
Programming T.A. Standish
Languages Editor

Guarded Commands,
Nondeterminacy and
Formal Derivation
of Programs
Edsger W. Dijkstra
Burroughs Corporation

So-called "guarded commands" are introduced as a
building block for alternative and repetitive constructs
that allow nondeterministic program components for
which at least the activity evoked, but possibly even the
final state, is not necessarily uniqilely determined by the
initial state. For the formal derivation of programs
expressed in terms of these constructs, a calculus will be
be shown.

Key Words and Phrases: programming languages,
sequencing primitives, program semantics, programming
language semantics, nondeterminacy, case-construction,
repetition, termination, correctness proof, derivation of
programs, programming methodology

CR Categories: 4.20, 4.22

Copyright © 1975, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

Author's address: Burroughs, Plataanstraat 5, Nuenen--4565,
The Netherlands.

453

1. Introduction

In Section 2, two statements, an alternative con-
struct and a repetitive construct, are introduced, to-
gether with an intuitive (mechanistic) definition of their
semantics. The basic building block for both of them
is the so-called "guarded command , " a statement list
prefixed by a boolean expression: only when this
boolean expression is initially true, is the statement list
eligible for execution. The potential nondeterminacy
allows us to map otherwise (trivially) different programs
on the same program text, a circumstance that seems
largely responsible for the fact that programs can now
be derived in a manner more systematic than before.

In Section 3, after a prelude defining the notation,
a formal definition of the semantics of the two con-
structs is given, together with two theorems for each
of the constructs (without proof).

In Section 4, it is shown how, based upon the above,
a formal calculus for the derivation of programs can
be founded. We would like to stress that we do not
present "an algori thm" for the derivation of programs:
we have used the term "a calculus" for a formal dis-
c ipl ine--a set of rules--such that, if applied successfully:
(1) it will have derived a correct program; and (2) it
will tell us that we have reached such a goal. (We use
the term as in "integral calculus.")

2. Two Statements Made from Guarded Commands

I f the reader accepts "other statements" as indi-
cating, say, assignment statements and procedure calls,
we can give the relevant syntax in Br~F [2]. In the follow-
ing we have extended BNF with the convention that the
braces { ... } should be read as "followed by zero or more
instances of the enclosed."

(guarded command) : := (guard) ~ (guarded list)
(guard) : := (boolean expression)
(guarded list) :: = (statement) { ; (statement) }
(guarded command set) : := (guarded command)

{ ~ (guarded command) }
(alternative construct) :: = if (guarded command set) fi
(repetitive construct) :: = do (guarded command set) od
(statement) : := (alternative construct) [

(repetitive construct) I "other statements"

The semicolons in the guarded list have the usual
meaning: when the guarded list is selected for execu-
tion its statements will be executed successively in the
order from left to right; a guarded list will only be

Communications August 1975
of Volume 18
the ACM Number 8

selected for execution in a state such that its guard is
true. Note that a guarded command by itself is not a
statement: it is a component of a guarded command
set from which statements can be constructed. If the
guarded command set consists of more than one guarded
command, they are mutually separated by the sepa-
rator [~ ; our text is then an arbitrarily ordered enumera-
tion of an unordered set; i.e. the order in which the
guarded commands of a set appear in our text is seman-
tically irrelevant.

Our syntax gives two ways for constructing a state-
ment out of a guarded command set. The alternative
construct is written by enclosing it by the special
bracket pair i f . . . fi. If in the initial state none of the
guards is true, the program will abort; otherwise an
arbitrary guarded list with a true guard will be selected
for execution.

Note. If the empty guarded command set were al-
lowed if fi would be semantically equivalent to "abor t" .
(End of note.)

An example--illustrating the nondeterminacy in a
very modest fashion--would be the program that for
fixed x and y assigns to m the maximum value of x
and y:

i f x > y - - , m := x
~ y > _ x - - , m : = y
fi.

The repetitive construct is written down by enclos-
ing a guarded command set by the special bracket pair
d o . . . od. Here a state in which none of the guards is
true will not lead to abortion but to proper termina-
tion; the complementary rule, however, is that it will
only terminate in a state in which none of the guards
is true: when initially or upon completed execution of a
selected guarded list one or more guards are true, a
new selection for execution of a guarded list with a
true guard will take place, and so on. When the repeti-
tive construct has terminated properly, we know that
all its guards are false.

Note. If the empty guarded command set were
allowed do od would be semantically equivalent to
"skip". (End of note.)

An example--showing the nondeterminacy in some-
what greater glory--is the program that assigns to
the variables ql, q2, q3, and q4 a permutation of the
values Q1, Q2, Q3, and Q4, such that ql _< q2 _<
q3 < q4. Using concurrent assignment statements for
the sake of convenience, we can program

ql, q2, q3, q4 := Q1, Q2, Q3, Q4;
do ql > q2 ~ ql, q2 := q2, ql
[7 q2 > q3 ~ q2, q3 := q3, q2
[~ q3 > q4 ~ q3, q4 := q4, q3
Qd.

To conclude this section, we give a program where
not only the computation but also the final state is not
necessarily uniquely determined. The program should

determine k such that for fixed value n (n > 0) and a
fixed functionf(i) defined for 0 < i < n, k will eventually
sat isfy:0 < k < n a n d (V i :0 _< i < n:f (k) >_f(i)).
(Eventually k should be the place of a maximum.)

k : = 0 ; j : = 1;
d o j ~ n ~ i f f (j) < f (k) ~ j : = j q - 1

[~f(j) >_ f (k) ~ k := j ; j := j q- 1
fi

od.

Only permissible final states are possible and each
permissible final state is possible.

3. Formal Definition of the Semantics

3.1 Notational Prelude
In the following sections we shall use the symbols

P, Q, and R to denote (predicates defining) boolean
functions defined on all points of the state space;
alternatively we shall refer to them as "condit ions,"
satisfied by all states for which the boolean function is
true. Two special predicates that we denote by the
reserved names T and F play a special role: T denotes
the condition that, by definition, is satisfied by all
states; F denotes, by definition, the condition that is
satisfied by no state at all.

The way in which we use predicates (as a tool for
defining sets of initial or final states) for the definition
of the semantics of programming language constructs
has been directly inspired by Hoare [1], the main dif-
ference being that we have tightened things up a bit:
while Hoare introduces sufficient pre-conditions such
that the mechanisms will not produce the wrong result
(but may fail to terminate), we shall introduce necessary
and sufficient--i.e, so-called "weakest"--pre-condi-
tions such that the mechanisms are guaranteed to
produce the right result.

More specifically: we shall use the notation wp(S, R),
where S denotes a statement list and R some condition
on the state of the system, to denote the weakest pre-
condition for the initial state of the system such that
activation of S is guaranteed to lead to a properly
terminating activity leaving the system in a final state
satisfying the post-condition R. Such a wp--which is
called "a predicate transformer" because it associates a
pre-condition to any post-condition R--has , by defini-
tion, the following properties.

1. For any S, we have for all states: wp(S,F) = F (the
so-called Law of the Excluded Miracle).
2. For any S and any two post-conditions, such that
for all states P ~ Q, we have for all states:
wp(S,P) ~ wp(S, Q).
3. For any S and any two post-conditions P and
Q, we have for all states (wp(S,P) and wp(S,Q)) =
wp(S,P and Q).
4. For any deterministic S and any post-conditions P

454 Communications August 1975
of Volume 18
the ACM Number 8

and Q, we have for all states (wp(S,P) or wp(S,Q))
= wp(S,P or Q).

For nondeterministic mechanisms S, the equality has to
be replaced by an implication; the resulting formula
follows from the second property.

Together with the rules of propositional calculus and
the semantic definitions to be given below, the above four
properties take over the role of the "rules of infer-
ence" as introduced by Hoare [1].

We take the position that we know the semantics oi'
a mechanism S sufficiently well if we know its predicate
transformer, i.e. can derive wp(S,R) for any post-con-
dition R.

Note. We consider the semantics of S only defined
for those initial states for which has been established
a priori that they satisfy wp(S,T), i.e. for which proper
termination is guaranteed (even in the face of possibly
non-deterministic behavior); for other initial states we
don' t care. By suitably changing S, if necessary, we
can always see to it that wp(S,T) is decidable. (End of
note.)

Example 1. The semantics of the empty statement,
denoted by "skip" are given by the definition that for
any post-condition R, we havewp ("skip", R) = R.

Example 2. The semantics of the assignment state-
ment "x := E" are given by wp("x := E", R) = REx,
in which RB ~ denotes a copy of the predicate defining R
in which each occurrence of the variable x is replaced
by (E).

Example 3. The semantics of the semicolon ";" as
concatenation operator are given by
wp("Sl ; $2", R) = wp(Sl, wp(S2,R)).

lead to a properly terminating activity leaving the sys-
tem in a final state such that the value of t is decreased
by at least 1 (compared to its initial value). In terms of
wdec we can formulate the very similar:

THEOREM 2. From (Vi : 1 < i < n : (Q and B~)
wdec(SLi,t)) for all states we can conclude that

(Q and BB) ~ wdec(IF, t) holds for all states.
Note (which can be skipped at first reading). The

relation between wp and wdec is as follows. For any
point X in state space we can regard wp(S, t <_ to) as
an equation with to as the unknown. Let its smallest
solution for to be tmin(X). (Here we have added the
explicit dependence on the state X.) Then train(X) can
be interpreted as the lowest upper bound for the final
value of t if the mechanism S is activated with X as initial
state. Then, by definition, wdec(S, t) = (tmin(X) <_
t(X) - 1) = (tmin(X) < t(X)). (End of note.)

3.3 The Repetitive Construct
As is to be expected, the definition of the repetitive

construct

do B1 - - o S L x ~] . • • [7 B n ---o SL, od,

that we denote by DO, is more complicated. Let

H o (R) = (R and non BB)

and f o r k > 0,

Hk(R) = (wp(1F, Hk_I(R)) or Ho(R))

(where IF denotes the same guarded command set en-
closed by "if fi"). Then, by definition

3.2 The Alternative Construct
In order to define the semantics of the alternative

construct we define two abbreviations.
Let IF denote

if B x - - o SL1 [7 . . • [7 B ~ - - o SL~ fi;

let BB denote

(':li : 1 < i < n :Bi) ;

then, by definition

wp(IF, R) = (BB and (Vi : 1 < i < n : Bi ~ wp(SL~,R)),.

(The first term BB requires that the alternative construct
as such will not lead to abortion on account of all
guards false; the second term requires that each guarded
list eligible for execution will lead to an acceptable
final state.) From this definition we can derive--by
simple substitutions:

THEOREM 1. From (Vi : 1 < i < n : (Q and Bi)
wp(SLi,R)) for all states we can conclude that (Q and
BB) ~ wp(1F, R) holds for all states.

Let t denote some integer function, defined on the
state space, and let wdec(S,t) denote the weakest pre-
condition such that activation of S is guaranteed to

wp(DO, R) = (3k : k >_ 0 : Hk(R)).

(Intuitively, Hk(R) can be interpreted as the weakest
pre-condition guaranteeing proper termination after
at most k selections of a guarded list, leaving the
system in a final state satisfying R.)Via mathematical
induction we can prove:

THEOREM 3. I f we have for all states (P and BB)
(wp(1F, P) and wdec(IF, t) and t >__ 0) we can conclude
that we have for all states P ~ wp(DO, P and non BB).

Note. The antecedent of Theorem 3 is of the form
of the consequents of Theorems 1 and 2. (End of note.)

Because T is the condition by definition satisfied by
all states, wp(S,T) is the weakest pre-condition guaran-
teeing proper termination for S. This allows us to
formulate an alternative theorem about the repetitive
construct, viz. :

THEOREM 4. From (P and BB) ~ wp(IF, P) f o r all
states, we can conclude that we have for all states
(P and wp(DO, T)) ~ wp(DO, P and non BB).

Note. In connection with the above theorems, P
is called "the invariant relation" and t is called "the
variant function." Theorems 3 and 4 are easily proved
by mathematical induction, with k as the induction
variable. (End of note.)

455 Communications August 1975
of Volume 18
the ACM Number 8

4. Formal Derivation of Programs

The formal requirement of our program performing
m := max(x ,y) - - see above-- i s that for fixed x and y
it establishes the relation

R: (m = x o r m = y) a n d r n > _ x a n d m > _ y .

Now the Axiom of Assignment tells us that
"rn := x" is the standard way of establishing the t ruth
of m = x for fixed x, which is a way of establishing the
truth of the first term of R. Will "m := x " do the j ob?
In order to investigate this, we derive and simplify:

wp("m := x " , R) = (x = x o r x = y)
a n d x > _ x a n d x _ > y

= x > _ y .

Taking this weakest pre-condition as its guard, Theo-
rem 1 tells us that

i f x _> y - - ~ m := x f i

will produce the correct result if it terminates success-
fully. The disadvantage of this program is that BB ~ T;
i.e. it might lead to abortion; weakening BB means
looking for alternatives which might introduce new
guards. The obvious alternative is the assignment
"m := y " with the guard wp("m := y" , R) = y _> x;
thus we are led to our program

i f x _> y---~m := x
~ y > x---~m := y
fi

and by this time BB = T, and :herefore we have solved
the problem. (In the meant ime we have proved that
the max imum of two values is always defined, viz. that
R considered as equation for m has always a solution.)

As an example of the derivation of a repetitive con-
struet we shall derive a program for the greatest com-
mon divisor of two positive numbers; i.e. for fixed,
positive X and Y we have to establish the final relation
x = gcd(X,Y).

The formal machinery only gets in motion, once we
have chosen our invariant relation and our variant
function. The program then gets the structure

"establish the relation P to be kept invariant";
do "decrease t as long as possible under variance of P "
od.

Suppose that we choose for the invariant relation

P: gcd(X,Y) = gcd(x,y) and x > 0 and y > 0,

a relation that has the advantage of being easily es-
tablished by x := X; y := Y.

The most general "someth ing" to be done under
invariance of P is of the form x, y := El , E2, and we
are interested in a guard B such that

(P and B) ~ wp("x, y := El , E2", P)
= (gcd(X, Y) = gcd(E1, E2)

and E1 > 0 and E2 > 0).

Because the guard must be a computable boolean
expression and should not contain the computat ion of
gcd(X, Y)-- for that was the whole p rob lem- -we must
see to it that the expressions E1 and E2 are so chosen,
that the first term gcd(X, Y) = gcd(E1, E2) is implied
by P, which is true if gcd(x, y) = gcd(E1, E2). In other
words we are invited to massage the value pair (x,y) in
such a fashion that their god is not changed. Because--
and this is the place at which to mobilize our mathemati-
cal knowledge about the gcd-function--gcd(x, y) =
gcd(x -- y, y), a possible guarded list would be
x := x -- y. Deriving wp("x := x -- y" , P) =
(gcd(X, Y) = gcd(x - y, y) and x -- y > 0 and y > 0)
and omitting all terms of the conjunction implied by P,
we find the guard x > y as far as the invariance of P is
concerned. Besides that we must require guaranteed
decrease of the variant function t. Let us investigate the
consequences of the choice t = x + y. F rom

wp("x := x - y" , t < to)
= wp("x := x - y" , x + y _< to) = (x _< to),

we conclude that tmin = x; therefore wdec("x :=
x - - y " , t) = (x < x + y) = (y > 0).

The requirement of monotonic decrease of t imposes
no further restriction of the guard because wdec("x :--
x -- y" , t) is fully implied by P, and at our first effort
we come to

x : = X ; y : = Y;
d o x > y - - ~ x := x -- y o d .

Alas, this single guard is insufficient: f rom P and
non BB we are not allowed to conclude x = gcd(X, Y).
In a completely analogous manner, the alternative
y := y - x will require as its guard y > x, and our
next effort is

x := X ; y := Y;
d o x > y - - o x := x - y

y > x - - - * y : = y - - x
od.

Now the job is done, because with this last program
non BB = (x = y) and (P and x = y) ~ (x = gcd(X, Y),
because gcd(x,x) = x.

Note. The choice of t = x + 2 y and the knowledge
of the fact that the god is a symmetric function could
have led to the program

x : = X ; y := Y;
d o x > y - - * x : = x - - y

y > x - - - ~ x , y := y ,x
od.

The swap x,y := y ,x can never destroy P: the guard of
the last guarded list is fully caused by the requirement
that t is effectively decreased. (End of note.)

In both cases the final game has been to find a large
enough set of such guarded lists that BB, the disjunc-
tion of their guards, was sufficiently weak: in the ease

4$6 Communications August 1975
of Volume 18
the ACM Number 8

of the alternative construct the purpose is avoiding
abortion, in the ease of the repetitive construct the goal
is getting BB weak enough such that P and non BB is
strong enough to imply the desired post-condition R.

It is illuminating to compare our first version of
Euclid's Algorithm with what we would have written
down with the traditional clauses:

x := X; y := Y; (version A)
whi lex ~ y d o i f x > y t h e n x := x - - y

e l s e y := y - - x f i o d

and

x := X; y := Y; (version B)
w h i l e x ~ y d o w h i l e x > y d o x : = x - - y o d ;

whi l ey > x d o y := y - - x o d
od.

In the fully symmetric version with the guarded com-
mands the algorithm has been reduced to its bare essen-
tials, while the traditional clauses force us to choose
between versions A and B (and others), a choice that
can only be justified by making assumptions about the
time taken for tests and about expectation values for
traversal frequencies. (But even taking the time taken
for tests into account, it is not clear that we have lost:
the average number of necessary tests per assignment
ranges with guarded commands from 1 to 2, equals 2
for version A and ranges from 1 to 2.5 for version B.
If the guards of a guarded command set are evaluated
concurrently--nothing in our semantics excludes t ha t - -
the new version is time-wise superior to all the others.)
The virtues of the case-construction have been ex-
tended to repetition as well.

5. Concluding Remarks

The research, the outcome of which is reported in
this article, was triggered by the observation that
Euclid's Algorithm could also be regarded as syn-
chronizing the two cyclic processes "do x := x -- y od"
and "do y := y -- x od" in such a way that the relation
x > 0 and y > 0 would be kept invariantly true. It was
only after this observation that we saw that the formal
techniques we had already developed for the derivation
of the synchronizing conditions that ensure the har-
monious cooperation of (cyclic) sequential processes,
such as can be identified in the total activity of operat-
ing systems, could be transferred lock, stock, and barrel
to the development of sequential programs as shown
in this article. The main difference is that while for
sequential programs the situation "all guards false"
is a desirable goal--for it means termination of a
repetitive construct--one tries to avoid it in operating
systems--for there it means deadlock.

The second reason to pursue these investigations
was my personal desire to get a better appreciation,
which part of the programming activity can be regarded

457

as a formal routine and which part of it seems to re-
quire "invention." While the design of an alternative
construct now seems to be a reasonably straightforward
activity, that of a repetitive construct requires what I
regard as "the invention" of an invariant relation and a
variant function. My presentation of this calculus
should, however, not be interpreted as my suggestion
that all programs should be developed in this way:
it just gives us another handle.

The calculus does, however, explain my preference
for the axiomatic definition of programming language
semantics via predicate transformers above other defini-
tion techniques: the definition via predicate transform-
ers seems to lend itself most readily to being forged into
a tool for the goal-directed activity of program compo-
sition.

Finally, I would like to add a word or two about the
potential nondeterminacy. Having worked mainly with
hardly self-checking hardware, with which nonrepro-
ducing behavior of user programs is a very strong indi-
cation of a machine malfunctioning, I had to overcome a
considerable mental resistance before I found myself
willing to consider nondeterministic programs seriously.
It is, however, fair to say that I could never have dis-
covered the calculus before having taken that hurdle:
the simplicity and elegance of the above would have
been destroyed by requiring the derivation of deter-
ministic programs only. Whether nondeterminacy is
eventually removed mechanically--in order not to
mislead the maintenance engineer--or (perhaps only
partly) by the programmer himself because, at second
thought, he does care--e.g, for reasons of efficiency--
which alternative is chosen is something I leave entirely
to the circumstances. In any case we can appreciate the
nondeterministic program as a helpful stepping stone.

Acknowledgments. In the first place my acknowledg-
ments are due to the members of the IVIP. Working
Group W.G.2.3 on "Programming Methodology."
Besides them, W.H.J. Feijen, D.E. Knuth, M. Rem,
and C.S. Scholten have been directly helpful in one way
or another. I should also thank the various audiences--
in Albuquerque (courtesy NSF), in San Diego and
Luxembourg (courtesy Burroughs Corpora t ion)- - that
have played their role of critical sounding board
beyond what one is entitled to hope.

Received July 1974; revised January 1975

References
1. Hoare, C.A.R. An axiomatic basis for computer programming.
Comm. ACM 12, 10 (Oct. 1969), 576-583.
2. Naur, Peter (Ed.). Report on the algorithmic language ALGOL
60. Comm. ACM 3, (May 1960), 299-314.

Communications August 1975
of Volume 18
the ACM Number 8

