B. Randell
Editor

Operating
Systems

Concurrent Control
with “Readers” and
“Writers”

P.J. Courtois,* F. Heymans, and
D.L. Parnas*

MBLE Research Laboratory
Brussels, Belgium

The problem of the mutual exclusion of several
independent processes from simultaneous access to a
“‘critical section’’ is discussed for the case where there
are two distinct classes of processes known as “readers’’
and ““writers.”’ The ‘“‘readers’’ may share the section
with each other, but the “writers’’ must have exclusive
access. Two solutions are presented: one for the case
where we wish minimum delay for the readers; the other
for the case where we wish writing to take place as early
as possible.

Key Words and Phrases: mutual exclusion, critical
section, shared access to resources

CR Categories: 4.30, 4.32

* Present address: Department of Computer Science, Car-
negie-Mellon University, Pittsburgh, Pa 15213
Copyright © 1971, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted, provided that reference is made to this
publication, to its date of issue, and to the fact that reprinting
privileges were granted by permission of the Association for
Computing Machinery.

667

Dijkstra [1], Knuth [2], and de Bruijn [3] have dis-
cussed the problem of guaranteeing exclusive access to
a shared resource in a system of cooperating sequential
processes. The problem they deal with has been shown
to have a relatively simple solution using the “P”” and
“V? operations of Dijkstra [4]. We discuss two related
problems of practical significance in which we recognize
two classes of processes wishing to use the resource.
The processes of the first class, named writers, must
have exclusive access as in the original problem, but
processes of the second class, the readers, may share
the resource with an unlimited number of other readers.

Problem 1

We demand of our solution that no reader be kept
waiting unless a writer has already obtained permission
to use the resource; i.e. no reader should wait simply
because a writer is waiting for other readers to finish.
In this case the solution presented is quite simple, but
our experience has shown that it is not easily arrived at.
Numerous solutions, which have quite unreasonable
complexity, have been proposed. The following solution
resulted from several cycles among the authors in which
each simplified a solution shown him by another. We
present it in hope that others may be spared the effort
of solving again this rather common problem. See Fig-
ure 1.

Please notice that w functions as a mutual exclusion
semaphore for the writer but is only used by the first
reader to enter the critical section and the last reader
to leave it. It is ignored by readers who enter or leave
while other readers are present. mutex ensures that only
one reader will enter or leave at a time thereby elimi-
nating the possibility of ambiguity about which process

Communications October 1971
of Volume 14
the ACM Number 10



Fig. 1

integer readcount ; (initial value = 0)
semaphore mutex, w ; (initial value for both = 1)

READER WRITER
P(mutex) ;
readcount := readcount + 1 ;
if readcount = 1 then P(w) ;
V(mutex) ;
Pw) ;

reading is performed writing is performed
P(mutex) ;
readcount := readcount — 1 ;
if readcount = O then V(w) ;
V(mutex) ;

Viw);

is responsible for adjusting w. w will be positive if and
only if there are no readers and no writers present in
the critical section.

Problem 2

Here we retain the requirement that writers must
have exclusive access while readers may share, but we
add the requirement that once a writer is ready to write,
he performs his “write” as soon as possible. A solution
to this problem cannot be a solution to Problem 1 be-
cause to meet this requirement a reader who arrives
after a writer has announced that he is ready to write
must wait even if the writer is also waiting. For the first
problem it was possible that a writer could wait in-
definitely while a stream of readers arrived. In this
problem we give priority to writers and allow readers
to wait indefinitely while a stream of writers is working.
On general principles we require that the solution give
priority to writers without making any assumptions
about priority being built into the ¥ routine. In other
words, where several processes are waiting at a sema-
phore, we cannot predict which one will be allowed to
proceed as the result of a V" operation.

We propose the solution shown in Figure 2.

The reader should first note that the use of mutex 1
and w corresponds exactly to the use of mutex and w in
the solution to Problem 1. The semaphore 7 is used to
protect the act of entering the critical section in the
same way that w is used to protect the shared resource
in Problem 1. The first writer to pass P(r) will block
readers from entering the section which manipulates
mutex 1 and w. mutex 2 is used here for writers just as
mutex is used for readers in Problem 1. mutex 3 is
necessary because of our absolute insistence on priority
for writers. Without mutex 3 we have the possibility
that a writer and one or more readers will be simul-

668

Fig. 2

integer readcount, writecount ; (initial value = 0)
semaphore mutex 1, mutex 2, mutex 3, w, r ; (initial value = 1)

READER WRITER
P(mutex 3) ; P(mutex 2) ;

Py ; writecount := writecount + 1 ;
P(mutex 1) ; if writecount = 1 then P(r) ;
readcount = readcount + 1 ; V{(mutex 2) ;
if readcount = 1 then P(w) ; P(w) ;

V({mutex 1) ;

v ;

V(mutex 3) ;
reading is done writing is performed

P(mutex 1) ;

Viw) ;
readcount := readcount — 1 ; P(mutex 2) ;
if readcount = 0 then V(w) ; writecount := writecount — 1 ;
V(mutex 1) ; if writecount = 0 then V{r) ;
V(mutex 2) ;

taneously waiting for a V(r) to be done by a reader.
In that event we could not guarantee priority to the
writer. mutex 3 guarantees a reader exclusive access to
the block of code from “P(r)” to “¥(r)” inclusive. As
a result there will be at most one process ever waiting
at r, and the result of a V is clear.

Final Remarks

The reader will note that the above solutions do not
guarantee a FIFO discipline for the writers. To provide
such a guarantee we must cither assume further proper-
ties of the V¥ operation or make use of an array of n
semaphores where # is the number of writers.

Acknowledgment. We are grateful to A.N. Haber-
mann of Carnegie-Mellon University for having shown
us an error in an earlier version of this report.

References

1. Dijkstra, E.W. Solution of a problem in concurrent
programming control. Comm. ACM 8,9 (Sept. 1965), 569.

2. Knuth, D.W. Additional comments on a problem in concurrent
programming control. Comm. ACM 9, 5 (May 1966), 321-322.

3. de Bruijn, N.G. Additional comments on a problem in
concurrent programming control. Comm. ACM 10, 3 (Mar. 1967),
137-138.

4. Dijkstra, E.-W. The structure of the “THE”-multiprogramming
system. Comm. ACM 11, 5 (May 1968), 341-346.

Communications October 1971
of Volume 14
the ACM Number 10



