would
require an additional log2 rn tag bits per
cell, the number necessary to represent m.

1.2 Reclaiming Marked Cells

The simplest method for reclaiming the
marked cells (see phase (bl) of the Intro-
duction) consists of linearly sweeping the
entire memory. After turning off their mark
bit, unmarked cells are incorporated into
the free list administered by the storage
allocator.

If compacting is preferred (phase (b2)), it
can be performed by scanning the memory
twice. In the first scan, two pointers are
used, one starting at the bottom of the
memory (higher address), the other at the
top. The top one is incremented until it
points to an unmarked cell; the bottom
pointer is then decremented until it points
to a marked cell. The contents of the
marked cell are thereupon moved to the
unmarked cell, a pointer to the new cell is
placed in the old, and the mark bits are
turned off. By the time the two pointers

Computmg Surveys, Vol. 13, No. 3, September 1981

346 • Jacques Cohen

meet, all marked cells have been compacted
in the upper part of the memory. °

The second scan is needed for readjusting
the pointers: since some cells have been
moved, it is essential to update any pointers
to obsolete cell locations. This scan sweeps
only the compacted area. Pointers are read-
justed whenever they point to cells whose
contents have been moved from the liber-
ated area to the compacted area of the
memory. Each of these pointers is replaced
by the contents of the cell to which it was
pointing. According to Knuth [KNUT73,
p. 421], this method was first proposed by
D. Edwards. LISP and ALGOL 60 pro-
grams describing in detail this method of
compacting have appeared in HART64 and
COHE67b. Note that the two-pointer com-
pactor is of the arbitrary type; after com-
paction, cells which originally point to one
another do not necessarily occupy contig-
uous positions of the memory.

1.3 Moving Collectors

An obvious algorithm for garbage collection
would be to output all useful (i.e., reacha-
ble) data to the secondary storage area
and then to read them back to the main
memory. This, however, has several
drawbacks:

(1) It may require additional storage
equally as large as the main memory.

(2) The time overhead for transferring be-
tween memories is (usually) consider-
able.

(3) Unless special precautions are taken,
shared cells would be output more than
once, in which case the main memory
may not be sufficiently large for reading
back the information. (This situation
becomes critical when the main mem-
ory contains loops of pointers.)

Minsky [Miss63] proposes an algorithm
which eliminates the difficulties described
in (3). His algorithm does not use a stack,
but requires one marking bit per LISP cell.
Each cell is traced and marked if unmarked.
Triplets (the new address of a cell and the

contents of its left and right fields) are
computed and output to the secondary stor-
age. The new address is also placed in the
marked cell, and whenever a pointer to that
cell is encountered, the pointer is adjusted
to reflect the move. When the triplets are
subsequently read back into the main mem-
ory, the contents of the fields are stored in
the specified new address. Minsky's algo-
rithm has the advantage of compacting the
useful information into one area of the main
memory. After compaction, list elements
which are linked are positioned next to each
other, making Minsky's algorithm a linear-
izing compactor. These two properties are
very important when virtual memory is
used, as will be discussed in Section 3.

In Minsky's algorithm, fields of the orig-
inal list are used to store information about
the output list; consequently, the original
list is destroyed. In this respect, it is con-
venient to distinguish between the terms
moving and copying. The former implies a
possible destruction of the original struc-
ture, whereas the latter does not. Minsky's
algorithm can be used to move lists in con-
texts other than garbage collection. Since
its appearance, several other algorithms
have been proposed to perform moving or
copying. They can be used for garbage col-
lection purposes as well. Most are designed
to move or to copy lists without resorting
to mark bits or to a stack. 6 As in Minsky's
algorithm, (1) a forwarding address is usu-
ally left in the old cell, and pointers refer-
ring to that cell are readjusted accordingly,
and (2) the moved lists are compacted in
contiguous positions of the memory.

A few algorithms have been proposed
for copying lists without using a stack or
mark bits. They differ from the moving
algorithms in that the altered contents
of old lists are later restored to their ori-
ginal values. Lindstrom [LIND74], Robson
[ROBS77], Clark [CLAR75, CLAR78a], and
Fisher [FISH75] discuss the copying of trees
and general lists.

Fenichel and Yochelsen [FENI69] suggest
a variant of Minsky's collector which uses

This type of compaction is similar to that performed
m solving a problem proposed by D1jkstra (see the
Dutch flag problem in DIJK76a)

The similar but simpler problem of traversmg trees
without a stack or mark bits has been considered m
SIKL72, DWYE73, LIND73, ROBS73, and LEE80. A re-
cent book by Standish [STaNS0] contains detailed
descriptions of some of these algorithms

Computing Surveys, Vol 13, No 3, September 1981

Garbage Collection of Linked Data Structures

an implicit stack but does not require mark
bits. T h e y divide the available memory into
two areas called semispaces. At a given
time, only one area is used by the allocator.
When its space is exhausted, the reachable
lists are moved to the other space in a
linearized compacted form. The algorithm
is intended for use in a paging environment.

Cheney's algori thm [CHEN70, WALD72],
R e i ngo l d ' s a l g o r i t h m [REIN73], and
Clark's algori thm [CLAR76, GOTL78] all rep-
resent improvements over the previous al-
gorithm: they require nei ther a stack nor
mark bits. Cheney 's algori thm is done by
moving the list to a contiguous area; a
simple test can establish whether a pointer
refers to the old or the new region of the
memory. Reingold's algori thm is achieved
by using the Deu t sch-Schor r -Wai te link-
reversal technique ment ioned in Section
1.1. And Clark's algori thm moves a list into
a contiguous area of the memory with the
stack implicit in the list being moved. Clark
shows tha t his algori thm is in most cases
more efficient than both Cheney's and
Reingold's.

Moving (or copying) algorithms may be
classified according to the type of traversal
used when inspecting the list being moved.
Let us assume tha t most of the cells in a
list are linked by their right fields, as is
typical of LISP programs. A nonrecursive
version of the marking algori thm of Figure
1 uses a list (stack) containing the addresses
of cells whose left field has not yet been
processed. 7 This list may be administered
ei ther as a t rue stack (on a "last-in, first-
out," LIFO order) or as a queue (on a "first-
in, first-out," FIFO order). According to
this classification, the algorithms by Min-
sky, Fenichel-Yochelson, Reingold, and
Clark use a LIFO order, whereas the one by
Cheney uses a FIFO order. All of these
algorithms move into adjacent locations the
cells which originally were linked by the
right field. These algorithms may therefore
be classified as performing a linearizing
type of compaction. Note tha t the algo-
r i thms which use a LIFO order will move
closer together the cells corresponding to
the sublists which terminate a list.

7 This corresponds to calling mark(r~ght (p)) before
mark(left (p))

• 347

procedure mark(p); {pm a pointer that is called by
value}

begin integer t;
if unmarked(p) then

begin
marknode(p),
if nonatomw(p) then

begin
for ~ *-- I until number(p) do

mark(#eld (p, D)
end

end
end mark,

Figure 2

2. COLLECTING VARISIZED CELLS

2.1 Marking

Figure 2 shows a marking algorithm similar
to tha t of Figure 1, but applicable to vari-
sized cells. Two additional auxiliary proce-
dures are used:

number (p): an integer function yielding
the number of contiguous words (items)
in the cell to which p points {this infor-
mation may be stored in the cell itself);
and

field (p, i): a function yielding the i th i tem
of the cell pointed to by p.

It is assumed tha t p always points to the
first i tem of the cell. The algori thm can be
modified to handle pointers to cell parts. If
so, care should be taken to avoid collecting
chunks of cells. Under the modified algo-
r i thm each i tem of the cell needs to be
marked; thus bit tables are economical.
{Note tha t bit tables would be less useful in
conjunction with the algori thm of Figure
2.)

The algori thm in Figure 2, like tha t in
Figure 1, requires stack storage space when
none may be available. If the memory con-
tains n cells of various sizes, the maximum
depth required for the stack is n. When
most of the cells contain several items, it
might be worthwhile to reserve two addi-
tional fields per cell for distributing stack
storage among the cells. Essentially, these
fields contain the quant i t i esp and i needed
to implement the recursive calls of the pro-
cedure in Figure 2. A description of an
algori thm of this kind appears in TuOR72.

The marking algorithms of Section 1
which use a fixed-length stack can also be

Computmg Surveys, Vol 13, No 3, September 1981

348 • Jacques Cohen

adapted to process varisized cells. They
may then use a fixed-length stack of height
h with stack index = mod h as before, but
each stack position will contain information
corresponding to p and i in the algorithm
of Figure 2.

Variants of the Deutsch-Schorr-Waite
link-reversal algorithm applicable to vari-
sized cells are described in THOR72 and
THOR76. Instead of using one tag bit, some
of these algorithms use log2 maxm bits per
cell, where maxm is the size of the largest
cell. Other variants of the Deutsch-Schorr-
Waite algorithm applicable when marking
varisized cells have appeared in HANS77,
MARS71, and WODO71.

2.2 Reclaiming Marked Cells

In opening, it should be mentioned that the
method of compacting described in Section
1.2 is not applicable to varisized cells, since
marked and unmarked cells cannot be
swapped if they are of different sizes.

Several algorithms have been proposed
for compacting varisized cells. One of the
earliest is that of Haddon and Waite
[HADD67, WAIT73]. This compactor is of
the sliding type (see Section 1) and per-
forms two scans of the entire memory. The
objective of the first scan is to perform the
compaction and to build a "break table,"
which the second scan uses to readjust the
pointers.

The break table contains the initial ad-
dress of each "hole" (sequence of unmarked
cells) and the hole's size. An interesting
feature of Haddon and Waite's algorithm is
that no additional storage is needed to con-
struct the break table since it can be proved
that the space available in the holes suffices
to store the table. However, from time to
time the break table must be "rolled," that
is, moved from one hole to a bigger one
created through compaction. At the end of
the first scan the break table occupies the
liberated part of the memory. It is then
sorted to speed up the pointer readjustment
done by the second scan. Readjustment
consists of examining each pointer, consult-
ing the table (using a binary search) to
determine the new position of the cell it
used to point to, and changing the pointer
accordingly.

The most unfavorable condition for Had-
don and Waite's algorithm is when unit-size
active cells alternate with unit-size inactive
cells. It can be shown that the algorithm
would take O(n log n) time, where n is the
size of the storage (see FITC78).

Other compacting algorithms for vari-
sized cells have been proposed. The LISP
2 garbage collection algorithm described in
KNUT73, pp. 602-603, and those presented
in WEGB72a and THOR76 have the follow-
ing features in common.

Three (or more) linear scans are used. In
the first scan the holes (inaccessible cells)
are linked to form a free list. Two fields are
reserved in each hole to store its size and a
pointer to the next hole. A subsequent scan
may combine adjacent holes into a single
larger hole. The second scan consists of
recognizing pointers and using the infor-
mation contained in the free list to adjust
them. This involves finding the ith hole
whose address as is such that a~-i < p < a,,
where p is the pointer being readjusted.
The new value of the pointer can be com-
puted by subtracting from p the sum of the
sizes of the 1st, 2nd (i - 1)th holes. 8
Once the pointers have been readjusted, a
third scan takes care of moving the acces-
sible cells to the compacted area. This com-
pactor is therefore of the sliding type.

The second scan, which interpretively
readjusts pointers, is the most time con-
suming of the three scans. Wegbreit
[WEGB72a] proposes variants of this algo-
rithm which make this scan more efficient.
One variant consists of constructing a break
table (called directory) which summarizes
the information contained in the free list of
holes. However, storage for the directory
may be unavailable. Wegbreit suggests
trying to use the largest hole for this pur-
pose. When this is possible, binary search
can speed up pointer readjustment.

Lang and Wegbreit [LANG72] suggest an-
other variant of the algorithm, which sub-
divides the memory into a fixed number of
equal segments. This variant requires a
small additional area of memory to store
the reduced break table, its initial address,

8 I t is therefore convenient to store these cumula t ive
sums ins tead of recomput lng t h e m every t ime they are
needed

Computing Surveys, Vol 13, No 3, September 1981

Garbage Collection of Linked Data Structures • 349

and its size for each segment. A first scan
compacts each segment toward its lower
address and constructs its break table.
Whenever possible, that break table is cop-
ied into the liberated area of the segment;
otherwise, marks are set to indicate that
the reduced break table is stored in the
liberated area of another segment. The sec-
ond scan performs pointer readjustments
using the information in the individual
break tables. A third and final scan com-
pacts the segments.

Another variant for collecting varisized
cells was proposed in ZAVE75. It requires
that each cell have an additional field. In
the marking phase, all active cells are
strung together using the additional field.
This list of active cells is sorted by increas-
ing addresses. 9 Pointers can then be read-
justed by consulting the addresses in the
list. The final scan compacts the active
cells.

Terashima and Goto [TERA78] propose
two algorithms for the compacting phase of
the collection of varisized cells. In the first,
pointers are readjusted by recomputing, for
each pointer, the needed part of the break
table. This computation is sped up by or-
ganizing the holes in a balanced binary tree,
with the necessary pointers stored within
the holes themselves. The balanced tree
form minimizes computation of the read-
justments. An intermediate scan is needed
to construct the balanced tree from the
linear list of holes obtained just after the
marking phase.

The second compacting collector pro-
posed by Terashima and Goto assumes that
all elements of a cell are marked, and a
separate bit table is used for marking. The
memory is subdivided into a number of
equal segments, each as long as the number
of bits in a word of the bit table. Thus the
size of the free space within a segment can
be efficiently computed by counting the
number of inactive bits in a word of the bit
table. Pointer readjustment is based on
these bit counts. This method is suitable
for hardware implementation.

An interesting algorithm for readjust-
ing pointers and compacting varisized ceils

This sortmg may be expensive ff the memory is
fragmented.

has recently been proposed by Morris
[MORR78, MORR79]. It performs the com-
pacting in linear time and it requires only
one additional bit per pointer. No break
tables are used. The algorithm is based on
the following property: Assume that the
contents of locations al , a , point to
location z. No information is lost if this tree
structure with root z is transformed into a
linear list by stringing together locations z,
al, a2 and placing the contents of z in
an. Once the new position of z, say, z', is
known, it is simple to reconstruct the orig-
inal tree by making the a{s point to z'. The
extra bit is used to process the tree struc-
tures.

Morris' algorithm is of the sliding type
and requires two scans. The first only read-
justs forward-pointing references. The sec-
ond updates references pointing backward
and performs the compaction. Although
Morris proves the correctness of the algo-
rithm, no data are available comparing its
efficiency to that of other compacting al-
gorithms. An algorithm similar to Morris'
but requiring only forward scans and no
additional bits has been proposed by Jon-
kers [JosE79].

Marking, pointer readjustment, and com-
pacting can be made simpler if the list
processing "preserves address ordering."
This means that nodes are allocated se-
quentially, from low to high address: when
a cell is created, its descendants have ad-
dresses which are aIways smaller than its
own, and circular lists are therefore ex-
cluded. Under these conditions, marking
can be performed in a single scan through
the entire memory without using a stack.
This scan also finds the number of active
cells, which the second scan then uses for
readjusting the pointers. The third and fi-
nal scan performs the compaction which is
of the sliding type. Details are given in
FISH74.

Proposals have been made to try to post-
pone, as much as possible, the compaction
of varisized cells [KNUT73, Section 2.5;
PANE68]. This may be accomplished by
keeping several free lists, one for each cell
size commonly used in a program. These
are called homogeneous free lists, or simply
H-lists. In addition, another free list, the
M-list, contains cells of miscellaneous sizes.

Computing Surveys, Vol 13, No 3, September 1981

350 • Jacques Cohen

The cells in the M-list are linked according
to increasing addresses; the ordering in the
H-lists is irrelevant. An unused cell is re-
turned to one of the H-lists if possible.
Otherwise, the cell is returned to its appro-
priate position in the M-list.

Requests for new cells are handled ac-
cording to their size. If there is a nonempty
H-list of the desired size, the new cell is
taken from that list. If not, the cell is taken
from the first M-list cell as large or larger
than the desired size. If the M-list cell is
larger than needed, it is split into two cells,
with the first used to satisfy the request,
and the second returned to one of the free
lists.

If a cell of the requested size cannot be
found in the M-list, a semicompaction is
attempted. It consists of returning all ele-
ments of the H-lists to their appropriate
positions in the M-list, and whenever two
or more cells in the M-list are adjacent,
combining them into a single larger cell.
The test for adjacency is simple since the
M-list is ordered by address. It is of course
possible that even after semicompaction, a
cell with the requested size remains un-
available. Standard (full) compaction may
then be the only way to avoid program
termination.

2.3 Moving Collectors

Some of the moving algorithms mentioned
in Section 1.3 may be adapted to handle
varisized cells. A representative of this class
of algorithms [FENI69, CHEN70, BAKE78b]
is described in the next section since it is
particularly suitable for operation in virtual
memory.

An algorithm for copying varisized cells
is described in STAN80. It requires cells to
have an additional field large enough to
store an address. A first pass consists of
linking all used cells via the additional field
(see THOR72). A second pass copies each
cell c, in the linkage and inserts the copy,
c~, as the successor of c,. The successor of
c~ becomes the cell c,+1. After this copying,
the odd-numbered elements of the new
linkage contain the original cells and the
even-numbered ones contain the copies. Fi-
nally, a third pass is used to readjust the
pointers in each copied element and to sep-

arate the copy from the original. The degree
of linearization achieved by this algorithm
depends on the manner by which the cells
are linked during the first pass. (Fisher
[FISH75] and Robson [RoBs77] also de-
scribe algorithms for copying LISP cells
which can be generalized for copying var-
isized cells.}

3. COLLECTING IN VIRTUAL MEMORY

The ratio of the size of secondary memory
to the size of main memory is an important
factor in designing collectors which operate
in virtual memory. When this ratio is small,
some of the algorithms described in the
previous sections may be used. The meth-
ods described in this section, though, are
suitable when the ratio is large.

The use of secondary storage through
paging [COHE67a] changes the design con-
siderations for implementing garbage col-
lection algorithms in important ways. First,
it is no longer necessary to try to avoid
using additional storage for a stack, since
the size of the available virtual memory in
current systems is considerable, l° Avoiding
page faults and thrashing (caused by having
structures whose cells are scattered in many
pages), on the other hand, becomes a criti-
cal factor in improving the efficiency of
garbage collection. Compaction is for this
latter reason important when collecting in
this environment. Cohen and Trilling
[COHE67b] show that garbage collection
with compaction brings about significant
time gains in performance of LISP pro-
grams. They also found that a direct tran-
scription of the classical garbage collection
algorithms to a virtual memory environ-
ment can lead to unbearably slow collection
times. CLAR79 contains additional use-
ful information about the performance of
compacting collectors operating in virtual
memory.

Compaction of cells in virtual memory
should not only eliminate unused holes but
should also construct the compacted area
so that pointers refer, if possible, to neigh-
boring cells. As mentioned in Section 1.3,

~o It is therefore doubtful that the link-reversal tech-
nique of Deutsch-Schorr -Wai te should be used for
marking

Computing Surveys, Vol 13, No 3, September 1981

Garbage Collection of L in ked Data Structures • 351

Minsky's algorithm [MINS63] satisfies this
requirement.

Measurements in actual LISP programs
show that about 97 percent of list cells have
just one reference to them [CLAR77,
CLAR78b]. This property is important when
designing garbage collection algorithms
which operate in virtual memory.

Bobrow and Murphy [BoBR67] show that
the use of a selective cons (the LISP func-
tion which requests a cell from the alloca-
tor) can improve the efficiency of subse-
quent processing and garbage collection.
Basically, they advocate keeping one free-
list per page. A new cell requested by a call
of cons[x, y] is taken from the free area of
a page according to the following strategy.

(1) First, if possible, take from the page
containing the cell pointed to by y;
otherwise,

(2) take from the page containing the cell
pointed to by x; otherwise,

(3) take from the page containing the most
recently created cell; otherwise,

(4) take from any page containing a fair
number (say, 16) of free cells.

The purpose is to minimize page faults in
manipulating linked lists. Additional infor-
mation on garbage collection using virtual
memory can be found in BOBR67, BOBR68a,
BOBR68b, ROCH71, and BAEC72.

An important design consideration for
implementing garbage collection algo-
rithms in a paging environment is deciding
when collection should be invoked. Since
very large memories are currently available,
it seems reasonable to collect whenever
page faults render the program processing
unbearably slow.

A class of algorithms suitable for use
in virtual memory is the one described
by Baker [BAKE78b]. It is based on the
copying collector proposed by Fenichel-
Yochelson [FENI69] and by Cheney
[CHEN70] which was briefly described in
Section 1.3. What follows is a more detailed
presentation of this type of algorithm. Al-
though it is applicable in collecting vari-
sized cells, this presentation applies only to
LISP cells.

The available memory is divided into two
areas called semispaces. At a given time,
only one is used by the allocator. During

pointer procedure move(p) ,
begin

if newspace(p)
then return p
else

begin
if old space(left[p])

then left[p] ~-- copy(p);
return left[p]

end
end move,

pointer procedure copy(p),
begin pointer q;

[The following statement assigns to q the address
of a new cell taken from a contiguous area in the
new space; as explained m the text thrs action
imphes incrementing the pointer B}

q (-- new,
left[q] (-- left[p];
rtght[q] (-- right[p],
return q

end copy,

Figure 3

garbage collection, the reachable lists are
moved to the other space in a compacted
form. The heart of the algorithm is the
procedure move presented in Figure 3. The
following description is based on Baker's
paper [BAKE78b].

The procedure move moves a cell from
the old semispace to the new one. The
Boolean functions oldspace(p) and new-
space(p) are used to test whether the cell
pointed to by p is in the corresponding
semispace. The auxiliary function copy(p)
copies the cell whose address is p into the
new semispace. After the copying, the pro-
cedure move stores the address of the new
cell into the left field of the old cell.

The collector calls the procedure
move(p) for all accessible cellsp in the old
semispace. This task is similar to that of
marking, but in this case the cells are
moved instead of marked. A stack is
avoided by using two pointers, B and S,
both of which initially point to the bottom
of the new semispace. B points to the next
free cell in the new semispace and is thus
incremented by copy. First the immediately
accessible cells are moved to the new semi-
space. The area between S and B now con-
tains cells which have been moved into the
new space but whose contents have not.
This area is scanned (by incrementing S),

Computing Surveys, Vol 13, No 3, September 1981

352 • Jacques Cohen

and the contents of the area's cells are
updated by calls to the procedure move.
This in turn may result in incrementing B.
Collection ends when S meets B.

In his dissertation, Bishop [BISH77] pro-
posed an approach for designing collectors
which operate in a very large virtual mem-
ory (of the order of 1012 bits). Even using
the real-time approaches discussed in Sec-
tion 5, it would be impractical to garbage
collect the entire memory at one stretch.
Since large portions of memory may remain
unchanged during program execution,
Bishop suggests collecting only in parts
of the address space rather than in the
entire space. (A similar approach is used in
Ross' AED system [Ross67].) The memory
is divided into areas which can be collected
independently, and a variant of the Feni-
chel and Yochelson collector is used. This
collector increases the locality of refer-
ence, an important factor in a paging
environment.

Tracing and copying are performed only
within a given area. The system keeps lists
of all interarea references, both incoming
and outgoing. Incoming references are mod-
ified to point to the area's new copy; they
define the immediately accessible cells from
which collection starts. Before discarding
the old copy of an area, its useless outgoing
references are removed from the corre-
sponding lists of incoming references.

Bishop developed a method for maintain-
ing the lists of interarea references and
indicated that this can be done automati-
cally without incurring substantial run-time
overhead. He advocates altering the virtual
memory mechanism to cause traps when
interarea references are stored into cells,
and shows how virtual memory hardware
can be constructed to perform this extra
service efficiently.

4. REFERENCE COUNTERS

The use of reference counters (advocated
by COLL60 and WEIZ63) has recently at-
tracted renewed interest. An extra field,
called refcount, is required for each cell to
indicate the number of times the cell is
referenced. This field has to be updated
each time a pointer to the cell is created or
destroyed. When refcount becomes equal

to zero, the cell is inactive and can be
collected. At least theoretically, refcount
must be large enough to hold the number
of cells in the memory and therefore must
be as large as a pointer. The disadvantages
of this approach are (1) the extra space
needed for the counters, (2) the overhead
required to update the counters, and (3) the
inability to reclaim general cyclic struc-
tures.ll

However, reference counters can conven-
iently be used to distribute garbage collec-
tion time as an overhead to processing.
Every time a cell becomes inactive, it is
pushed into a stack. When the cell is
needed, it is popped from the stack and
then the refcounts of its descendants are
decremented. An advantage of this arrange-
ment is that no new space is needed for the
stack, since it can be simulated by stringing
together the freed cells using the refcount
fields. (Recall that these fields have to be
big enough to hold a pointer.)

Deutsch [DEUT76], Knuth [KNUT73],
and Weizenbaum [WEIz69] suggest com-
bining the reference counter technique with
classical garbage collection. The former
would be utilized during most of the proc-
essing time; the latter, being more expen-
sive, would be performed as a last resort.
This allows the use of small refcounts {thus
reducing the storage requirements) because
counters which reach their maximum value
remain unmodified. Classical garbage col-
lection, called when the free list is ex-
hausted, starts by resetting all counters to
zero. The counters of the accessible cells
are restored during the marking phase of
the collection by incrementing a cell's
counter every time the cell is visited. The
collection reclaims inactive circular list
structures and cells with maximum ref-
count which have become unreachable. A
recent paper [WISE79] shows that this res-
toration can be done efficiently when using
Morris's compaction algorithm (see Section
2.2 and MORR78).

The hybrid approach suggested by
Deutsch and Bobrow [DEUT76] is particu-

11 BoBRS0 and FRIE79 describe how reference counting
can be used to manage certain classes of cychc struc-
tures.

Computing Surveys, Vol 13, No 3, September 1981

Garbage Collection of Linked Data Structures • 353

lady applicable to LISP. It is based on
statistical evidence [CLAR77, CLAR78b]
that in most LISP programs, most reference (b)
counts (about 97 percent) are one. The
authors propose three hash tables (see
BOBR75): (C)

(1) The multiple reference table (MRT).
Its key is a cell address and the associ-
ated value is the cell's reference count.
Only cells whose reference counts are
two or greater are listed in the MRT.

(2) The zero count table (ZCT) containing
the addresses of cells whose refcount is
zero. These cells may be of two types:
those which are referred to only by the
variables of a program {still active), and
those which are truly unreferenced and
can be reclaimed. It follows from (1)
and (2) that if a cell's address is not in
the MRT or the ZCT, its reference
count is one.

(3) The variable reference table (VRT)
contains the addresses of cells referred
to by program variables {including the
temporary variables in the recursion
stack).

Deutsch and Bobrow note that there are
three types of operations, called transac-
tions, which may affect the accessibility of
data. These are (1) allocation of a new cell,
(2) creation of a pointer, and (3) destruction
of a pointer.

Instead of updating the hash tables as
the transactions occur, Deutsch and Bob-
row propose storing them in a sequential
file. The transactions are examined at suit-
able time intervals and then the tables are
updated. This scheme has the advantage of
minimizing paging overhead.

When a new cell is allocated, its address
should be placed in the ZCT. Since this is
usually followed by the creation of a pointer
to the newly allocated cell {which implies
removal from the ZCT), the pair of trans-
actions can be ignored.

When a pointer is created, it is examined
prior to its insertion into a cell or pointer
variable. Three cases are possible:

(a) The pointer refers to a cell in the MRT.
The corresponding refcount value is
then increased by one if it has not al-

ready reached its maximum; otherwise,
it is left unchanged.
The pointer refers to a cell in the ZCT.
The cell is then removed from that
table, since its count becomes one.
If tests (a) and (b) fail, the pointer
refers to a cell having a refcount of one.
It must then be placed in the MRT
with a refcount of two.

When a pointer is destroyed {removed
from a cell), two cases are possible:

(a) The pointer refers to a cell in the MRT.
The cell's refcount value is decreased
by one, except when it has reached its
maximum, in which case it is left un-
changed. If the new value of refcount is
one, the cell is removed from the MRT.

(b) The pointer does not refer to a cell in
the MRT. Its count is one by default,
and should be reduced to zero. The cell
is therefore entered in the ZCT.

The VRT is used when incorporating new
cells into the free list. Since the stack is
constantly being updated, the VRT is only
computed periodically. A cell is reclaimed
when its address is listed in the ZCT but
not in the VRT. The ZCT is updated by
eliminating the entries of reclaimed cells
which are not pointed to by program vari-
ables.

Deutsch and Bobrow [DEUT76] designed
their hybrid collector for operating in a
paging environment, so that space availa-
bility is not at stake. For the classical col-
lection they~advocate using a variant of the
two-semispace collector of Fenichel and
Yochelson [FEsI69]. The authors also point
out that an auxiliary processor could speed
up the collection. Its task would be to scan
the ZCT and VRT tables to determine
which cells could be incorporated into the
free list.

Wise and Friedman [WISE77] propose a
variant of the hybrid algorithm of Deutsch
and Bobrow which is useful when only fast
memory is available. Only one bit is as-
signed to the field refcount, and when that
bit is one, the cell is referenced more than
once. This is analogous to storing the cell
in the MRT of the Deutsch-Bobrow algo-
rithm.

Computing Surveys, Vol 13, No. 3, September 1981

354 • J a c q u e s Cohen

Nodes whose reference counts are greater
than two can be reclaimed only by a class-
ical collection with a marking phase. An
interesting feature of the one-bit re f coun t
is that this bit can be re-used as a tag bit
when using the link-reversal marking tech-
nique of Deutsch, Schorr, and Waite (see
Section 1).

In order to delay the classical collection
as much as possible, Wise and Friedman
propose using tables to temporarily list cells
whose re f coun t s are still one but are likely
to be changed to two or zero. This situation
occurs when performing assignments of the
kind r ~- f (r) , where r is a pointer. Assign-
ments of this type are quite common in
LISP, for example, r (--- cons(a, r) and r (--
r ight (r) . The first often increases to two
the re f coun t of the cell originally referred
to by r. The second often reduces the count
to zero. Unfortunately, no experimental
data are available on the efficiency of
the hybrid techniques described in this
section.

Barth [BART77] considers reference
counters in relation to shifting garbage col-
lection overhead to compile time. He shows
that savings in collection time are some-
times possible by carefully studying, at
compile time, the program's assignments.
For example, in the case of r ¢- r i g h t (r) ,
the cell originally pointed to by r may be
incorporated into the free list if it is known
that it will not be referenced by other
pointers.

5. PARALLEL AND REAL-TIME
COLLECTIONS

Two proposals have been made to circum-
vent the onerous garbage collection inter-
ruptions. The first is to allow garbage col-
lection to proceed simultaneously with pro-
gram execution by using two parallel proc-
essors: one is responsible for collection, the
other for program execution. When collec-
tion actually takes place, it is bound by a
known, tolerable, maximum time.

Minsky is credited by Knuth with initi-
ating the development of algorithms for
time-sharing garbage collection and list-
processing tasks (see KNUT73, pp. 422, 594).
If tWO processors are available, these tasks
can be performed in parallel, with one of

these processors, the collector, responsible
for actual garbage collection, and the other
performing the list processing and provid-
ing the storage requested by a user's pro-
gram. Dijkstra [DIJK76b] calls this latter
processor the muta to r . The collector per-
forms the basic tasks of marking and incor-
porating unmarked cells to a free list (see
Section 1), during which time the mutator
is active. The mutator may not, therefore,
request cells until the collector makes them
available.

The marking phase of Dijkstra's algo-
rithm is more complex than the classical
serial marking explained in Section 1. Two
mark bits are required (instead of one) be-
cause a cell may be in one of three states.
These states are represented by colors:
w h i t e (unmarked), b lack (marked), and
g r a y (indicating that the cell has been re-
quested and used by a program). Intui-
tively, gray nodes are good candidates for
becoming black. The mutator helps the
marking phase of the collector by turning
a white cell gray when the cell is requested
and used by a program. The mutator is also
responsible for triggering an interruption
whenever the free list contains only one
cell. Mutator processing resumes when the
collector returns at least one more cell to
the free list.

One of the collector's tasks is to mark the
used cells, the cells in the free list, and any
gray cells. This is done by initially graying
the first used cell and the first free-list cell.
Tracing proceeds by graying any ceils
linked to a gray cell c, and then blackening
c. When the tracing ends, the white cells
are incorporated to the free list and the
black cells are whitened. As a result, inac-
tive gray cells are first blackened by the
collector and then whitened. During the
n e x t cycle of the collector these cells are
incorporated into the free list.

France [FRAN78], Gries [GRIE77], and
Muller [MULL76] provide detailed descrip-
tions of Dijkstra's algorithm, but their main
concern is to prove correctness. An exten-
sion of Dijkstra's algorithm with multiple
mutators is considered in LAMP76.

Steele [STEE75] has independently de-
veloped a method for parallel garbage col-
lection based on the Minsky-Knuth sugges-
tion. He was one of the first to propose

Computmg Surveys, Vol 13, No 3, September 1981

G a r b a g e Col lec t ion o f L i n k e d D a t a S t r u c t u r e s • 355

actual algorithms for collecting in parallel.
Steel's collector makes exclusive use of
semaphores and requires two bits per cell,
which are used not only for marking but
also for compacting and for readjusting
pointers. Compaction is done using the two-
pointer technique described in Section 1.2.

Comparing Dijkstra's to Steele's algo-
rithm is difficult because these authors had
different objectives. The former wanted to
assure the correctness of his algorithm (re-
gardless of its efficiency), whereas the latter
had in mind an implementation using spe-
cial hardware, possibly microcoded.

In a recent paper, Kung and Song
[KUNG77] propose a variant of Dijkstra's
method which uses four colors for marking
and which does not need to trace the free
list. The authors prove the correctness of
the algorithm and show that it is more
efficient than Dijkstra's. To this author's
knowledge, none of the parallel garbage
collection algorithms has been imple-
mented, nor are any detailed results from
simulation yet available. 12

An alternative to using two processors is
to have one processor time-share the duties
of the mutator and the collector. Wadler
[WADL76] shows (analytically) that algo-
rithms for performing garbage collection
with time-sharing demand a greater per-
centage of the processing time than does
classical sequential garbage collection. This
is because the collection effort must pro-
ceed even when there is no demand for it.

A second approach for avoiding substan-
tial program interruptions due to garbage
collection has been proposed by Baker
[BAKE78a, BAKE78b]. His method is an in-
teresting modification of the collector de-
scribed in Section 3. Baker's modification
is such that each time a cell is requested
(i.e., a cons is executed) a fixed number of
cells, k, are moved from one semispace to
the other. This implies that the two semi-
spaces are simultaneously active. In a pag-
ing environment, the extra memory re-
quired is of less significance than the pos-
sible increase in the size of the average
working set. Since the moved lists are com-
pacted, page faults are likely to be mini-
mized.

~2 A simulation is brmfly reported m KUNG77

The moving of k cells during a cons cor-
responds to the tracing of that many cells
in classical garbage collection. By distrib-
uting some of the garbage collection tasks
during list processing, Baker's method pro-
vides a guarantee that actual garbage col-
lection cannot last more than a fixed {tol-
erable) amount of time: the time to flip the
semispaces and to readjust a fixed number
of pointers declared in the user's program.
Thus his algorithm may be used in real-
time applications.

A characteristic of Baker's real-time al-
gorithm is that the size of the semispaces
may have to be increased, depending on the
value of k and the type of list processing
done by the program. In other words, the
choice of k expresses the trade-off between
the time to execute a cons and the total
storage required. For example, for k = ~, a
cell is moved every third time a cons is
called. This would speed up the computa-
tion but increase the amount of storage
required.

In his paper Baker offers an informal
proof of his algorithm's correctness and
shows how it can be modified to handle
varisized cells and arrays of pointers. He
also presents analyses of storage require-
ments of the algorithm and how they com-
pare with those of other garbage collection
methods. A LISP machine built at M.I.T.
used Baker's approach [BAWD77]; 13 its
memory is subdivided into areas, and a list
of outgoing references is kept for each.
Those areas which do not change during
program execution are not copied: tracing
starts from their corresponding list of out-
going references. This approach, which has
been further developed by Bishop (see Sec-
tion 3 and BISH77), is a possible alternative
for real-time collection. Another alternative
is the use of an auxiliary processor as sug-
gested by Deutsch and Bobrow [DEUT76]
in their incremental garbage collection
technique mentioned in the previous sec-
tion.

~ Thin machine is a dedicated processor now m exper-
imental operation The builders report that, immedi-
ately following a semmpace flip, the system perform-
ance may be degraded. Thin m due to the copying of
objects from the old semmpace into the new one. A
variant of Baker 's apprgach [LIEB80] m now bemg
implemented m the M I T LISP machine

Computing Surveys, Vol 13, No 3, September 1981

356 • Jacques Cohen

6. ANALYSES

Execution of a list-processing program typ-
ically involves many garbage collections.
Le t n be the average number of cells which
are marked in one classical collection of
single-sized cells. Le t m be the total number
of cells in the memory. Therefore , on the
average, m - n cells are recovered during
one garbage collection. Collection t ime can
be expressed by

collection t ime = an + fl(m - n),

where a is the average t ime taken to mark
(and subsequently unmark) a used cell and
fl is the average t ime taken to collect a free
cell. Each inaccessible cell is inspected only
once. Since the t ime for marking is much
greater than the t ime for reclaiming inac-
cessible cells, it is not unreasonable to as-
sume tha t fl is considerably smaller than
a. If compact ion is used, the pointers of n
cells may have to be readjusted, thereby
increasing even more the ratio of the coef-
ficient of n and m - n. Detai led est imates
for a and fl have appeared in KNUT73, p.
592, and in BAER77.

The cost of collection per collected word
is

collection cost per collected word

_ _ ap + f l , 1 - - p

where p is the ratio n /m. If p = ¼, the
memory is one-fourth full, and the cost is
~a + ft. A larger value of p, for example, a,
yields a larger cost (3a + fl). This type of
analysis, presented in KNUT73, shows how
inefficient garbage collection can be when
the memory becomes full.

Two new quanti t ies N and T are now
introduced. N stands for the total number
of cells collected in the entire run of the
program. T is the total t ime spent in useful
program execution, excluding garbage col-
lection. The n the total t ime for program
execution is

total program execution t ime

= N 1 - 0

Let ~, be the ratio T / N , tha t is, the useful
computing t ime per word collected. Hoare

[HOAR74] posits tha t the total cost of a
program is proport ional to the product of
space and time:

cost Nm 1 0

This function reaches a min imum with re-
spect to m when

1
where r = ~ /B

a

P - l + r _ _ -+y

Hoare 's paper presents curves indicating
how the cost varies with 1/p for various
values of r. He points out tha t when a = 1
and fl is small compared to a, the extreme
values of r are 1, and ¼. For these values of
r, the cost curves are ra ther shallow around
the optimum. Hoare suggests tha t a simple
s trategy for minimizing costs is to ensure
that, after each collection, p lies between
0.6 and 0.8. If this does not occur, he rec-
ommends expanding or releasing the avail-
able memory so tha t p becomes approxi-
mately equal to 0.7. Hoare ' s analysis also
indicates tha t the use of reference counters
is justified only for programs whose value
of r is close to one (i.e., y is small).

Campbell [CAMP74] argues tha t Hoare 's
hypothesis of costs proport ional to the
product of t ime and space may be unreal-
istic. Campbell claims that , in certain large
symbolic computations, time, ra ther than
the product of space and time, should be
minimized, since the amount of space
needed to solve a problem is not subject to
reduction. In these cases, the optimal strat-
egy is to maximize the ratio of T to garbage
collection time, tha t is,

Y
a p / (1 - p) + / ~

The above function has no extremum; ac-
cording to Campbell, the recommended
strategy is the "counsel of despair": choose
m, the number of available cells, as large as
possible.

Campbell also proposes a ref inement of
Hoare 's analysis, tha t is, the one which
minimizes the product of space and time.
He notes tha t after a collection, a certain
percentage, f, of the free list remaining from
the previous collection is still free. Another
percentage, g, of the rest of the storage

Computing Surveys, Vol 13, No 3, September 1981

G a r b a g e Col lect ion o f L i n k e d D a t a S t ruc tu re s • 357

corresponds to allocated but inactive cells.
Let F~ be the size of the free list after the
j t h collection. Then

and

Fj = TFj-1 + g (m - F~-I)

= g m + hFj-1

F 0 = m .

Campbell uses the above difference equa-
tion in connection with Eq. (1) to obtain
optimal strategies similar to Hoare's but
involving the quantities f and g. He claims
that when f - - 0.4 and h = 0.2, the optimal
costs correspond to values of p below 0.6.
Campbell then suggests that the best rule
of thumb is to consider p = ½--to insure
that, after each collection, half of the total
number of cells be available in the free list.

In the final part of his paper, Campbell
proposes yet another variant of Hoare's
analysis. This variant is applicable when a
user knows the approximate total number
of cells, W, the program will request during
its execution. Campbell points out that
there are several symbolic computations for
which W can be estimated, and this may be
used to develop optimal strategies for se-
lecting p.

Arnborg's analytical study of optimal
strategies [ARNB74] yields results similar to
Hoare's. Arnborg considers the time to col-
lect to be a linear function of n only, n being
the number of marked (or active) cells. Like
Campbell, he establishes difference equa-
tions which express storage availability be-
tween successive collections. Arnborg, how-
ever, uses smooth functions to approximate
the difference equations. His results are
obtained by minimizing an integral which
expresses the total costs of collecting and
actual computing. Arnborg's strategy, like
Hoare's, is to determine the best size for
storage after each collection. The strategy
has been implemented in a SIMULA com-
piler running on a PDP-10. He claims that
his strategy gave consistently better results
than ad hoc policies designed for specific
programs.

In a recent paper, Larson [LARS77] pro-
poses still another method for minimizing
garbage collection time by suitably choos-

ing the size m of storage available. Collec-
tion time is expressed by

collection time = a' n + fl' m,

where a' and fl' are quite similar to a and
b as defined in the beginning of this section:
a' is the time to mark, compact, readjust
pointers, and unmark an active cell; fl' is
the time to inspect each cell. As indica-
ted previously, a' is substantially greater
than B'.

Larson measures the computation effort
by the amount of data which are produced
by a program. In LISP, for example, this
corresponds to the number of cons. Larson
proposes using a smooth function n (x) ex-
pressing the number of active cells at the
point in the computation at which x cells
have been produced.

The total garbage collection time is ex-
pressed by an integral of a function of n(x),
a', fl', and m. When a' and fl' are independ-
ent of m, the minimization of the integral
leads to a strategy identical to Campbell's:
m should be as large as possible. The results
are somewhat different when a' and fl' vary
with m. This occurs when virtual memory
is used, since the values of a' and fl' depend
on the relative amounts of fast and slow
memory available. Larson's strategy is sum-
marized as follows: if the number of active
cells n approaches the number of cells in
the fast memory (m0), minimization occurs
when m = too, and it is therefore preferable
to use fast storage only.

The cost of garbage collection when using
very large virtual memories has been stud-
ied by Bishop [BmH77]. He argues that
there are two components of the cost: the
time to perform the collection, and the
overhead caused by the increase in page
faults when garbage is left uncollected. As
seen previously, the first component in-
creases linearly with the number of active
cells. Bishop claims that the second com-
ponent increases more than linearly with
the amount of existing garbage. He ex-
presses the second component in the form
cx a, where x is the number of uncollected
cells and c and a are parameters. Another
important variable is r, the rate at which
garbage is generated by a program. Bishop
assumes that garbage collection is per-
formed periodically, and he minimizes the

Computing Surveys, Vol 13, No 3, September 1981

358 • Jacques Cohen

cost of collection with respect to the collec-
tion frequency. The optimal frequency is
expressed as a function of the parameters
a, c, r and the number of active cells n.
Bishop's main result is that when a ~ 1 the
cost of garbage collection (per cell col-
lected) is proportional to n but inversely
proportional to r, the rate of garbage gen-
eration. He then shows that the cost of
collection can be reduced by segregating
cells with different rates of garbage gener-
ation in separate areas of the memory.

Wadler [WADL76] presents two analyses
of algorithms for real-time garbage collec-
tion. One applies to the Dijkstra-Steele
method, which uses two parallel processors:
the mutator and the collector. A c-time is
defined by Wadler as the beginning of the
collector's cycle. He also defines a f loat ing
cell as a cell which is marked by the mu-
tator or collector at a c-ttme but is released
before the beginning of the next cycle.
Floating cells are momentarily useless since
they are neither accessible by the collector
nor available to the mutator. An extremely
unfavorable situation for parallel garbage
collection occurs when the only cells that
are returned to the free list are the ones
which were floating at a c-time. Even more
unfortunately, Wadler's analytical study of
the algorithm's average performance indi-
cates that this unfavorable situation hap-
pens quite often.

Wadler then proceeds to define power
dra in as the ratio of the collector time to
the mutator time. Using this definition, it
is easy to show that the ratio of power
drains between parallel and classical gar-
bage collection can even be infinite: Con-
sider, for example, the case where no cells
are used or released. In classical garbage
collection, the power drain is zero since the
collector is never called. In parallel garbage
collection, the power drain is one since the
collector is kept busy even if it cannot re-
trieve any cells.

Wadler shows that when the two proc-
essors operate at maximum capacity, TM the
ratio of power drains is 2. This means that
parallel garbage collection requires at least
twice as much processing power as sequen-
tial garbage collection. He claims that with

14 Th in m a x i m u m c a p a o t y is d e t e r m i n e d a n a | y t m a l l y .

the falling cost of processors, this drawback
is amply offset by the advantage of avoiding
garbage collection interruptions.

Wadler also analyzes the algorithm in
which the tasks of the mutator and the
collector are time-shared by a single proc-
essor. He finds that in this case also, the
power drain is 2 if the collector is not wast-
ing time attempting to do unnecessary gar-
bage collection.

7. REMARKS ON LANGUAGE
IMPLEMENTATION

Recursion is frequently utilized in programs
which manipulate linked-list structures. A
stack is indispensable for executing these
programs. Therefore, separate regions for
the allocated cells and for the stack must
coexist in the memory. It is true that stacks
can be "simulated" by linked lists, so that
the memory stores only list structures.
However, this is both space- and time-con-
suming, because an extra field is required
to link together the data in the stack and
more complex operations are needed for
pushing and popping. It is therefore simpler
to implement the stack in contiguous posi-
tions of the memory.

It has become current practice to divide
the available memory into two areas which
are allowed to grow from opposite ends.
One of these is reserved for a stack using
contiguous locations. The other, called the
heap, is available to the allocator for pro-
viding new cells, also from contiguous lo-
cations. With this arrangement, a simple
test can be used to trigger garbage collec-
tion. When the pointer to the next free
stack position meets the pointer to the next
available position in the heap, collection
with compaction is invoked to retrieve
space for new cells or for stacking. There-
fore, the functions p u s h and new (for re-
questing new cells) may trigger garbage
collection.

In the case of LISP programs, the func-
tion new corresponds to a cons, and p u s h is
used internally by the compiler or inter-
preter. Collection can be started either by
a cons or by a stack overflow caused by
situations such as great recursion depth or
reading long atoms (see BERK64 and
COHE72).

Computmg Surveys, VoL 13, No 3, September 1981

Garbage Collection of Linked Data Structures • 359

Since the stack is used in implementing
recursion, it usually contains pointers to
active, useful cells. The marking algorithms
of Section 1 are used to mark not only the
structures referred to by the pointer vari-
ables of a program but also those structures
which are referred to by pointers on the
stack. Therefore, means must be provided
to recognize whether a stacked quantity is
a pointer (tag bits may be used for this
purpose).

LISP processors sometimes allow a user
to invoke the collector. This is useful when
he has an idea of the most propitious time
for triggering the collection. Also, the func-
tion return may be made available to the
user. When a free list is used, the returned
cells can be immediately incorporated into
the list. However, when compaction is re-
quired (e.g., with the heap and stack ar-
rangement), the returned cells may not be
available to the allocator until after the
next collection. Another problem with the
function return is that a cell may be explic-
itly returned even though there is still a
pointer to it. {This is sometimes called the
dangling reference problem.) Thus care
must be taken not to reuse the cell until
there are no pointers to it.

Processors for languages like PL/ I and
PASCAL allow a user to call the function
new and provide messages when storage is
exhausted. The use of the functions return
or collect is implementation dependent.
This author is unaware of PASCAL run-
time systems which perform fully auto-
matic garbage collection. It is the user's
responsibility to keep free lists of unused
cells and to check whether a new cell may
be obtained from a free list or must be
requested from the allocator. The tech-
niques for doing this kind of storage man-
agement are beyond the scope of this paper.

Arnborg [ARNB72] described the imple-
mentation of a SIMULA compiler designed
to operate in a virtual memory environ-
ment. SIMULA is a language with block
structure: variables declared in a block or
procedure exist only when the block or
procedure is activated. Although it would
seem at first sight that one could collect the
structures referred to by pointer variables
upon exiting from the block in which they
are declared, this is not the case. SIMULA

also allows variables of such types as
classes, arrays, and texts which may have
longer life spans than their originating
blocks; if these variables share linked struc-
tures with local block variables, collection
cannot be done when exiting from a block.

Since Arnborg's proposed implementa-
tion operated in a paging environment, one
of the objectives of the collection is to re-
duce the number of page faults. To perform
the collection, Arnborg uses a variant of the
method proposed by Fenichel and Yochel-
son [FEN169] described in Section 3. The
variant can handle varisized cells rather
than only simple LISP cells.

A SNOBOL implementation proposed by
Hanson [HANs77] uses a variation of the
garbage collection techniques for collecting
varisized cells described in Section 2. It is
assumed that additional space for the heap
and for the stack can be requested from the
operating system, although such requests
should be kept to a minimum. An effort is
made to reduce collection time by avoiding
marking cells which are known to be used
throughout the program's execution. 15 For
this purpose the heap is subdivided into
two areas of consecutive locations: heap 1
and heap 2. The first contains information
which is constantly active and never needs
to be marked; the second may contain in-
active cells which can be collected. New
cells may be requested from either area.

Collection is triggered when one of the
heaps runs out of space. The phases of
marking and compacting are applied only
to the information in heap 2, although trac-
ing and pointer readjustment in heap 1 may
be necessary. A fourth phase, "moving heap
2," may be necessary to make room for
heap 1 when an overflow of the latter trig-
gered the collection. The allocator of the
operating system is called when no cells can
be collected from heap 2.16

Certain list processors, including SNO-
BOL and LISP, need to keep symbol tables
which are updated at execution time when
new atoms are read. These symbol tables

~5 Certain implementations of LISP's list of atoms may
take advantage of thin feature.
is Note that Bishop's technique of keeping hsts of
mterarea hnks (see BIsH77) could be used to admin-
ister these heaps.

Computmg Surveys, Vol 13, No. 3, September 1981

360 • Jacques Cohen

often utilize hashing techniques and keep
linear linked lists of identifiers (atoms) hav-
ing the same hash value. The linear lists
are stored in the heap, and means must be
provided to reclaim inactive list elements.
This reclamation may be crucial in appli-
cations which use a large number of atoms.
A scheme for collecting these atoms is pro-
posed in FRIE76. A related problem is that
of collecting LISP atoms whose property
lists are shared by other atoms. A method
for collecting nonshared atoms and their
property lists is described in MooN74.

Next to LISP, ALGOL 68 is the language
for whose garbage collection implementa-
tion the most literature exists. This is not
surprising, since ALGOL 68 allows for a
variety of complex situations because of the
interaction of such features as block struc-
ture, references that can point to different
types of cells, linked structures that may
reside in the stack or in the heap, and
sharing of arrays (slices). Both the imple-
mentor and the user of the language can
take advantage of some of these features to
minimize collection time.

In ALGOL 68, each element of a cell
must be marked since structures may share
parts of cells. (A separate bit table may be
used for this purpose.) Wodon [WODO69]
suggests two possible approaches for mark-
ing varisized cells in ALGOL 68. One is the
"interpretive" approach represented by the
program of Figure 2. The parameter p is
specified by two components: the pointer,
and the type of the cell being pointed to.
This latter information could be stored in
the cell itself, but it is more economical to
precompute, at compile time, templates
which list the characteristics of each cell
type: size and a bit pattern specifying which
elements of the cell are pointers. Determin-
ing these quantities is more complex when
a pointer can refer to cells of different types.
(Templates may also contain pointers to
other templates which describe the kind of
cell referenced by each pointer.) This mark-
ing approach is called interpretive because
the information in the templates may have
to be processed several times during exe-
cution.

The second approach suggested by Wo-
don is to compile, for each program, a more
efficient marking routine specific for tracing

the cells used in that program. Detailed
descriptions (in ALGOL 68) of the interpre-
tive and compiling approaches appear in
BRAN71 and WODO71. It is believed that
the compiling approach is more efficient
than the interpretive one but requires ad-
ditional storage for the local marking rou-
tines. The given references also propose
using a compacting procedure requiring an
external break table for readjusting
pointers.

The collectors for ALGOL 68 proposed
by Marshall [MARS71] and by Goyer
[GoYE71] are also based on the classical
techniques described in Section 2. The first
uses the link-reversal technique for mark-
ing and Haddon and Waite's method
[HADD67] for compaction and pointer read-
justment. The second uses a stack for mark-
ing and a simplified version of Haddon and
Waite's compacting procedure which re-
quires an external break table. Note that
the space used by the stack can be reused
later by the break table. This additional
space is needed only during garbage collec-
tion and can be returned to the operating
system thereafter.

Baecker [BAEc70] makes recommenda-
tions on how to implement the ALGOL 68
heap in a computer with multilevel storage
and which uses segmentation (i.e., ad-
dresses are given by an integer, referring to
a segment, and an offset which specifies the
location of a word within the segment). He
also proposes introducing language con-
structs to allow a user to define different
heap areas and to request that cells be
allocated in specific areas of his choice
[BAEC75].

8. FINAL REMARKS

Tables 1-5 summarize the characteristics
of the main algorithms described in the
corresponding Sections 1-5. The number of
references presented in the bibliography
bears witness to the importance of and in-
terest in garbage collection. In spite of this
activity, many facets of garbage collection
remain to be investigated. In particular, no
comparison has been made of the relative
efficiencies of many of the algorithms de-
scribed in Sections 1-5.

New developments in hardware are likely

Computing Surveys, Vol 13, No 3, September 1981

e~
t~
F-

o

o

E
o

~ o

~ m ~ Z m

?

~ o

0
0

$

©

o ~0

0 ~ O 0 0

v

o

o

0

~ o

e',

0

~z

0

<

,-2

0

m ~

o ~

t~ ~D

~ z

Z
<

Z
0

Z

Z
a~
<

Z

0

~a

0

o

0)

z ~z

< ZZ

0 0
~ z z

~ z e

Garbage Collection of Linked Data Structures

Table 3. Collecting m V,rtual Memory

• 363

Mare refer-
Algorithm ences Auxiliary storage Comments Related work

Baker BAKE78 None Uses two semlspaces FENI69, CHEN70
Bishop BIsH77 Space for keeping mterarea Designed for use m v e r y large

lists virtual memories

Table 4. Reference Counters (m is the number of available cells)

Algo- Main references Storage needed Comments Related work
n thm

Classical COLL60, WEIZ63 An extra field (of size m) Cannot handle general KNUT73, WEIZ69
per cell circular hsts

Hybrid KNUT73, DEUT76 An extra field (of size m' Combines reference count- WINE77
<< m) per cell Auxiliary ers with classical com-
Tables pactlng garbage collection

Table 5. Parallel and Real-Time Collechon

Main ref-
Algorithm erences Storage needed Comments Related work

Parallel (Dijkstra) DIJK76b No stack and two bits Main objective is to prove MULL76, GRIE77,
per cell correctness; uses a free FRAN78, KUNC77

list
Parallel (Steele) S T E E 7 5 Stack, two bits per cell, Designed to be microcoded, WADL76, DIaK76b

and several sema- does compacting as well
phores

Baker BAKE78 Two semlspaces whose Moving of accessible cells is MINS63, 17ENI69,
sizes vary at execu- done when a new cell Is CHEN70
tlon time requested

to play an important role in speeding up
collection. It has already been suggested
that new machines should contain extra
bits per word to be used for marking, tag-
ging, or counting references. Machines with
special hardware for segmentation and list
processing have recently been constructed
[BAWD77] and are now in experimental op-
eration.

There has been an undeniable trend to-
ward designing and implementing collec-
tors for varisized cells stored in large virtual
memories. No explicit guidance based on
experimental evidence is yet available on
how to do this collection efficiently or in
real time. Two promising directions, dis-
cussed in Section 5, involve either using
parallel processors or distributing some of
the garbage collection tasks during the ac-
tual processing. It is hoped that this will
allow the collection to be performed within
a known, tolerable, maximum time.

Collection in very large virtual memories
is another subject which will become in-
creasingly important. The suggested ap-
proaches for these collections deserve fur-
ther study [BIsH77].

If these efforts in the direction of achiev-
ing efficient garbage collection succeed,
they are bound to have an impact on the
design of future programming languages.

ACKNOWLEDGMENTS

Joel Katcoff scrutlmzed every paragraph of the origi-
nal and revised manuscripts. His stress on clarity and
slmphclty, coupled with his constructwe remarks, was
of great value in producmg a better paper The ref-
erees' and editor's comments made many other im-
provements possible. In particular, one of the referees,
Peter Bishop, provided several pages of detailed sug-
gestions on how to reorgamze and make more precme
the contents of the paper. A second referee also pro-
vlded numerous constructive remarks. The author

Computing Surveys, Vol 13, No 3, September 1981

364 • J a c q u e s Cohen

learned a great deal from these people, and this paper BART77
benefited greatly from their help. Carolyn Boettner's
aid in preparing the final version of the manuscript m
gratefully acknowledged. Finally, the author wishes to
thank Jane Jordan for the care and patience with BAWD77
which she typed the text and its several revisions.

This work was supported by the National Science
Foundation under grants MCS 74-24569 A01 and MCS
79-05522. BERK64

REFERENCES
BERR78

The blbliography which follows includes a few refer-
ences which are not explicitly mentioned in the text.
Each reference is associated with a profile consisting
of a sequence of letters between braces. The letters
characterize the contents of the paper and their rela- BERZ75
tionship to the topics covered m this survey.

A: Analysis
B: Benchmarks BISH77
C- Compacting
G: General
L: Language Features and Implementation
M: Marking
N" Reference Counters BOBR67
P: Parallel and Real-Time Processing
R: Records or Vansized Cells
S: Copying and Secondary Storage
V: Virtual Memory

ARNB72 ARNBORG, S. "Storage administration
m a virtual memory simulation system,"
BIT 12, 2 (1972), 125-141 {CGLMRV}

AP~B74 ARNBORG, S. "Optimal memory man-
agement in a system with garbage collec-
tion," BIT 14, 4 (1974), 375-381. {A}

AUGE79 AUGENSTEIN, M. J , AND TENENBAUM,
A. M. Data structures and PL/ I pro- BOER75
grammmg, Prentice-Hall, Englewood
Cliffs, N.J., 1979 {GMN}

BAEC70 BAECKER, H D. "Implementing the BOER80
ALGOL 68 heap," BITIO, 4 (1970), 405-
414. {GLV}

BAEC72 BAECKER, H.D "Garbage collection
for virtual memory computer systems," BRAN71
Commun. ACM 15, 11 (Nov. 1972), 981-
986. {BCMRV}

BAEC75 BAECKER, H.D. "Areas and record-
classes," Comput J. 18, 3 (Aug. 1975),
223-226. {GL}

BAER77 BAER, J.L., AND FRIES, H. "On the ef- CAMP74
ficiency of some lint marking algo-
rithms," in Information processing 1977,
B. Gllchrist (Ed.), IFIP, North-Holland,
Amsterdam, 1977, pp 751-756. {ABM} CHEN70

BAKE78a BAKER, H.G. "Actor systems for real
time computation," Lab. for Computer
Science, MIT Rep. TR-197, M.I.T., Cam- CLAR75
bridge, Mass., March 1978 (see
BAKE78b)

BAKE78b BAKER, H.G. "List-processing in real CLAR76
tnne on a serial computer." Commun.
ACM 21, 4 (April 1978), 280-294
(ACGMNPRSV}

BOBR68a

BoBR68b

BARTH, J.M. "Shifting garbage coUec-
tlon overhead to compile time," Com-
mun. ACM 20, 7 (July 1977), 513-
518. (LN}
BAWDEN, A., GREENBLATT, R., HOLLO-
WAY, J., KNIGHT, T., MOON, D., AND
WEINREB, D. "Lisp machine progress
report," Memo 444, A.I Lab, M.I.T.,
Cambridge, Mass., Aug. 1977 {G}
BERKELEY, E.C., AND BOBROW, D G.
(Eds.) The programmmg language
LISP, M.I.T., Cambridge, Mass. 1974,
4th printing. {GL}
BERRY, D M., AND SORKIN, A. "Tune
required for garbage collection in reten-
tion block-structures languages," Int. J.
Comput. Informatmn Sci. 7, 4 (1978),
361-404. {AL}
BERZTmS, A.T. Data structures theory
and practwe, 2nd ed., Academic Press,
New York, 1975. {G}
BISHOP, P.B. "Computer systems with
a very large address space and garbage
collection," Lab. for Computer Science,
MIT Rep., TR-178, M.I.T., Cambridge,
Mass., May 1977. {ACGLMRSV}
BOBROW, D.G., AND MURPHY, D.L.
"Structure of a LISP system using two-
level storage," Commun. ACM 10, 3
(March 1967), 155-159. {V}
BOBROW, D.G. Storage management m
Lisp, m symbol manipulation languages
and techmques, D. G. Bobrow (Ed.),
North-Holland, Amsterdam, 1968.
{CGMV}
BOBROW, D.G., AND MURPHY, D.L. "A
note on the efficiency of a LISP compu-
tation in a paged machine," Commun.
ACM 11, 8 (Aug. 1968), 558-560. {V}
BORROW, D.G. "A note on hash link-
ing," Commun. ACM 18, 7 (July 1975),
413-415 {N}
BORROW, D.G. "Managing reentrant
structures using reference counts," ACM
Trans. Programming Lang. Syst. 2, 3
(July 1980), 269-273. {N}
BRANQUART, P, AND LEWI, J. "A
scheme of storage allocation and garbage
collection for Algol 68," m Algol 68 ,m-
plementat~on, J. E L. Peck, (Ed.),
North-Holland, Amsterdam, 1971, pp.
199-238. {CGLMR}
CAMPBELL, J.A. "Optimal use of stor-
age in a simple model of garbage collec-
tion," Inf. Process Lett. 3, 2 (Nov. 1974),
37-38. {A}
CHENEY, C.J. "A nonrecurslve list
compacting algorithm," Commun. A CM
13, 11 (Nov. 1970), 677-678. {CRSV}
CLARK, D.W. "A fast algorithm for
copying binary trees," Inf. Process. Lett
9, 3 {Dec. 1975), 62-63. {AC}
CLARK, D.W. "An efficient lint moving
algorithm using constant workspace,"
Commun. ACM 19, 6 (June 1976), 352-
354. (CRS}

Computing Surveys, Vol 13, No 3, September 1981

CLAR77

CLAR78a

CLAR78b

CLAR79

COHE67a

COHE67b

COHE72

COLL60

DEUT76

DIJK76a

DIJK76b

DWYE73

ELSO75

FENI69

FEN171

FISH74

FISH75

Garbage Collectmn of Linked Data Structures • 365

CLARK, D.W., AND GREEN, C.C. "An
empmcal study of list structure in Lisp,"
Commun. A C M 20, 2 (Feb. 1977), 78- FITC78
86. (BV}
CLARK, D.W. "A fast algorithm for
copying list structures," Commun ACM
21, 5 (May 1978), 351-357. (ACRS} FOST68
CLARK, D.W., AND GREEN, C.C. "A
note on shared list structure in Lmp,"
Inf. Process. Lett 7, 6 (Oct. 1978), 312- FRAN78
314. {B}
CLARK, D.W. "Measurements of dy-
namic list structure in Lmp," I E E E
Trans Softw. Eng. SE-5, 1 (Jan 1979), FRIE76
51-59. {BV}
COHEN, J. "Use of fast and slow mem-
ones in list-processing languages," Com-
mun. A C M 1O, 2 (Feb. 1967), 82- FRIE79
86. {V}
COHEN, J., AND TRILLING, L.
"Remarks on garbage collection using a
two level storage," B I T 7, 1 {1967), 22-
30. {BCMV} GERH79
COHEN, J., AND ZUCKERMAN, C.
"Evalquote in simple Fortran A tutorial
on interpreting Lisp," B I T 12, 3 {1972),
299-317. {CGM}
COLLINS, G.E. "A method for overlap- GOTL78
ping and erasure of hsts," Commun
A C M 3 , 12 (Dec 1960), 655-657. {N}
DEUTSCH, L.P., AND BOBROW, D G
"An efficient incremental automatic gar- GOYE71
bage collector," Commun ACM 19, 9
(Sept. 1976), 522-526. {CGLNV}
DIJKSTRA, E.W. A d~sc~phne of pro-
grammmg, Prentice-Hall, Englewood
Cliffs, N J., 1976, Chap. 14. {G} GRIE77
DIJKSTRA, E.W, LAMPORT, L., MARTIN,
A.J , SCHOLTEN, C.S., AND STEFFENS,
E.F.M. "On-the-fly garbage collectmn: GRIE79
An exercise m cooperation," m Lecture
Notes in Computer Scwnce, No. 46,
Spnnger-Verlag, New York, 1976, also GRIS72
appeared m Commun. A C M 21, 11
(Nov. 1978), 966-975. {P}
DWYER, B. "Simple algorithms for tra- HADD67
versing a tree without an auxflmry
stack," Inf. Process. Lett. 2, 5 (Dec.
1973), 143-145. {M)
ELSON, M. "Data structures," Scmnce HANS69
Research Associates, 1975. {CGMN}
FENICHEL, R., AND YOCHELSON, J. "A
LISP garbage-collector for virtual-mem-
ory computer systems," Commun. A C M
12, 11 (Nov. 1969), 611-612. {CSV} HANS77
FENICHEL, R. "List tracing m systems
allowing multiple cell-types," Commun.
A C M 14, 8 (Aug. 1971), 522-526.
(MLR} HART64
FISHER, D.A. "Bounded workspace
garbage collection in an address order
preserving list processing environment," HOAR74
Inf. Process. Lett. 3, 1 (July 1974), 29-
32. {CMR}
FISHER, D.A. "Copying cyclic list HORO77
structure in linear time using bounded

workspace," Commun. A C M 18, 5 (May
1975), 251-252. (CS}
FITCH, J.P., AND NORMAN, A.C. "A
note on compacting garbage collection,"
Comput. J. 21, 1 (Feb. 1978), 31-
34. {ABCR}
FOSTER, J.M. L~st processing, Elsevier
Computer Monographs, Elsevier-North
Holland, New York, 1968. {G}
FRANCEZ, N. "An apphcahon of a
method for analysis of cyclic programs,"
I E E E Trans. Softw. Eng. 4, 5 {Sept.
1978), 371-377. {P}
FRIEDMAN, D.P., AND WISE, D.S.
"Garbage collecting a heap which in-
cluded a scatter table," Inf. Process.
Lett. 5, 6 (Dec 1976), 161-164. {LM}
FRIEDMAN, D.P., AND WlSE, D.S.
"Reference counting can manage the cir-
cular environments of mutual recur-
mon," Inf. Process. Lett. 8, 1 (Jan. 1979),
41-45. {N}
GERHART, S.L. "A derivation oriented
proof of Schorr-Waite marking algo-
rithm," in Lecture notes ~n computer
science, vol. 69, Springer-Verlag, New
York, 1979, pp 472-492. {M}
GOTLIEB, C C., AND GOTLIEB, L.R
Data types and structures, Prentice-
Hall, Englewood Cliffs, N.J., 1978.
{CGMR}
GOYER, P. "A garbage collector to be
implemented on a CDC 3100," in Algol
68 zmplementatlon, J. E. L. Peck (Ed.),
North-Holland, Amsterdam, 1971, pp
303-317. {CLMR}
GRIES, D. "An exercme in proving par-
allel programs correct," Commun. A C M
20, 12 (Dec. 1977), 921-930 (P}
GRIES, D. "The Schorr-Waite graph
marking algorithm," Acta Inf. 11, 3
(1979), 223-232. (M}
GRISWOLD, R.E. The macro ~mplemen-
rattan of Snobol 4, W. H. Freeman, San
Francisco, 1972. {GM)
HADDON, B.K., AND WAITE, W M. "A
compaction procedure for variable
length storage elements," Comput. J. 10
(Aug. 1967), 162-165. {CR}
HANSEN, W.J. "Compact hst represen-
tation' Definition, garbage collection,
and system implementahon," Commun.
A C M 12, 9 {Sept. 1969), 499-507.
{CGRS}
HANSON, D.R. "Storage management
for an implementation of Snobol 4," Soft-
ware: Practwe and Experience 7, 2
(1977), 179-192. (BCMLR}
HART, T.P., AND EVANS, T.G. "Notes
on implementing hsp for the M 460 com-
puter," in BERK64. {C}
HOARE, C.A.R. "Optimizatmn of store
size for garbage collectmn," Inf Process
Left 2, 6 (April 1974), 165-166. (A}
HOROWITZ, E., AND SAHNI, S
Fundamentals of data structure, Corn-

CompuUng Surveys, Vol 13, No 3, September 1981

366 •

JONK79

KAIN69

KNUT73

KOWA79

KUNG77

KURO75

KURO79

LAMP76

LANG72

LARS77

LEE79

LEE80

LIEB80

LIND73

LIND74

Jacques Cohen

puter Science Press, Woodland Hills, MARS71
Calif., 1977. {ACGMR}
JONKERS, H.B.M. "A fast garbage com-
paction algorithm," Inf Process. Lett. 9,
1 (July 1979), 26-30. {CR} MINS63
KaIN, Y. "Block structures, indirect
addressing, and garbage collection,"
Commun. ACM 12, 7 (July 1969), 395-
398. (L}
KNUTH, D E. The art of computer pro- MOON74
grammmg, vol. I. Fundamental algo-
rithms, Addison-Wesley, Reading,
Mass., 1973 {ACGMNPRS} MORR78
KOWALTOWSKI, W "Data structures
and correctness of programs," J. ACM
26, 2 (April 1979), 283-301 {M}
KUNG, H.T., AND SONG, S.W "An el- MORR79
ficient parallel garbage collection system
and its correctness proof," Dep Com-
puter ScL, Carnegm-Mellon Univ., Pitts-
burgh, Sept. 1977. (AP} MULL76
KUROKAWA, T. "New marking algo-
rithms for garbage collectmn," Collec-
tmn, m Proc. 2nd USA-Japan Com-
puter Conf, 1975, pp. 580-584. (BM} Owic81
KUROKAWA, T. "A new fast and safe
marking algorithm," Toshiba R&D Cen-
ter, Kawasakl 210, Japan, Jan. 1979.
(BM} PARE68
LAMPORT, L. "Garbage collection with
multiple processes: An exercise in paral-
lelism," Proc. IEEE Conf. Parallel
Processing, Aug 1976. {P}
LANG, B., AND WEGBREIT, B. "Fast PFAL77
compactlfication," Rep. 25-72, Harvard
Umv., Cambridge, Mass., Nov. 1972.
(CMR} REIN73
LARSON, R.G "Mmhmizmg garbage
collection as a function of region size,"
SIAM J. Computing 6, 4 (Dec. 1977), ROBS73
663-668. (AV}
LEE, S., DE ROEVER, W.P, AND GER-
HART, S. "The evolution of hst-copymg
algorithms," in 6th ACM Syrup Pr~nct- ROBS77
ples of Programming Languages (San
Antonio, Tex), Jan. 1979, pp. 53-56.
(MS)
LEE, K.P. "A linear algorithm for copy- ROCH71
ing binary trees using bounded work-
space," Commun. ACM 23, 3 (March
1980), 159-162 {S) Ross67
LIEBERMAN, H., AND HEWITT, C. "A
real-time garbage collector that can re-
cover temporary storage qmckly," MIT SCHO67
Lab for Computer Scmnce Rep TM-
184, M.I.T., Cambridge, Mass., July
1980. (PV}
LINDSTROM, G. "Scannmg list struc-
tures without stacks or tag bits," Inf. SIKL72
Process Lett 2, 2 {June 1973), 47-
51. (M}
LINDSTROM, G "Copying list struc-
tures using bounded workspace," Corn- STAN80
mun. ACM 17, 4 (April 1974}, 198-
202. (CS}

MARSHALL, S. "An Algol-68 garbage
collector," in Algol 68 ~mplementat~on,
J. E L. Peck (Ed), North-Holland, Am-
sterdam, 1971, pp. 239-243. (CLMR}
M1NSKY, M.L. "A Lmp garbage collec-
tor algorithm using serial secondary stor-
age," Memo 58 (rev.), Project MAC,
M.IT., Cambridge, Mass., Dec. 1963.
(cs}
MOON, D.A. "MACLlsp reference
manual," Project MAC, M.I.T, Cam-
bridge, Mass., April 1974. (GM}
MORRIS, F L. "A time- and space-effi-
cient garbage compaction algorithm,"
Commun. ACM 21, 8 (Aug 1978}, 662-
665. (CGR}
MORRIS, F.L. "On a comparison of gar-
bage collection techmques," technical
correspondence, Commun ACM 22, 10
(Oct. 1979), 571. {C}
MULLER, K G. "On the feasibility of
concurrent garbage collection," Ph.D.
thesis, Tech Hogeschool Delft, March
1976. (P}
OwmKI, S "Making the world safe for
garbage collection," in Proc ACMSymp.
Prmctples of Programming Languages
(Williamsburg), Jan. 1981. (LP}
PARENTE, R J. "A simulation-oriented
memory allocation algorithm," in S~mu-
latmn Programming Languages, J. N.
Buxton (Ed), North-Holland, Amster-
dam, 1968, pp 198-209 {CL}
PFALZ, J L Computer data structures,
McGraw-Hill, New York, 1977.
(CGMR}
REINGOLD, E.M. "A nonrecurslve hst
moving algorithm," Commun. ACM 16,
5 (May 1973), 305-307. {CS}
ROBSON, J M. "An Improved algorithm
for traversing binary trees without aux-
iliary stack," Inf. Process Lett. 2, 1
(March 1973}, 12-14 {M}
ROBSON, J.M. "A bounded storage al-
gorithm for copying cychc structures,"
Commun. ACM 20, 6 (June 1977), 431-
433 (CSR)
ROCHFELD, A "New LISP techmques
for a paging environment," Commun.
ACM 14, 12 (Dec 1971), 791-795. (V)
Ross, D.T "The AED free storage
package," Commun. ACM 10, 8 (Aug.
1967), 481-492. (GR}
SCHORR, H., AND WAITE, W. "An effi-
cmnt machme-independent procedure
for garbage collection in various hst
structures," Commun. ACM 10, 8 (Aug.
1967), 501-506. {MR}
SIKLOSSY, L "Fast and read-only al-
gorithms for traversing trees without an
auxiliary stack," Inf Process. Lett. 1, 4
(June 1972), 149-152. (M}
STANDISH, T.A. Data structures tech-
niques, Addison-Wesley, Reading,
Mass., 1980. (ACGMNPRSV}

CompuUng Surveys, Vol 13, No 3, September 1981

STEE75

TERA78

THOR72

THOR76

ToPO79

VEIL76

WADL76

WAIT73

WALD72

WEGB72a

WEGB72b

Garbage Collection of Linkecl Data Structures • 367

STEELE, G.L. "Multlprocessmg com-
pactifymg garbage collection," Commun
ACM 18, 9 (Sept. 1975), 495-508.
{CGP} WEIS67
TERASHIMA, M., AND GOTO, E.
"Genetic order and compactlfymg gar- WEIZ63
bage collectors," Inf. Process. Lett. 7, 1
(Jan. 1978), 27-32. {CR}
THORELLI, L.E. "Marking algorithms," WEIZ69
BIT 12, 4 (1972), 555-568. {MR)
THORELLI, L.E "A fast compactlfying
garbage collector," BIT 16, 4 (1976), WISE77
426-441 {CMR}
TOPOR, R. "The correctness of the
Schorr-Waite list marking algorithm," WISE79
Acta Inf. 11, 3 (1979), 211-221 {M)
VEILLON, G. "Transformations de pro-
grammes recursifs," R A. IR 0. Infor-
mat~que 10, 9 (Sept. 1976), 7-20. (M}
WADLER, P.L. "Analysis of an algo-
rithm for real time garbage collectmn,"
Commun. ACM 19, 9 (Sept 1976), 491-
500. {AP}
WAITE, W.M. Implementing software
for non-numeric apphcatmns, Prentice-
Hall, Englewood Chffs, N.J , 1973.
{GCR} YELO77
WALDEN, D.C. "A note on Cheney's
nourecursive list-compacting algo-
rithm," Commun ACM 15, 4 {April
1972), 275. {CS}
WEGBREIT, S. "A generalized compac-
tffymg garbage collector "Comput. J. 15, ZAVE75
3 (Aug. 1972), 204-208. {CGMR)
Wegbreit, B. "A space efficmnt hst

WODO69

WODO71

structure tracmg algorithm," IEEE
Trans Computers C21 {Sept. 1972),
1009-1010 {M}
WEISSMAN, C. L~sp 1 5 primer, Dick-
enson Publ., Belmont, Calif, 1967. {G}
WEIZENBAUM, J. "Symmetriclist proc-
essor," Commun ACM 6, 9 (Sept. 1963),
524-544. (LN}
WEIZENBAUM, J. "Recovery of reen-
trant list structures m SLIP," Commun.
A CM12, 7 (July1969),370-372. {LMN}
WISE, D.S., AND FRIEDMAN, D.P. "The
one-bit reference count," BIT 17, 4
(1977), 351-359. (GLN}
WISE, D.S. "Morris' garbage compac-
hon algorithm restores reference
counts," ACM Trans. Programm Lang
Syst. 1, 1 (July 1979), 115-120. (CNR}
WODON, P.L. "Data structure and stor-
age allocation," BIT 9, 3 (1969), 270-
282. (CGLMR}
WODON, P.L. "Methods of garbage col-
lection for Algol 68," m Algol 68 tmple-
mentatmn, J. E. L Peck (Ed.), North-
Holland, Amsterdam, 1971, pp. 245-
262. (CGLMR}
YELOWITZ, L., AND DUNCAN, A G
"Abstractions, instantiations and proofs
of marking algorithms," in Proc. Syrup.
Art~ficml Intelhgence and Program-
m~ng Languages, S~gplan Notices
(ACM) 12, 8 (Aug. 1977), 13-21
ZAVE, D.A. "A fast compacting garbage
collector," Inf. Process Lett. 3, 6 (July
1975), 167-169. {CMR}

Computing Surveys, Vol 13, No 3, September 1981

