
Introduction to Lisp
The basic operation of Lisp evolves around the Read-Eval-Print loop.  In other words, Lisp is waiting for the user to enter some input, which is evaluated and the result is displayed.  The prompt which is displayed by Lisp will vary from implementation to implementation with common prompts being, *, >, or USER(n).
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> (+ 8.14 2.71

5.85

> (setf friends *(pooh tigger piglet)

(POOH TIGGER PIGLET)

> friends

(POOH TIGGER PIGLET)

> (setf enemies *(ghost troll grinch)
(GHOST TROLL GRINGH)

> (setf enemies (remove ‘ghost enemies)
(TROLL GRINCH)

> (setf friends (cons ‘ghost friends)
(GHOST POOH TIGGER PIGLET)

> (setf enemies (cons ‘ghost enemies)
(GHOST TROLL GRINGH)

> (setf friends (remove ‘ghost friends)
(POOH TIGGER PIGLET)

> friends

(POOH TIGGER PIGLET)

> enemies

(GHOST TROLL GRINGH)

>





To define your own function to perform the switch from enemies to friends do the following:
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> friends

(POOH TIGGER PIGLET)

> enemies

(GHOST TROLL GRINGH)

> (defun newfriend (name)
(setf enemies (remove name enemies))
(setf friends (cons name friends))

)

NEWFRIEND

> (newfriend *ghost)

(GHOST POOH TIGGER PIGLET)

> enemies

(TROLL GRINCH)

> friends

(GHOST POOH TIGGER PIGLET)

> (newfriend *mark)

(MARK GHOST POOH TIGGER PIGLET)

(POOH TIGGER PIGLET)
>

> (setf enemies *(ghost troll grinch) friends *(pooh tigger piglet)





The Syntactic Basis of Lisp

Symbolic expressions (called s-expressions) are the syntactic basis of Lisp.  An s-expression is either an atom or a list.  The atom is the basic syntactic unit of Lisp.  Atoms may be either numbers or symbols.  Numeric atoms consist of only numbers (negative signs and an E for scientific notation are allowed but we probably won’t need them for this course).  Symbolic atoms (represent something other than a number, consist of alphabetic characters and the symbols, * - + / @ $ % ^ & _ < > ~ .

Examples of Lisp atoms are:  3.14159  100  x  my-name  what-the-&$%#  nil

Lists in Lisp
By analogy, lists in Lisp are like a set of stacking bowls that fit inside one another.   Shown below are different representations of three stackable bowls.










      xxx


             (a) 



(b) 



   (c)

In diagram (a) the three bowls are stacked so that you would say the smallest bowl is empty, the middle bowl contains the smallest bowl, and the largest bowl contains the middle sized bowl.  In diagram (b) both the small and medium bowls are empty and the large bowl contains both the small and the medium bowls (two items are contained in the large bowl.  Finally, in diagram (c), if we assume that the medium bowl contains apples (A) and pears (P), then again the large bowl contains both the medium and small bowls, however, in this case only the small bowl is empty as the medium bowl contains and apple and a pear.

Like bowls, lists can be empty.  Like bowls, lists can contains other lists.  Like bowls, list can contains things that are not lists.  The examples below should clarify list representation in Lisp.

(((a b) (b c)) a) – this list contains two items – a list ((a b) (b c)) and an atom a.

((a b c d)) – this list contains one item – a list (a b c d).

( ) – this list is an empty list.  This is a special list in Lisp.

(a b c d) – this list contains four items, the atoms a, b, c, and d.

((a b (c d) e f)) – this list contains one item, the list (a b (c d) e f).

(((a))) – this list contains one item, the list ((a)).

As with bowls, contains means directly contains, with no other intervening list.  The top-level elements of a list are directly contained by that list.  Therefore, the list ((a b c) ( )) contains two top-level elements which are both lists, one of which happens to be empty.

Note: Some Lisp functions look at the top-level elements of a list, ignoring the elements of elements.  Others consider the elements of elements.  Thus, it is important to understand this distinction.

Formal Definition of an s-expression
An s-expression is defined recursively as:

1. An atom is an s-expression.

2. If s1, s2, …, sn are s-expressions, then so is the list (s1 s2 … sn)

A list is a non-atomic s-expression.

A form is an s-expression that is intended to be evaluated.  If it is a list, the first element is treated as the function name and the subsequent elements are evaluated to obtain the function arguments.

Evaluation of a form proceeds as follows:

1. If the s-expression is a number, return the value of the number.

2. If the s-expression is an atomic symbol, return the value bound to that symbol; if it is not bound report an error.

3. If the s-expression is a list, evaluate the second through the last argument and apply the function indicated by the first argument to these results.

Examples

>3


3
//value bound to atom 3 is returned


>(setf kristi 4)


>kristi

4 //value bound to kristi is returned

>(* 4 5)

20
//function * is evaluated on arguments 4 and 5

Practice Problems
You try to form s-expressions for the following and I’ll put the answers in the next set of notes.

32 + 42
(3+17) * (2 + 1)

123 + 13 – (93 + 103)

List Manipulation Primitives
Lisp has many primitive functions for list manipulation, while we won’t be able to discuss all of these primitives, we will cover the basic primitives and the most useful primitives.

first 

Returns the first element of the list given as its argument.  

examples:


>  (first ‘(fast computers are nice))


FAST


>  (first ‘((fast karts) are also nice))


(FAST KARTS)

rest
Acts as a complement to first in that it returns a list containing everything in its argument list, except the first element.  Rest always returns a list.  If rest is applied to a list that contains only a single element, it will return an empty list (most commonly denoted as NIL by most Lisp systems).

examples:

>  (rest ‘(fast computers are nice))


(COMPUTERS ARE NICE)


>  (rest ‘(a))


NIL


>  (rest ‘((a b) (b c) (d e)))


((b c) (d e))


>  (rest ( ))


NIL

second, third, …tenth, car, cdr
Earlier versions of Lisp used the primitive car in place of first and cdr in place of rest.  Common Lisp now includes primitives to select the first through the tenth element of any list.  The earlier versions could be strung together to develop hybrid operators such as cadr which is equivalent to the (car (cdr list)) or cddr which is equivalent to (cdr (cdr list)).

quote 

Basically, quote stops evaluation from occurring.  Older versions of Lisp actually included the word quote, however, in current versions the quotation mark is allowed as a shorthand notation.

examples:


>  (first ‘(rest (a b c)))


REST


>  (first (rest ‘(a b c)))


B


>  (first (a b c))


error – undefined procedure a


>  (first (quote (a b c)))


A

setf
The setf primitive allows for binding a memory location to a symbol.  The setf primitive causes the value of its second argument to be assigned to the first argument, much like an assignment statement in non-functional languages.   Also see the introduction for additional examples.

examples:


>  (setf ab-list ‘(a b))


AB-LIST (A B)

cons 

Takes an expression and a list and returns a new list whose first element is the expression and whose remaining elements are those of the original list.

examples

>  (cons ‘a ‘(b c))

(A B C)

>  (setf new-front ‘a  old-list ‘(b c))


   
      (cons new-front old-list)

(A B C)

>  (first (cons new-front old-list))

A

>  (rest (cons new-front old-list))

(B C)

append
Takes any number of arguments, all of which must be lists, and combines them into a single list.  Note that append runs its elements together and does nothing to the elements themselves (see the last example for clarification).

examples:

>  (append ‘(a b c) ‘(x y z))

(A B C X Y Z)

>  (setf ab-list ‘(a b) xy-list ‘(x y))



      (append ab-list xy-list)


(A B X Y)

>  (append ab-list xy-list ab-list)

(A B X Y A B)

>  (append ab-list ‘( ) xy-list ‘( ))

(A B X Y)

>  (append ‘ab-list xy-list)

ERROR ‘ab-list is an atom not a list

>  (append ‘((a) (b)) ‘((c) (d)))

((A) (B) (C) (D))

list
Takes any number of arguments and makes a list from the arguments.  Each argument becomes an element in the new list.  List does not run elements together as does append.

examples:

>  (list ‘a ‘b ‘c))

(A B C)

>  (setf front ‘a middle ‘b back ‘c)


 
      (list front middle back)



(A B C)

>  (setf ab-list ‘(a b))



      (list ab-list ab-list)


((A B) (A B))

>  (list ab-list ab-list ab-list)

((A B) (A B) (A B))

>  (list ‘ab-list ab-list)

(AB-LIST (A B))

Examples illustrating the differences between append, cons, and list.

> 
(setf ab-list ‘(a b) cd-list ‘(c d))

> 
(cons ab-list cd-list)

returns: ((A B) C D)

> 
(append ab-list cd-list)

returns: (A B C D)

> 
(list ab-list cd-list)

returns: ((A B) (C D))

> 
(cons ab-list ab-list)

returns: ((A B) A B)

> 
(append ab-list ab-list)

returns: (A B A B)

> 
(list ab-list ab-list)

returns: ((A B) (A B))

> 
(cons ‘ab-list ab-list)

returns: (AB-LIST A B)

> 
(append ‘ab-list ab-list)

returns: ERROR

> 
(list ‘ab-list ab-list)

returns: (AB-LIST (A B))

NOTE:  cons, append, and list do not alter the values of their arguments.  In the following example, neither new-front nor old-list changes when the cons form is evaluated.


>   (setf new-front ‘a  old-list ‘(b c))


>   (cons new-front old-list)


(A B C)


>   new-front


A


>   old-list


(B C)

If your intention is to add a new element to a list assigned to a symbol, thereby changing the value of the symbol, you must embed the cons form in a setf form as shown by the following template.


(setf <name of a list> (cons <new element> <name of the list>))

This template is used as shown below:


>   (setf new-front ‘a list-to-be-changed ‘(b c))


>   (setf list-to-be-changed (cons new-front list-to-be-changed))


(A B C)


>   new-front


A


>   list-to-be-changed


(A B C)

push
Alternatively, you could use PUSH.  PUSH takes two arguments which are a new element and symbol whose value is a list.  Push places the new element in the first position of the list and assigns the new list to the symbol.  This is illustrated below:


>   (setf new-front ‘a list-to-be-changed ‘(b c))


>   (push new-front list-to-be-changed)


(A B C)


>   list-to-be-changed


(A B C)

pop
POP is the complementary operator to PUSH.  POP takes one argument which is a symbol whose value is a list.  POP returns the first element in the list and assigns the remainder (rest) of the list to the symbol.


>   list-to-be-changed


(A B C)


>   (pop list-to-be-changed)


A


>   list-to-be-changed


(B C)

nthcdr
This is a Lisp primitive analogous to rest which trims off n elements from the argument list.

examples:
>   (nthcdr 2 ‘(a b c d e))



(C D E)



>  (nthcdr 3 ‘((a b) (c d) (e f) (g h))



((E F) (G H))



>   (nthcdr 5 ‘(a b c))



NIL

butlast
This primitive is similar to nthcdr but trims off the last n elements from the argument list rather than the first n elements.  This primitive also differs from nthcdr in that it is the second argument that determines how many elements are to be trimmed off the argument list.  The second argument is optional, if it is not present the default value is 1.  It is computationally expensive to remove elements from the back of a list, therefore, butlast is more expensive than nthcdr.

examples:


>   (butlast ‘(a b c d)  2)



(A B)



>   (butlast ‘(a b c d))



(A B C)



>   (butlast ‘(a b c)  50)



NIL


last
This primitive returns a list with all but the last element of a list trimmed off.  Note that it returns a list containing the last element of the argument list and not the last element itself.  There is no primitive that complements first.  

examples:


>   (setf abc-list ‘(a b c) ab-cd-list ‘((a b) (c d)))



AB-CD-LIST  ((A B) (C D))



>   (last abc-list)



(C)



>   (last ab-cd-list)



((C D))



>   (last ‘abc-list)



ERROR


length
The length primitive counts the number of top-level elements in a list.  The argument list is considered to be a list of elements without regard to whether the elements are lists or atoms.

examples:


>   (length ‘(a b c d e))



5



>   (length ‘((a b) (c d)))



2



>   (length (append ‘(a b c) ‘(d e f)))



6

reverse
The reverse primitive reverses the order of the top-level elements of its argument list.  As with length the reverse primitive does not go inside a list.

examples:


>   (reverse ‘(a b c d e))



(E D C B A)



>   (reverse ‘((a b) (c d) (e f)))



((E F) (C D) (A B))



>   (reverse (append ‘(a b) ‘(c d)))



(D C B A)

assoc
The assoc primitive is especially designed to work with a particular type of list called an association-list (often called an a-list).  An association list is a special type of association recording expression which consists of a list of sublists.  The first element of each sublist is used as a key for recovering the entire sublist.  For example, the information about a particular person could be represented as follows:



(setf Eva ‘((height .54) (weight 4.4)))






key    value

Height and weight are keys in the list assigned to Eva (in meters and kilograms).  Elements from an association list are retrieved using the assoc primitive, a key, and an association list.  The template for this form is: 

(assoc <key> <association list>).  The assoc primitive always returns the entire first sublist with a matching key.  In the event that more than one sublist has a matching key, only the first is returned with the remaining matches said to be shadowed (which allows for variables to have multiple values).

examples:


(setf tammi ‘((weight 7.8) (height .67)))

>   (assoc  ‘weight  Eva)



(WEIGHT 4.4)



>   (assoc ‘height tammi)



(HEIGHT .67)

Function Definition In Lisp
The definition of user defined functions involving primitives and other, previously defined functions, is accomplished with the defun primitive.  The process for defining functions is explained in the paragraphs that follow.

Suppose that you wish to make a new list out of the first and last elements of a list as shown below:


>   (setf friends ‘(pooh tigger rabbit owl gopher piglet))


(POOH TIGGER RABBIT OWL GOPHER PIGLET)


>   (cons (first friends) (last friends))


(POOH PIGLET)

Suppose that this is an operation that you wish to effect often and thus desire to define a function which accomplishes this task, called both-ends.  The effect of the call (both-ends friends) would be to return (POOH PIGLET).  Whenever a form involving both-ends is encountered, Lisp needs to do four things:

1. [binding] reserve a new place in memory to which it will bind its parameter.

2. [assignment] evaluate the argument and store the result in the place to which is was bound. 

3. [return]  evaluate the form and return the result of the evaluation.

4. [release]  free the memory allocated to the parameter.

general form:

(defun <function name>  (<parameter 1> … <parameter m>)



<form 1>



…



<form n>


)

example:

>   (defun both-ends  (whole-list)




  (cons  (first whole-list) (last whole-list))



        )


BOTH-ENDS


>  (both-ends friends)


(POOH PIGLET)

Parameter variable bindings established when a function is entered are isolated from other variable bindings by a virtual fence.  Consider the following example.


>   (setf whole-list ‘(Monday Tuesday Wednesday Thursday Friday)


(MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY)


>   (both-ends whole-list)


(MONDAY FRIDAY)

>   whole-list


(MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY)

Although a virtual fence isolates all of a procedure’s parameter bindings, there is no such isolation for variables that are not parameters.  Consider the following new version of the both-ends function and assume that whole-list is as previously defined.

>   (defun both-ends-with-special-variable ( )



            (setf whole-list





(cons (first whole-list) (last whole-list))



            )



        )


BOTH-ENDS-WITH-SPECIAL-VARIABLE


>   (both-ends-with-special-variable)


(MONDAY FRIDAY)


>   whole-list


(MONDAY FRIDAY)

Lisp has two different kinds of variables, those isolated by virtual fences and those that are not.  Each type has a name:

1. A lexical variable is isolated by a virtual fence.  You can assume that a variable is a lexical variable if it appears inside a procedure in which it is a parameter.

2. A special variable is not isolated by a virtual fence.  You can assume that a variable is a special variable if it appears inside a function in which it is not a parameter.  [stack variables and defvar variables]

more examples:

>   (defun both-ends-with-2-parameters (list1 list2)




(cons (first list1) (last (list2))



        )


>   (both-ends-with-2-parameters ‘(breakfast lunch) ‘(tea dinner))


(BREAKFAST DINNER)


>   (defun both-ends-with-side-effect (whole-list)




(setf last-list-processed whole-list)  ;first form in the body




(cons (first whole-list) (last whole-list))  ;second form



        )


>   (setf list1 ‘(one two three four five))


(ONE TWO THREE FOUR FIVE)


>   (both-ends-with-side-effect (list1))


(ONE FIVE)


>   last-list-processed


(ONE TWO THREE FOUR FIVE)

More on binding

let
Binding parameters to functions is accomplished with the let primitive.  Consider the following example and general form:

example:

>   (setf whole-list ‘(breakfast lunch tea dinner))


>   (let ((element (first whole-list))  ;bind element to initial value




     (trailer (last whole-list)))  ;bind trailer to initial value




  (cons element trailer)



         )


(BREAKFAST DINNER)

general form:

(let
((<parameter 1> <initial value 1>)


    
…


    
(<parameter m> <initial value m>))


      <form 1>



…


      <form n>)

example:

>   (defun both-ends-with-let (whole-list)




(let   ((element (first whole-list))  ;bind element to initial value




          (trailer (last whole-list)))    ;bind trailer to initial value




    (cons element trailer))              ;combine in let form



        )

Whenever a let form is evaluated, the parameter bindings involved are isolated by a virtual fence, just as they are when a function is entered.  Whenever a let form appears inside a function definition the fence for that let form appears inside the fence for the function definition:



The let form evaluates its initial value forms in parallel because all initial value forms are evaluated before the fence for the let form is built and before any of the let’s parameters are bound.

example:

>   (setf x ‘outside)


>   (let ((x ‘inside)    
;x’s parameter value will be inside




     (y x))     ;y’s parameter value will be outside




(list x y))


(INSIDE OUTSIDE)

Since the binding is done in parallel the second initial value form finds the value of x outside of the fence for the let itself, it is not influenced by the let itself.

let (continued)
Sometimes you need a way in which to bind parameters so that the value of a parameter bound early can be used to evaluate the value of a parameter bound late.  A different version denoted let* is available for this situation.

example:

>  (setf x ‘outside)


>  (let* ((x ‘inside)    
;x’s parameter value will be inside.




   (y x))

;y’s parameter value will be inside too.




(list x y))


(INSIDE INSIDE)

Note that let* is a shorthand for the following form which produces the same result.


>  (setf x ‘outside)


>  (let ((x ‘inside))




(let ((y x))





(list x y)))


(INSIDE INSIDE)

Predicates (T = true, NIL = false)
equal, eql, eq, =
Lisp has several predicates for the testing of equality, all of which return T or NIL.  These are summarized in Table 1.

	Name
	Purpose

	equal
	Are two argument values the same expression?  First tests to see if arguments satisfy eql, if not, it tries to see if they are lists whose elements satisfy equal.

	eql
	Are two argument values the same symbol or number?  First tests to see if arguments satisfy eq, if not, it tries to see if they are numbers of the same type and value.

	eq
	Are two argument values the same symbol?  Tests to see if the arguments are represented by the same chunk of memory.  They will be if they are identical symbols.

	=
	Are two argument values the same number?  Tests to see if the arguments represent the same number even if they are not the same type of number.


Table 1 – Summary of equality predicates

member
The member predicate tests to see if its first argument is an element of its second argument which must evaluate to a list (or be a list).  If member is successful, it returns the rest of the list when the matching symbol is encountered rather than simply returning T.  Member works only on top-level  elements.

examples:


>  (setf sentence ‘(a b c d e f))



>  (member ‘c sentence)



(C D E F)



>  (setf pairs ‘((nut bolt) (ice coke) (paint brush)))



>  (member ‘ice pairs)



NIL

listp, atom, numberp, symbolp
These are all data type predicates which test to see if their argument belongs to a particular data type.  Their names are self-explanatory as to which data type they test.

null, endp
These are predicates which test to see if the argument list is empty.  Null is the older version (which still works ok), endp is a newer version.  There is actually a slight difference in the two predicates but we won’t worry about it!

number predicates
Lisp contains many predicates that work on numbers, with typically self-explanatory names.  Shown below are a few of the more commonly used number predicates.

	Name
	Purpose

	numberp
	Is the argument a number?

	zerop
	Is the argument 0?

	plusp
	Is the argument positive?

	minusp
	Is the argument negative?

	evenp
	Is the argument even?

	oddp
	Is the argument odd?

	> 
	Is the argument (a list of numbers) in descending order?

	<
	Is the argument (a list of numbers) in ascending order?


Conditionals
and, or, not
Lisp provides for combining predicates into a single test with the Boolean operators and, or, and not.  And returns NIL if any of its arguments evaluates to NIL.  Or returns NIL if all of its arguments return nil.  Not acts like a flip-flop converting NIL values into non-NIL values and non-NIL values into NIL values.

Warning:  Lisp uses a lazy evaluation of conditionals.  The arguments of an and form are evaluated from left to right, if any of the arguments evaluate to NIL as evaluation proceeds, none of the remaining arguments will be evaluated.  If all of the arguments of an and form evaluate to non-NIL, the value returned by the and form is the value of the last argument.   Or behaves symmetrically:  if during the left-to-right evaluation of the arguments of an or form any of the arguments evaluates to something other than NIL, none of the remaining arguments will be evaluated and the or form will return that non-NIL value.  If none of the arguments of an or form evaluate to non-NIL, the value returned by the or form will be NIL.

examples:


>  (setf pets ‘(dog cat gerbil))



>  (and (member ‘dog pets) (member ‘tiger pets))



NIL



>  (or (member ‘rabbit pets) (member ‘tiger pets))



NIL



>  (and (member ‘gerbil pets) (member ‘cat pets))



(CAT)



>  (or (member ‘gerbil pets) (member ‘gorilla pets))



(GERBIL)



>  (not nil)



T



>  (not t)



NIL

Conditional Forms
Predicates are most useful when they are used to determine which of one or more forms should be evaluated.  Lisp includes several forms for use with predicates that provide for conditional evaluation of a form.  We will look at only a few of the many options Lisp provides.

 if      

In an if form, the symbol if is followed by a test form and something to evaluate and return if the test is non-NIL, and something else to evaluate and return if the test result is NIL.  The template for the if form is:


(if <test> (then form> <else form>)

example:


>  (setf day-or-date ‘Thursday)



>  (if (symbolp day-or-date) ‘day ‘date)



DAY



>  (setf day-or-date 9)



>  (if (symbolp day-or-date) ‘day ‘date)



DATE

when
If the full generality of an if form is not required, such as when the <else form> would evaluate to NIL, the when form can be used as a shorthand to the full if form.


(when <test> <then form>) ( (if <test> <then form>  nil)

unless
The unless form is similar in nature to the when form except that it is designed for use whenever the <then form> would evaluate to NIL in an if form.


(unless <test> <else form>) ( (if <test> nil <else form>)

NOTE:  when and unless can actually contain any number of arguments.  The first is always the test form; the last is always the value if the test value indicates action; and all of the other arguments in between will be evaluated for their side-effects.


example:


>  (setf high 98  temperature 102)



102



>  (when (> temperature high)   ;compare temp with high





(setf high temperature)        ;when bigger reset high 





‘new-record)
 ;when bigger, return new-record



>  high



102



>  new-record



102

cond
Even though if, when, and unless are quite versatile, there are times when even more versatility is required.  Lisp provides the cond form for these occasions.  The symbol cond is followed by lists called clauses.  The cond template is:


(cond
  (<test 1> <consequent 1-1> … <consequent 1-x>)


 
  (<test 2> <consequent 2-1> … <consequent 2-y>)



  …



  (<test m> <consequent m-1> … <consequent m-z>) )

Each clause contains a test, as well as zero or more additional forms called consequents.  The idea is to move through the clauses, evaluating only the test form in each until a test form is found whose value is non-NIL.  The corresponding clause is then said to be triggered, and its consequent forms evaluated.  The value of the entire cond form is the value of the last consequent form in the triggered clause.  All consequent forms standing between the test and the last consequent form are there only for their side-effects. In order to provide a default case so that the value of the cond form is not NIL, a default test form can be used; this is shown in the second and third cond forms in the next example.

examples:


>  (setf thing ‘sphere r 1)



1



>  (cond ((eq thing ‘circle) (* pi r r))





        ((eq thing ‘sphere) (* 4 pi r r)) )



12.56637



>  (setf probability .6)



.6



>  (cond ((> probability .75) ‘very-likely)





        ((> probability .5)   ‘likely)





        ((> probability .25) ‘unlikely)





        (t ‘very-unlikely))



LIKELY



>  (cond ((eq thing ‘circle) (*pi r r))





        ( t (* 4 pi r r)) )  ;thing’s value must be a sphere



12.56637

case
If, when, and unless forms are essentially special cases of cond forms since they can all be written as cond forms (although usually with a lack of clarity).  Another special case is the case form.  The case form template is:

(case <key form>


(<key 1> <consequent 1-1> … <consequent 1-x>)


(<key 2> <consequent 2-1> … <consequent 2-y>)


…


(<key m> <consequent m-1> … <consequent m-z>))

Case forms are evaluated in a special fashion; case checks the evaluated key form against the unevaluated keys using eql.  If the key is found, the corresponding clause is triggered and all of the clause’s consequents are evaluated.  If none of the clauses is triggered, case returns NIL.  If none of the other clauses is triggered and the last clause is either t or otherwise, then the last clause is triggered.  

examples:


>  (setf thing ‘point r 1)



>  (case thing





  (circle  (* pi r r))





  (sphere (* 4 pi r r r))





  (otherwise 0))



0



>  (case thing





 (circle (* pi r r))





 (sphere (* 4 pi r r r))



NIL

If a key is a list rather than an atom, case checks the evaluated key form against the unevaluated key list using member.  If the key is found in the unevaluated key list, the corresponding clause is triggered and all of the clause’s consequents are evaluated.

example:



>  (setf thing ‘ball r 1)



>  (case thing





  ((circle  wheel) (* pi r r))





  ((sphere ball)) (* 4 pi r r r))





  (otherwise 0))



12.56637

Recursion in Lisp
cdr recursion (linear recursion)
It is a common use of Lisp to construct and tear-apart list structures recursively.  While first (car) and rest (cdr) can be used to recursively tear lists apart, cons can be used to build up lists as the recursion unwinds.  This is called cdr-recursion.

example1:


>  (defun new-length (list)





(cond ((endp list) 0)





 
(t (+ 1 (new-length (rest list)))) )



NEW-LENGTH



>  (new-length ‘(1 2 3))



3

trace:


level 1:  (new-length ‘(1 2 3))




level 2:  (new-length ‘(2 3))





level 3:  (new-length ‘(3))






level 4:  (new-length NIL)






level 4:  return 0





level 3:  return 1 + 0 = 1




level 2:  return 1 + 1 = 2



level 1:  return 1 + 2 = 3

example2:


>  (defun new-nth (n list)





(cond ((zerop n) (first list))






( t (new-nth (- n 1) (rest list))))  )



NEW-NTH



>  (new-nth 3 ‘(2 3 4 5 6))



5

trace:



level 1:  (new-nth 3 ‘(2 3 4 5 6))




level 2:  (new-nth 2 ‘(3 4 5 6))





level 3:  (new-nth 1 ‘(4 5 6))






level 4:  (new-nth 0 ‘(5 6))






level 4:  return 5





level 3:  return 5




level 2:  return 5



level 1:  return 5

car-cdr recursion (tree recursion)
Car-cdr recursion (or tree recursion) proceeds by recursion occurring on both the first and rest of an argument list.  Recall that the primitive form length operates only on top-level elements.  Suppose that we needed to count all of the atoms inside all of the sub-lists of a given list.  To do this you must go inside each sublist and recursively examine each of its sublists and so on.  This requires recursion on both the first and rest of a list.

example1:



>  (defun countatoms (list)





(cond ((endp list) 0)






((atom list) 1)





( t (+ (countatoms (first list)) (countatoms (rest list)))))



COUNTATOMS



>  (countatoms ‘((1) (2 3)))



6

trace:

level 1:  (countatoms ((1) (2 3)))      //call on (first ((1) (2 3)))



level 2:  (countatoms (1))
 (countatoms (2 3))



{first call}





level 3:  (countatoms 1)  //call on (first (1))





level 4: return 1      //1 is an atom




level 3:  (countatoms nil)      //call on (rest (1))





level 4:  return 0      // list is nill




level 3: (+ 1 0) return 1  //to first call from level 2



level 2:  left operand to + evaluated to 1 (from level 3)



{second call}




level 3:  (countatoms (2 3))    //call on (rest (2 3))





level 4:  (countatoms 2)  //call on (first (2 3))






level 5:  return 1   //2 is an atom




level 3:  (countatoms (3))  //call on (rest (2 3))





level 4:  (countatoms (3))  //call on (rest (2 3))






level 5:  (countatoms 3)  //call on (first (3))







level 6:  return 1 //3 is an atom






level 5:  (countatoms nil)  //call on (rest (3))







level 6:  return 0






level 5:  return 1





level 4:  return 1




level 3:  return (+ 1 1) = 2



level 2:  return (+ 1 2) = 3


level 1:  return 3

Mapping Functions
Mapping functions apply a given function to all of the members of a list.

mapcar
examples:



>  (mapcar ‘1 + ‘(1 2 3 4 5 6))



(2 3 4 5 6 7)



>  (mapcar ‘+ ‘(1 2 3 4) ‘(5 6 7 8))



(6 18 10 12)



>  (mapcar ‘max ‘(3 9 1 7) ‘(2 5 6 8))



(3 9 6 8)



>  (mapcar #’oddp ‘(1 2 3))



(T NIL T)

Approaches to Problem Solving in Lisp
Progressive Development
Progressive development is an approach to building Lisp functions from combinations of Lisp primitives that are needed through a sequence of terminal experiments.  Progressive development helps you to write functions since it allows you to build complicated functions incrementally, one step at a time, with frequent testing (verification by Lisp) to ensure your moving to a correct solution.  Frequent testing will also expose bugs as they creep in which will reduce your effort to find them later.  Using the earlier example of a function that constructs a new list from both ends of an argument list (the both-ends function) we will demonstrate the technique of progressive development.

Suppose that we have the definition:


>  (setf full-list ‘(breakfast lunch tea dinner))

Given this list, the function that we wish to develop should produce the new list: (breakfast dinner).  The approach is to now think about what you have to do to the list assigned to full-list to dig the desired list out of this list and use Lisp itself to verify the approach you are developing.  Being a wise and confident Lisp programmer you realize that the results returned by first and last when applied to the sample list produce the correct elements of the desired result (albeit not in list form):


>  (first full-list)


BREAKFAST


>  (last full-list)


(DINNER)

With these results on the screen in front of you (verified by Lisp), you now conjecture that enveloping the results of (first full-list) and (last full-list) in a cons form would produced the desired result.  Thus you pose this conjecture to Lisp as:


>  (cons (first full-list) (last full-list))


(BREAKFAST  DINNER)

Now that Lisp has verified your approach is correct, you further envelope it in a defun form using full-list as a parameter:


>  (defun  both-ends (full-list)




  (cons (first full-list) (last full-list)))

Finally, run a test of the new function:


>  (both-ends ‘(breakfast lunch tea dinner))


(BREAKFAST  DINNER)

Comment Translation
Comment Translation is a function development technique which involves thinking through what needs to be done by the function, in English, before attempting to translate what needs to be done into Lisp forms.   Comment translation will typically lead to a slightly different function definition than does progressive development.  Comment translation helps you to write functions because it makes you think about what the procedure is to do before you start throwing parentheses around.  It also helps in the end because the comments can remain in place to help document the code and help you to remember what you were thinking when you originally were writing the function.  Using the same example as before, this technique is illustrated by the following example.

Start by defining a skeletal definition of the function with comments appearing in the body of the function instead of Lisp forms.   Use two semi-colons for comments on lines all of their own.

>  (defun both-ends (full-list)



   ;; extract the first element from full-list



   ;; extract the last element from full-list



   ;; combine the first and last elements into a list



)

Once the skeleton has been constructed, start translating the comments into Lisp forms:

>  (defun both-ends (full-list)



   ;; extract the first element from full-list



   (first full-list)



   ;; extract the last element from full-list



   (first (last full-list))



   ;; combine the first and last elements into a list



)

One more step will complete the definition of the function:

>  (defun both-ends (full-list)

  

   ;; combine the first and last elements into a list



   (list



         ;; extract the first element from full-list



         (first full-list)



         ;; extract the last element from full-list



         (first (last full-list))))

Problem Reduction
This is a divide and conquer strategy applied to the definitional development of functions.  The basic idea is to divide the original problem into several subproblems, each of which is handled separately, possibly by a separate function.  

Returning to our example, the problem reduction technique requires that you think of the problem as what to do in four cases, each representing a potential argument list:


>  (defun both-ends (full-list)




(case  (length full-list)




    (0 …)
; argument list is empty




    (1 …)       ; argument list contains only 1 element




    (2 …)       ; argument list contains two elements




    (t … )       ; argument list is a general list of n elements




))

Solved as independent subproblems and placed into their respective key locations in the case form we have (using comment translation):

>  (defun both-ends (full-list)



  (case  (length full-list)



    (0  nil) ; argument list is empty



    (1 (cons (first full-list) full-list)) ;list contains only 1 element



    (2 full-list) ; argument list contains two elements




; argument list is a general list of n elements



    (t (cons (first full-list) (last full-list)))))


Function Abstraction
While  not strictly a function definition technique, this technique which you have probably used many times when developing programs in imperative programming languages,  is also applicable to function development in Lisp.  It is illustrated here as our final example of function development in Lisp.

Considering our example function, both-ends must do three things when it is invoked: (1) extract the first element of the argument list, (2) extract the last element of the argument list, and (3) combine the two extracted elements into the result list.  The definition of the both-ends function shown below does not make use of the Lisp primitives as did the earlier versions, but rather, uses three auxiliary functions not yet defined:


>  (defun both-ends (full-list)




 (combine-ends





(extract-first  full-list)





(extract-last  full list)))

This definition of both-ends isolates the function from the details of how the extraction and combination is handled.  While you are thinking about both-ends you should not care how the auxiliary functions do their jobs so long as the results are correctly produced.  As far as you are concerned, the auxiliary functions are just abstractions that have produce a certain behavior (i.e., a ‘black-box’ which produces the correct result).  These auxiliary functions could be defined as:


>  (defun combine-ends (end1 end2)




(list end1 end2))


>  (defun extract-first (list1)




(first list1))


>  (defun extract-last (list1)




(first (last list1)))

Alternatively, these auxiliary functions could have been defined as (or many other ways also):


>  (defun combine-ends (end1 end2)




(cons end1 (cons end2 nil)))


>  (defun extract-first (list1)




(car list1))


>  (defun extract-last (list1)




(first (reverse list1)))

Thinking visually, the function both-ends forms a one-function layer with its auxiliary functions forming a lower layer, and any functions that use both-ends forming a higher layer (in which both-ends may be abstracted).

A Couple More Examples of Lisp
>  (defun new-append (list1 list2)


             (cond ((endp list1) list2)



             (t (cons (first list1) (new-append (rest list1) list2)))))

>  (new-append ‘(1 2 3) ‘(4 5 6))

(1 2 3 4 5 6)

>  (defun subst (x y z)     // x is substituted for y in z



(cond  ((equal y z ) x)




 ((atom z) z)




 (cons (subst x y (first z)) (subst x y (rest z)))))  )

>  (subst ‘a ‘b ‘(c b a))

(c a a)

Special Note on Cons
As noted before, the cons form builds lists; (cons ‘a ‘x) will create a value with head a and tail x.  Lisp also employs an alternative notation called the “dot notation” as a shorthand for (cons ‘a ‘x) which is (a . x).  Looking at a tree representation of the list (it seems that) we have:





(



it

(



        seems
(





that

( )

The dots in the tree correspond to cons operations.  These operations appear explicitly as dots in the form:

‘(it . ( seems . (that . ( ) ) ) )

which returns: (it seems that)
More precisely, a cons form builds a dotted pair, from its operands.  The name list is actually reserved for a chain of dotted pairs which ends in an empty list.  This means that x is a list only if repeated application of rest (cdr) eventually results in an empty list ( ).

More Lisp Examples
Some simple functions
>
(defun square ( x )



( * x x))

> (square 2)

4

>
(defun triple ( x )



(* x (square  x)))

>  (triple 2)

8

>
(defun quad ( x )



(* (square x) (square x)))

>  (quad 2)

16

A function that operates in the same way as my-member function
(defun  my-member (element  list)

     (cond
((null  list)  nil)




((equal  element (first list))  list)




(t (my-member  element  (rest  list)))

      )  ;end cond

) ;end defun


call
>(my-member 4 ‘(1 2 3 4 5 6))

trace


0:   (my-member  4 (1 2 3 4 5 6))



    1:   (my-member 4 (2 3 4 5 6))



         2:   (my-member 4 (3 4 5 6))

             3:   (my-member 4 (4 5 6))


  
  
    3:   return (4 5 6)



         2:   return (4 5 6)



     1:   return (4 5 6)



0:  return (4 5 6)



(4 5 6)

A function to remove negative numbers from a list of numbers



(defun  filter-negatives  (numlist)


    (cond
((null  numlist)  nil)




((plusp (first numlist)) (cons (first numlist)








(filter-negatives (rest numlist))))




(t (filter-negatives (rest numlist)))


    ) ;end cond


);end defun


call

> (filter-negatives ‘(1 –1 2 –2  3 –4 5))


(1 2 3 5)

Practice:  Rewrite this function to remove even numbers from the list.
A function to substitute term x in place of term y in list z

(defun  substitute ( x y z )


   (cond
((equal  y z)  x)




((atom  z)  z)




(t (cons (substitute x y (first z)) (substitute x y (rest z))))


   )


)


note:  this function uses tree recursion.


call

> (substitute  ‘a  ‘b  ‘(c b a))


(c a a)


trace

(equal b (c b a)) = false


(atom (c b a)) = false


(cons (substitute a b c) (substitute a b (b a)))





(equal b c) = false

(equal b (b a)) = false


(atom c) = true – return c
(atom (b a)) = false







(cons (substitute a b b)(substitute a b a))



(equal b b) = true – return a








(equal b a) = false








(atom a) = true – return a


thus cons builds a list containing (c a a)

A function to append a list to the end of a second list

(defun  my-append ( list1  list2 )


   (cond
((null list1)  list2)




( t (cons (first list1) (my-append (rest list1) list2)))


   )


)


call

>  (my-append  ‘(1 2 3) ‘(4 5 6))


(1 2 3 4 5 6)

A function that returns the number of elements in a list

(defun  my-length ( list )


    (cond
((null list)  0)




(t (+ 1 (my-length (rest list))))


   )


)


call

>  (my-length ‘(1 2 3))


3


>  (my-length ‘((1 2) 3 (1 (4 (5)))))


3


trace



0:  (null ((1 2) 3 (1 (4 (5))))) = false


0:  (my-length ‘((1 2) 3 (1 (4 (5)))))


     1: (null (3 (1 (4 (5))))) = false


     1: (my-length ‘(3 (1 (4 (5)))))



  2: (null ((1 (4 (5))))) = false


           2: (my-length ‘((1 (4 (5)))))




3: (null ( )) = true




3:  return 0



  2: (+ 1 0) returns 1


      1: (+ 1 1) returns 2


0: (+ 1 2) returns 3

Note:  this function uses linear (cdr) recursion.

A function that operates like the primitive function nth

(defun  my-nth ( n list )


    (cond
((zerop n ) (first list))




(t (my-nth (- n 1) (rest list)))


    )


)


call

>  (my-nth  3  ‘(2 3 4 5 6 7))


5


>  (my-nth  2  ‘((2 3) (4 (5)) (4 5 6) (3 3)))


(4 5 6)


note:  counting functions in Lisp begin with 0.


note:  this function operates only on the top-level of a list.

A function to count the atoms in a list [uses tree (car-cdr) recursion]

(defun  countatoms  ( list )


   (cond
((null list)  0)




((atom  list) 1)




(t (+ (countatoms (first list)) (countatoms (rest list))))


    )


)


call

>  (countatoms ‘((1 2) 3 (1 (4 (5)))))


6

trace



(countatoms ((1 2) 3 (1 (4 (5)))))




   

     +


(countatoms (1 2))


(countatoms (3 (1(4 (5))))



+






+

1 (countatoms (2))

1

(countatoms ((1(4(5)))))

+





+





1

0

(countatoms (1(4(5))))

0









       +

1 (countatoms((4(5))))

     +









(countatoms (4(5)))
0










     +

1 (countatoms ((5)))

   +








(countatoms (5))

0









+









1

0

Inside Lisp
For the most part, you do not need to worry about how Lisp actually represents list structures.  However, some understanding of this will be helpful in interpreting some of the results that Lisp will return to you.  The abstract data structure which is very close to how Lisp actually represents list is called the dotted-pair, which is sometimes referred to as a cons-cell or simple as conses.  A dotted pair is simply a pair of pointers.  A pointer is either the null pointer (a pointer to nil) or it is a “link” to another dotted pair or an atom.  The first pointer was originally called the car of the pair and the second pointer was referred to as the cdr of the pair.  This original notation was significant due to the first architecture on which a Lisp environment was developed, that of the IBM 704. The car was implemented by an instruction that computed the contents of the address portion of a register (car).  Similarly, the cdr was implemented by a 704 instruction that computed the contents of the decrement portion of a register (cdr).

The Lisp notation for dotted pairs is to write a left parenthesis followed by the Lisp notation for the data structure pointed to by the first (car), followed by a period, followed by the Lisp notation for the data structure pointed to by the rest (cdr), followed by a right parenthesis.  Null pointers are written as nil, and atoms are written with their names.

Lisp treats a list as a special case of a dotted-pair.  As far as Lisp is concerned a list is either:

1. The null pointer, or

2. A dotted pair whose first (car) is an expression and whose rest (cdr) is a list.

As far as Lisp is concerned the following are lists:


nil


(a . nil)


(nil . nil)


(a . ( b . nil))


((a . nil) . nil )


((a . nil) . (b . nil))

The following are not lists:


a


(a . b)


(nil . a)


(a . (b . c))


((a . nil) . b)


((a . b) . (c . d))

Even though they are more restricted, lists are used more commonly in Lisp than are dotted pairs.  Almost anything that can be represented with dotted pairs can be represented with lists, although extra space may be required to hold the extra nil’s.  Most of the functions that we have considered in these notes actually require their arguments to be lists rather than dotted pairs.  However, lists typically look ugly in dotted-pair notation, so Lisp adopted a different system for them called, list notation, which includes dotted-pair notation as a special case.  Shown below are some lists represented using dotted-pair notation (left-hand side) and their equivalent form in the normal list representation (right-hand side):


(a . nil)

(
(a)


(a . b)

(
(a . b)


(nil . nil)

(
(nil)


(a . (b . nil))

(
(a b)


((a . nil) . nil)
(
((a))


((a . nil) . (b . nil))
(
((a) b)


(a . ( b . c))

(
(a b . c)

Lisp will return the result of a function evaluation as a dotted-pair rather than as a list, whenever the result represents a dotted pair rather than a list.  The following illustrates such a case:


>>(cons (+ 2 3) (+ 1 3))


(5 . 4)

How cons Works
Let’s use the analogy that a cons cell is represented by a box which is divided into two parts (just like you would normally represent a linked list) where the left half of the box is the first (car) and the right half of the box is the rest (cdr).

The dotted-pair ((a . b) . nil) would be represented as shown below:




Graphical notation for the dotted-pair ((a . b) . nil)

Lisp maintains a list of memory locations, linked by their right pointers for use in constructing new lists (part of the heap memory).  Lisp refers to this as the free storage list.  The cons primitive operates by removing the first box on the free storage list and depositing new pointers into this box.  Suppose for example, that we have the following situation, which is the result of executing the following form:


>(setf  example ‘(b c))




free storage list


(b c)


example




       b                             c

initial state

>>(setf example (cons ‘a example))

(a b c)











free storage list


example






       b                             c



final state
As shown in the diagram, cons simply consumes a box from the free storage list and allocates it to the list being constructed.  The setf in this example redirects the pointer from example.

Given this description of how cons works and what a dotted-pair represents in Lisp you should be able to determine what Lisp would produce from each of the following:


>>(setf example ‘(b c))


(b c)


>>(setf example (cons ‘a example))


see footnote
 


>>(setf example ‘(b c))


(b c)


>(setf example (cons example ‘d))


see footnote


>(setf example ‘(b c))


(b c)


>(setf example (cons example ‘(d)))


see footnote


>(cons ‘a example)


see footnote

Note:  the append primitive copies the first argument (a list) into empty cells in the free storage list and then literally appends the second argument to the first, thus leaving the original arguments unchanged.
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Only the value of the final argument is returned





Defines a function named “newfriend”, that removes an atom from the enemies list and adds an atom to the friends list.





Lisp response





User input





let’s fence





both-ends-with-let’s fence











Extracting the last element of a list





In order to extract the last element of a list and not a list containing the last element as returned by last, you must combine first and last as follows:





example:


		>  (setf abc-list ‘(a b c))


		ABC-LIST  (A B C)


		>  (last abc-list)


		(C)


		>   (first (last abc-list))


		C





Adding an element to the back of a list





There is no complement of the cons primitive in Lisp.  To add an element to the end (back) of a list requires using a combination of append and list primitives.





example:


	>   (setf f ‘front  b ‘back  abc-list ‘(a b c))


	>   (cons f abc-list)


	(FRONT A B C)


	>   (append abc-list (list b))


	(A B C BACK)








� answer is (a b c)


� answer is ((b c) . d)


� answer is ((b c) d)


� answer is (a (b c) d)
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