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Introduction
This chapter deals with the history of programming languages and how they evolved along with the computer systems on which they were implemented.  The textbook adds a little bit of background in terms of the hardware development which paralleled the languages and I will try to add some more of this background in this set of notes.  It is important to remember that the evolution of programming languages must be considered in the context of the hardware available at the time as the two are too closely linked to be considered in isolation.   For reference, Figure 1 illustrates the genealogy of many popular high-level programming languages.
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Figure 1 – Genealogy of some common programming languages.

Early High-Level Programming Languages
1945:   Konrad Zuse’s Plankalkül 

Many encyclopedias and other reference works state that the first large-scale automatic digital computer was the Harvard Mark 1, which was developed by Howard H. Aiken (and team) in America between 1939 and 1944. However, in the aftermath of World War II it was discovered that a program controlled computer called the Z3 had been completed in Germany in 1941, which means that the Z3 pre-dated the Harvard Mark I. German scientist Konrad Zuse  (1910-1995) developed a series of electromechanical computers in period from 1936 to 1945 and developed his first machine, the Z1, in his parents' living room in Berlin in 1938.  
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Konrad Zuse with the rebuilt Z1 in the Deutsche Technik Museum Berlin in 1989  

Zuse was an amazing man who was years ahead of his time. To fully appreciate his achievements, it is necessary to understand that his background was in construction and civil engineering (not electronics).  Also, Zuse was completely unaware of any computer-related developments in Germany or in other countries until a very late stage, so he independently conceived and implemented the principles of modern digital computers in isolation. The last model, named the Z4, was the only one of his original computers to survive the war. His research group disbanded after Zuse himself moved to the Bavarian village of Hinterstein in 1945 where he established his first company, Zuse KG.  The first task of Zuse KG in 1949 was to restore the Z4, which survived the air attacks of the allies in Berlin and on the way from Berlin to Hinterstein.   

Today it is undisputed that Konrad Zuse's Z3 was the first fully functional, program controlled (freely programmable) computer in the world. The Mark II, the ENIAC and the Colossus followed 1943 and later. The Z3 was presented on May 12, 1941 to an audience of scientists in Berlin. The demonstration was a success. 

The Z3 as the Z1 contained practically all the features of modern day computers. The Z3 was built with relays. The Z3 did not have a jump instruction. Konrad Zuse, however, did know the jump instruction, as he implemented it in the micro code for floating point calculations. 
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No picture of the original Z3 exists. The above picture was taken from a reconstruction made in early 1960 by Zuse KG, Bad Hersfeld. The reconstruction was made for the 1964 Interdata industry fair in Munich. In 1967, it was on display at the Montreal Expo, where it received great attention. It is now owned by the Deutsche Museum in Munich. Today, the Z3 is widely acknowledged as being the first fully functional automatic digital computer, and Konrad Zuse is acclaimed by computer scientists as being a most admired and respected computer pioneer.

Although based on relays, the Z3 was very sophisticated for its time; for example, it utilized the binary number system and could perform floating-point arithmetic.  

The Z3's basic specifications were: 
· a binary number system 

· floating point arithmetic 

· 22-bit word length, with 1 bit for the sign, 7 exponential bits and a 14-bit mantissa.

· 2,400 relays, 600 in the calculating and program section and 1,800 in the memory. 

After initially setting up Zuse KG, Zuse continued his work alone and set about to develop a language for expressing computations.  This work was the continuation of work he had begun in 1943 as his PhD dissertation proposal.  The language that resulted he named, Plankalkül which is German for “program calculus”.  Zuse described his language in a paper which he wrote in 1945, but was not published until 1972.  In this paper, along with the definition of Plankalkül, were many different algorithms written in the language that covered a wide range of applications.  Among these were algorithms to sort arrays of numbers; test the connectivity of a graph, calculate the square root of a number, and to perform syntax analysis on logic formulas that contained parentheses and operators in six different levels of precedence.    The paper included more than 60 pages of algorithms for playing chess.  Although the language was quite remarkable for its sophistication, it was never implemented on any computer, including those built by Zuse, for by the time the rest of the world knew of the language it was obsolete.  

Zuse’s language exhibited many features that did not find their way into main-stream programming languages until many years after Zuse had first developed them in his unpublished paper.  One of the most advanced areas of Zuse’s language was in the area of data structures which included arrays and records, some 30 years before they were introduced elsewhere.

The reason for the late publication was the effort Zuse needed for the Zuse KG from 1949-1964. The Plankalkül was a remarkably complete programming language for computers.   Zuse used an unusual writing of the statements in his Plankalkül. Each data item was denoted with V (variable), C (constant), Z (intermediate result), or R (result), an integer number to mark them, and a powerful notation was used to denote the data structure of the variable. The highlights of the Plankalkül are:

· Introduction of the assignment operation, for example: V1 + V2 => R1. The sign => was introduced by Rutishauser on the ALGOL 60 GAMM-committee, but the committee did not accept it. 

· Statements like V1 = V2 => R1. It means: Compare the variables V1 and V2: If they are identical then assign the value true to R1, otherwise assign the value false. Such operations could be applied on complicated data structures, too. 

· Programming plans, calling sub-programs and different stop criteria. 

· Conditional statements, but no ELSE statement. 

· Repetition of statements (loops). 

· Operations of predicate logic and the Boolean algebra. 

· Powerful operations on lists and pairs of lists. 

· No recursion. 

· Data types like: floating point, fixed point, complex. 

· Arrays, records, hierarchical data structures, list of pairs. 

· Arithmetic exception handling. 

· Applications to play chess are described on more than 60 pages. 

· Assertion like in EIFFEL and MODULA-2. 

· Complicated expressions with parentheses and nesting.

An example of an assignment statement involving arrays in Plankalkül is shown below:

pseudocode:
A[7] = 5 * B[6]


Plankalkül:



|  5 *  B  (  A


V       |         6        7

(subscripts)


S       |        1.n     1.2

(data types)

1949:   Pseudocodes
The computers that were available during the late 1940s and early 1950s were much different beasts than are available today.  For the most part they were very slow and unreliable with very small memories.  Additionally, the machines were very difficult to program because there was no software support.  There weren’t any operating systems, high-level languages, or even assembly languages which meant that the programmer developed code in machine language.  Programming in machine code is an extremely time-consuming task with a high degree error probability.  From a readability point of view, how does the program below read to you?


110101 10011 1101001001110011


101100 00110 1110110100111010


111001 01111 1011110111011011

While this type of code is hard to read, it has even bigger drawbacks in the area of modifiability.  Very few programmers get it right the first time, modification of source code is the norm not the exception and machine code uses absolute addressing.  In other words a program using absolute addressing is designed to load into a particular address in memory and all memory references within the program are based upon that absolute address. Therefore if a jump instruction returns control to address xxx, then the instruction to resume control had better be at address xxx.  However, if you’ve inserted a new “statement” in the code above address xxx, then the correct instruction is no longer at this address.  This will require searching the code and modifying all address references below the newly inserted instruction.  The same will be true for the deletion of instructions.  However, the “no-op” instruction was developed as a place-holder for deleted instructions so that only insertions caused a problem.

These sorts of problems associated with machine languages were the motivating factors behind the development of assembly languages.

1949:   Short Code
The problems surrounding the use of machine code as the primary language in which to program computers became immediately apparent to those who worked in the field.  Almost immediately, work began to develop languages in which program could be written that were more symbolic than that of machine code.  One of the first of these was named Short Code by its developer John Mauchly, who developed the languages for the BINAC computer in 1949.  Short Code later became the primary programming language of the UNIVAC I computer.  Short Code was never officially published as a language, so a complete description of its features is not available.  What is known of Short Code comes from a UNIVAC I programming manual from 1952, although it is believed that this is very similar to the original language.  

The UNIVAC I was a 72-bit word machine in which the word was divided into six groups of 12 bits/byte.  Short Code consisted mainly of mathematical expressions represented as codes of byte-pair values which allowed most equations to fit into a single word.  Some of the Short Code codes are shown below:


01  ( 


06  absolute value

1n  (n+2)nd power


02  )


07  +




2n  (n+2)nd root


03  =


08  pause



4n  if <= n


04  /


09  (




58  print and tab

Variables and constants were also named with byte-pair codes.  For example, if X0 and Y0 are variables, the statement  X0 = SQRT(ABS(Y0)) would be coded in a word as 00 X0 03 20 06 Y0.  Where the most significant byte-pair code in this example (00) is simply padding.

Short Code was not translated into machine code but rather interpreted.  At the time, this was called automatic programming.  While it simplified the coding process compared to machine code, it was much slower, with Short Code interpretation about 50 times slower than machine code.

1951 – 1953:  The UNIVAC Compiling System
Between 1951 and 1953, Grace Hopper led a UNIVAC development team which built a series of “compiling” systems named A-0, A-1, and A-2 that expanded pseudocode into machine code similar to the way a macro is expanded in an assembly language (replaced with in-line code).  Although the pseudocode used by these machines was quite primitive, it nevertheless demonstrated that the future of programming was in higher-level languages.  Other researchers were accomplishing the same results during this time period as well.

1954:   Speedcoding
During the early 1950s much effort went into developing interpretive systems which extended machine language to include floating-point operations as the desire for more complex numerical operations grew.  In 1954, John Backus developed a system called Speedcoding for the IBM 701 machine.  Basically, Speedcoding converted the 701 machine into a virtual three-address floating-point calculator.  Among the features of Speedcoding were:

· Four instructions for operating on floating-point numbers.

· Operations such as square root, sine, arc tangent, exponent, and logarithm.

· Auto-increment registers for array access.  (This feature did not appear in hardware until 1962 on the UNIVAC 1107 computer.)

· Conditional and unconditional branch instructions.

· I/O conversions.

While, certainly a breakthrough in language design, the hardware of the IBM 701 severely limited the usefulness of Speedcoding.  After loading the interpreter into the memory, the remaining usable memory decreased to only 700 words.  Furthermore, it was SLOW, with an addition instruction requiring 4.2 milliseconds to execute.  However, complex operations, such as matrix multiplication could be accomplished using only 12 Speedcoding instructions.  The features of Speedcoding allowed Backus to state that problems which could take two weeks to program in machine code could be programmed in a few hours with Speedcoding.

1954:  The IBM 704 and the Evolution of FORTRAN
Prior to 1954, computing, or what passed as computing in those days, was all scientific applications as there was virtually no business computing at the time.  This type of coding was quite tedious as the hardware of the day did not support floating-point operations (the bulk of scientific computing) and thus required simulation in software.  It was sheer magnitude of the processing time spent in this simulation that masked the inherent deficiencies of interpreted code that was so prevalent at the time.  All that would abruptly change in 1954 with the introduction of the IBM 704 that directly lead to the development of FORTRAN. 

IBM was incorporated in 1911, starting as a major producer of punch card tabulating machines. In the 1930s, IBM built a series of calculators (the 600s) based on their card processing equipment. In 1944, IBM co-sponsored the Mark 1 computer (together with Harvard University), the first machine to compute long calculations automatically. 

The year 1953 saw the development of IBM's 701 EDPM, which, according to IBM, was the first commercially successful general-purpose computer. The 701's invention was part of the Korean War effort. Thomas Johnson Watson, Jr. wanted to contribute a "defense calculator" to aid in the United Nations' policing of Korea. One obstacle he had to overcome was in convincing his father, Thomas Johnson Watson, Sr. (then Chief Executive Officer of IBM) that computers would not harm IBM's card processing business. The 701s were incompatible with IBM's punched card processing equipment, a moneymaker for IBM. 

Only nineteen 701s were manufactured (the machine could be rented for $15,000 per month). The first 701 went to IBM's world headquarters in New York. Three went to atomic research laboratories. Eight went to aircraft companies. Three went to other research facilities. Two went to government agencies, including the first use of a computer by the U.S. Department of Defense. Two went to the navy and the last machine went to the U.S. Weather Bureau in early 1955. 

The 701 had electrostatic storage vacuum tube memory, used magnetic tape to store information, and had binary, fixed-point, single address hardware. The speed of the 701 computers was limited by the speed of its memory; the processing units in the machines were about 10 times faster than the core memory. 
In 1956, a significant upgrade to the 701 appeared. The IBM 704 was considered the world's first super-computer and the first machine to incorporate floating-point hardware. The 704 used magnetic core memory that was faster and more reliable than the magnetic drum storage found in the 701. Also part of the 700 series, the IBM 7090 was the first commercial transistorized computer. Built in 1960, the 7090 computer was the fastest computer in the world. IBM dominated the mainframe and minicomputer market for the next two decades with its 700 series. 

After releasing the 700 series, IBM built the 650 EDPM, a computer compatible with its earlier 600 calculator series. The 650 used the same card processing peripherals as the earlier calculators, starting the trend for loyal customers to upgrade. The 650s were IBM's first mass-produced computers (universities were offered a 60% discount). 
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The IBM 704 Computer (1956). The first mass-produced computer with floating-point arithmetic, whose designers included John Backus, formerly of IBM Watson Laboratory at Columbia University, who also was the principal designer of FORTRAN, the first high-level language for computer programming. The 704's 6-bit BCD character set and 36-bit word account for FORTRAN's 6-character limit on identifiers. 

Table 1 shows the development of the IBM 700/7000 series of computers.

	Model

#
	First Delivery
	CPU


	Memory
	Cycle

Time

((s)
	Memory

Size

(k)
	#

of

opcodes
	# of index registers
	I/O

overlap (channels)
	Instruction

Fetch

Overlap
	Speed

(relative

to 701)

	701
	19952
	V
	tubes
	30
	2-4
	24
	0
	no
	no
	1X

	704
	1955
	V
	core
	12
	4-32
	80
	3
	no
	no
	2.5X

	709
	1958
	V
	core
	12
	32
	140
	3
	yes
	no
	4X

	7090
	1960
	T
	core
	2.18
	32
	169
	3
	yes
	no
	25X

	7094 I
	1962
	T
	core
	2
	32
	185
	7
	yes
	yes
	30X

	7094

II
	1964
	T
	core
	1.4
	32
	185
	7
	yes
	yes
	50X



V = vacuum tube, T = transistor

Table 1 – Summary of the Evolution of the IBM 700/7000 Series Computers

John Backus and his group at IBM where the developers of the original  FORTRAN (The IBM Mathematical FORmula TRANslation System) in 1954.  So revolutionary was the language compared to its predecessors that Backus’ original paper declared that “FORTRAN would eliminate coding errors and the debugging process.”  Based upon this bold statement the original FORTRAN compiler contained very little syntax checking.

FORTRAN was developed in an environment in which:

· Computers were relatively small (in terms of memory), slow, and unreliable.

· The primary use for computers was scientific computations.

· There did not exist any efficient ways to program computers.

· Computers cost more than programmers, the speed of generating the code was the primary goal of the first FORTRAN compilers.

FORTRAN, as many languages which ultimately followed it, was re-designed even before it was implemented.  (Your textbook refers to the un-implemented version as FORTRAN 0 and the first implemented version as FORTRAN 1, however, in reality it was simply called FORTRAN as no one had the foresight to start numbering the languages.)

The first compiler for FORTRAN was released by IBM in April 1957 after 18 worker-years of effort (the programmer’s manual for the language was released in October 1956 however!).

Some of the features of FORTRAN were:

· Included logical if statements

· Post-tested counting loop

· Formatted I/O

· Six-character names (see photo above)

· User-defined subprograms

· No data-typing statements, i,…, n variables were assumed integer, all others were assumed floating-point.

Unfortunately, the 704 was not a very reliable machine and programs larger than about 400 lines of code seldom compiled correctly.  But this did not slow the rapid expansion of FORTRAN programming.  By April 1958 (one year after its release) approximately one-half of all code written for the 704 was in FORTRAN.

Over the years FORTRAN has undergone many revisions and upgrades.  FORTRAN IV which evolved during 1960-1962, becoming the NASI standard in 1966 and remained so until 1978, when FORTRAN 77 was released.  FORTRAN IV included explicit type declarations, logical selection statements, and subprograms could be passed as parameters.  FORTRAN 77 added string handling capabilities and the now common if-then-else statement.

FORTRAN 90/95 is the current version of FORTRAN with FORTRAN 95 being the current standard, but differing only slightly from FORTRAN 90.  FORTRAN 90/95 differs drastically from FORTRAN 77 in that it added modularity features, built-in library functions, dynamic arrays, pointers, recursion, parameter type checking, and many other features common to modern programming languages.

Look at the FORTRAN 90 example on page 49 in your text and see how you would rate the readability of FORTRAN 90.

The next version of FORTRAN, which is tentatively named FORTRAN 2000, is due to be adopted by ISO in March 2004.

Functional Programming Languages:  LISP
Artificial Intelligence (AI) began to appear as an application area within computing as early as the mid-1950s.  AI has its foundations in linguistics, psychology, and mathematics.  The linguists were concerned with natural language processing, psychologists with modeling human thought processes and the mathematicians were concerned with mechanizing intelligent processes (such as theorem proving).  Such processing is not numeric in nature but rather symbolic, so languages like FORTRAN are not particularly suited to AI work.  IBM became interested in AI in the mid-1950s as well and selected theorem proving as the demonstration arena.  The high cost of the FORTRAN compiler convinced IBM that a list processing language should be attached to FORTRAN rather than some additional (read: additional costly) language.  From this the language FLPL, FORTRAN List Processing Language, was born.

In 1958, John McCarthy of MIT spent a summer as a researcher at the IBM Information Research Department.  His goal for the summer was to investigate symbolic computations and develop a set of requirements for doing symbolic computation.  McCarthy chose the differentiation of algebraic expressions as a pilot example area in which to focus.  His research indicated that the control flow methods for mathematical functions of recursion and conditional expressions were necessary and FORTRAN had neither of these.  Another requirement that McCarthy felt was fundamental to such computation was the need for dynamically allocated linked lists with some sort of implicit de-allocation.  McCarthy felt that explicit de-allocation by the programmer would cause unnecessary clutter in programs, thus the implicit requirement.  When McCarthy returned to MIT that fall, along with Marvin Minsky, he formed the MIT AI Project.  Their first important project was to develop a list-processing system that was to be used initially to implement a program proposed by McCarthy called the Advice Taker.  It was from this application that the first list-processing language was developed, sometimes referred to as pure LISP.  The first version of LISP is often called pure LISP because it is a purely functional language.

LISP stands for LISt Processing language.  In its pure form, LISP has only two types of data structures, atoms and lists.  There is no need for variables or assignment.  Control is handled via recursion and conditional expressions.  Atoms are either symbols (identifiers) or numeric literals.  The syntax of LISP is based upon lambda-calculus.


(one  two  three  four)

//a list of four atoms
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      one          two          three        four

(one (two  three (four)))
//a list of two elements; an atom “one” and







//a list (two three (four)) which consist of 







//three elements, 2 atoms “two” and “three”







//and a list (four).





     one





        two             three










four

In a functional language, all computation is accomplished by applying functions to arguments.  Neither variables nor assignment statements which are so prevalent in imperative languages are necessary in a functional language.  Since iterative processes can be described recursively, no loop control statements are necessary in a functional language.  These factors all add up to make pure Lisp syntactically a very simple language, yet capable of extremely complex operations.  Program code and data have exactly the same format.  The list (one  two   three   four) interpreted as data is a list of four elements, when interpreted as code, it is the application of a function named one to the three parameters two, three, and four.

We will see a lot more of LISP a bit later in the term when you have the experience of programming in LISP.   LISP completely dominated AI research for many years as it was the only functional language suited to such computation.  In the years since LISP was developed, alternative languages, such as Prolog have become popular with some AI researchers and LISP is no longer the exclusive AI language.  For the most part, pure LISP has been replaced by COMMON LISP and some of its contemporary dialects such as Scheme and ML.

The Trend Toward Sophisticated Languages:  ALGOL 60
ALGOL 60 came about as the result of efforts to develop a universal programming language.  By the late 1950s, virtually every research group, both industrial and academic, had developed their own “high-level” programming language.  IBM had FORTRAN, Perlis at Carnegie-Tech had developed a language called IT, UNIVAC computers had two languages known as MATH-MATIC and UNICODE (both developed by Perlis), and so on.  Furthermore, high-level languages were being developed within architectural frameworks, which limited their scope, often to a single machine.  Code portability was non-existent.  This proliferation of programming languages alarmed a number of people and various computer user groups such as SHARE (IBM’s scientific user group) and USE (UNIVAC’s Scientific Exchange) submitted a petition to the ACM (Association for Computing Machinery) on May 10,1957, to form a committee to study and recommend action to create a universal programming language.  Although FORTRAN might have been considered, at the time to be a likely candidate for this universal language, it was solely owned by IBM, who would not consider releasing it for such use.    

Paralleling this movement was a similar movement in Europe, which had actually begun earlier in 1955, in which GAMM (the German acronym for the Society of Applied Mathematics and Mechanics) had begun to study the design of a universal, machine-independent, algorithmic language for use on all computer hardware.  The concern in Europe initially, was to prevent their domination by IBM.  However, by late 1957, the proliferation of languages in the US convinced the GAMM subcommittee to widen their efforts to include the US and an invitation was sent to the ACM  and in April 1958 the two groups agreed to join forces to develop a universal algorithmic language.

In a four day meeting in Zurich in the spring of 1958 a new language, initially known as IAL (International Algorithmic Language) was developed which was designed to satisfy the following criteria:

· The syntax of the language should be as close as possible to standard mathematical notation, and programs written in it should be readable with little further explanation.

· It should be possible to use the language for the description of computing processes in publications.  This meant that it was easy to typeset.

· Programs in the new language must be mechanically translatable into machine language.

Depending on your point of view, the Zurich meeting either produced monumental results or never-ending arguments.  In reality, it accomplished a little of both.  For example, a great debate raged at the conference as to whether the decimal point should be represented as a comma (the European technique) or as a period (the US technique).

The features of the language that ultimately came to be known as ALGOL 58, was in many ways a descendant of FORTRAN, yet exhibited many unique features such as:

· Concept of a data type was formalized.

· Names could be of any length.

· Arrays could have any number of subscripts (any dimension).

· Parameters were separated by mode (in & out).

· Subscripts were placed in brackets.

· Compound statement was developed (begin…end).

· A semicolon was adopted as a statement separator.

· Assignment operator was set as  :=.  Recall that Zuse’s language had used ( as the assignment operator, conference wanted to adopt =: as the assignment operator, but the US members of the committee wanted to use := as the assignment operator.  This was another heated argument, which the US eventually won.

· If statement had an else-if clause.

The original intent of the ACM/GAMM conference had been to develop a working document that would initiate international debate on the development of a universal programming language.  The committee had no intentions of proposing to implement the language, however, particularly in the US, the document was viewed more as a collection of ideas that programming languages should incorporate than as a universal standard language.  As a result, three separate implementations of languages stemming from the committee’s report were developed.  The language MAD was developed at University of Michigan, the U.S. Naval Electronics Group produced a language called NELIAC, and Jules Schwartz of the System Development Corporation produced JOVIAL (Jule’s Own Version of the International Algorithmic Language).  JOVIAL actually became quite well-known and adopted as for 25 years it was the “official” scientific language of the U.S. Air Force!  However, ultimate doom was on the horizon for ALGOL 58 when IBM decided that so much effort had gone into FORTRAN, which should not be repeated, that it formally retained FORTRAN as the scientific language for the IBM 700 series machines, thereby abandoning ALGOL 58.

In January 1960, a second ALGOL meeting was convened in Paris, which although it lasted only six days, was to shape the future of programming languages, especially imperative languages, until the present day.  During the previous year (1959) ALGOL 58 had been feverishly debated in both Europe and the US and a large number of suggested improvements and modifications had been proposed.  The purpose of the 1960 meeting was to act on more than 80 formal proposed changes to the ALGOL 58 language.  Additionally, in 1959, Backus had introduced his new notation for describing the syntax of programming languages (later to become the well-known Backus-Naur form or BNF grammars).  Peter Naur, who was the publisher of the ALGOL Bulletin, modified Backus’ form somewhat and presented a complete description of ALGOL 58 using this new syntax at the Paris meeting.  Many new features were added to ALGOL as a result of this meeting, among these were:

· Block structured design of the language (affecting local scope).

· Two parameter passing methods established (pass by value and pass by name).

· Subprogram recursion was clearly defined.

· Stack-dynamic arrays were defined.

· The language still had no I/O (rejected as too machine dependent) and no string handling.

The changes to the ALGOL language that resulted from the 1960 meeting resulted in a change of name to ALGOL 60.  This language was successful from a number of different points of view:

· The defacto standard for publishing algorithms for over 20 years.  

· Every subsequent imperative language (PL/1, Simula67, ALGOL 68, C, Pascal, Ada, C++, Java, etc.) are in one way or another based on ALGOL 60.

· First machine-independent language.

· First language whose syntax was formally defined (using BNF).

· Initiated the fields of formal language study, parsing theory, and compiler design.

· Was the first language to influence hardware design.   Burroughs B5000, B6000, and B7000 machines were designed with a hardware stack to efficiently implement the block structure and recursive procedures of the language.

However, from a different perspective, ALGOL 60 was in many ways a failure.  It was never widely adopted in the US and was not adopted as widely in Europe as was initially anticipated.  There are a number of reasons for the failure of ALGOL to become the universal programming language and among these are:

· Lack of I/O statements made porting the code to other machines quite difficult.

· In many ways, ALGOL was too flexible, which made understanding programs written in it difficult to understand and even more difficult to implement the language.

· While today we view BNF grammars as a concise method for defining the syntax of a programming language, it was quite new in 1960 and in its own way contributed to the demise of ALGOL.

· Perhaps more than any other factor, the entrenchment of FORTRAN and the lack of support from IBM, spelled the end for ALGOL.

1960s:   The Rise of Business Computing and COBOL
As we continue our trip through the history and evolution of programming languages, we have arrived in the early 1960s.  Electronic computers have now been around for about 15 years or so and while their use is still largely in the scientific domain, it is no longer an exclusive domain, the world of business computing is beginning to emerge. 

By 1964, IBM had a firm grip on the computer market with the 7000 series.  That year IBM announced the System/360 line of computers, the industry’s first planned family of computers which would serve both the scientific and business communities.  IBM made a bold move with this new line as it was not compatible with previous IBM systems.  IBM invested about $5 billion in developing the System/360.  IBM felt this was necessary to incorporate the new integrated circuit technology.  The move paid off for IBM, the System/360 line was the computer success of the decade and locked IBM to the top market position with more than 70% of the total sales volume of computers.  With some modifications and extensions, the architecture of the 360 series remains, to this day, the architecture of IBM’s large systems.  The characteristics of a family of computers are:

1. Similar or identical instructions sets:  In most cases, the exact same set of machine instructions is supported on all members of the family.  In some cases, the lower-end machines will have an instruction set that is a subset of the top-end of the family.  This means that software (applications) can move up, but not down.

2. Similar or identical operating systems:  The same basic operating systems is available for all family members.  In some cases the high-end machines will support additional features.

3. Increasing speed:  The rate of instruction execution increases going from low-end family members to high-end members.

4. Increasing number of I/O ports:  Again increasing from low-end to high-end.

5. Increasing memory size:  From low-end to high-end.

6. Increasing cost:  The bigger the machine – the more it costs.

The major features of the IBM System/360 family of computers are summarized in Table 2.

	Characteristic
	Model 30
	Model 40
	Model 50
	Model 65
	Model 75

	Maximum Memory Size (bytes)
	64 K
	256 K
	256 K
	512 K
	512 K

	Data rate from memory (Mbytes/sec)
	0.5
	0.8
	2.0
	8.0
	16.0

	Processor Cycle Time ((s)
	1.0
	0.625
	0.5
	0.25
	0.2

	Relative Speed
	1
	3.5
	10
	21
	50

	Maximum number of data channels
	3
	3
	4
	6
	6

	Maximum data rate on one channel (Kbytes/s)
	250
	400
	800
	1250
	1250


Table 2 – Summary of the Characteristics of the IBM System/360 Family

The IBM 360 series not only shaped the future for IBM, it also had a profound impact on the entire computer industry.  Many of the features that were a part of this family of computers have become standard on other manufacturer’s systems.

As early as the late 1950s, the larger computer manufacturers had begun to realize that computers might be a valuable tool for business.  Although much less research and effort had been devoted to business computing at the time, there was beginning to be sufficient interest from business to force the computer manufacturers to begin to develop programming languages for business rather than scientific applications.  The Remington-Rand UNIVAC Corporation had developed a language called FLOW-MATIC (which true to the day, ran only on UNIVAC computers), the U.S. Air Force had developed their own language called AIMACO, which was only slightly modified FLOW-MATIC, and IBM had begun work on a language called COMTRAN (COMmerical TRANslator), but had not yet implemented the language.

The foundations of COBOL can be traced back to December 1953 when Grace Hopper (see Appendix 1), who at the time was at Remington-Rand UNIVAC, produced a proposal that suggested “mathematical programs should be written in mathematical notation and data processing programs should be written in English statements.”  However, it wasn’t until 1955 that Hopper was able to convince UNIVAC management that such a proposal was worthy of funding by UNIVAC.  Even then, Hopper had to build a prototype system which compiled and ran a small program first using English keywords, then using French keywords, and finally using German keywords.  UNIVAC management thought this demonstration to be quite remarkable, and funded Hopper’s project.

COBOL, in many ways, originated along the same lines from which ALGOL had been developed.  The first formal meeting of the Conference on Data Systems Languages (CODASYL) to develop a common language for business applications was held on May 28 and 29, 1959 and sponsored by the Department of Defense (held exactly one year after the initial meeting of the ALGOL group).  The name of the language was set as CBL (Common Business Language) at this first meeting.  The consensus of those attending the meeting was that such a business oriented language should have the following features:

· English should be used as much as possible, rather than cryptic symbols or notation.  (Several of the attendees felt that it would be impossible to develop a useful language without a rigorous mathematical notation for the language.)

· The language must be easy to use, even at the expense of being less powerful.  This was to ensure a broader base of those who could program computers.

· The design should not be overly restricted by the problems of its implementation.

· An overriding concern of the attendees was that the language be developed quickly, as new languages were being developed at an alarming rate.  To this end, a special Short Range Committee was formed with the task of quickly studying existing languages.

The Short Range Committee decided early on, that the statements of the language should be separated into two distinct categories, data description statements and executable operations.  One of the great debates that consumed much of this committee’s time was whether to include subscripts in the language.  Many felt that those in business were too mathematically naïve to understand subscripts and they should not be included in the language.  There were even those on the committee who felt that arithmetic expressions in general should not be included, as those in business certainly didn’t need to calculate anything, just print reports.   The final report of the Short Range Committee was published in December 1959 and described the language which was later named COBOL 60.  The U.S. Government Printing Office published the official specifications for the language known as COBOL 60 in April 1960.  The American National Standards Institute (ANSI) standardized the language in 1968 with revisions occurring in 1974 and 1985.  The language continues to evolve today.    COBOL was the first language whose use was mandated by the DoD (this actually happened after the fact since COBOL was not specifically developed for the DoD), and this mandate contributed significantly to the long-term success of COBOL.  As was common with many new languages of the time, development costs were high and early compilers made the language very expensive to use.  Without this mandate from the DoD it is possible that COBOL would not have been nearly as successful as it became.  However, COBOL is responsible for the electronic mechanization of accounting, this alone is sufficient to secure its place in history.  Figure 2 illustrates a “hello world” program written in COBOL.  How readable and writable does this language appear to you?  (For a look at COBOL and the Y2K problem, see Appendix 2.)

   000100 IDENTIFICATION DIVISION.


000200 PROGRAM-ID.     HELLOWORLD.


000300


000400*


000500 ENVIRONMENT DIVISION.


000600 CONFIGURATION SECTION.


000700 SOURCE-COMPUTER. RM-COBOL.


000800 OBJECT-COMPUTER. RM-COBOL.


000900


001000 DATA DIVISION.


001100 FILE SECTION.


001200


100000 PROCEDURE DIVISION.


100100


100200 MAIN-LOGIC SECTION.


100300 BEGIN.


100400     DISPLAY " " LINE 1 POSITION 1 ERASE EOS.


100500     DISPLAY "Hello world!" LINE 15 POSITION 10.


100600     STOP RUN.


100700 MAIN-LOGIC-EXIT.


100800     EXIT.

Figure 2 – “Hello World” program written in COBOL.

COBOL exhibited a number of features that have subsequently found there way into other programming languages.  However, even though COBOL was an extremely successful language for business applications, it did not influence the development of other languages to the extent that perhaps it should based upon its popularity.  It was the first language to implement macros (using the DEFINE construct).  Hierarchical data structures [records] (first introduced in Plankalkül) were first introduced in COBOL and they have been included in virtually every imperative language designed since that time.  COBOL was also the first language to allow very long variable names (30 characters with word-connectors).

The data division is the strongest part of the COBOL language.  Every variable is completely defined in this section of a program, even down to the level of defining the number of decimal digits and the location of the decimal point.  Files are similarly defined in this section of a program, and unlike contemporary languages such as ALGOL, output lines (to a printer) are completely specified in the data division.  On the other hand, the procedure division is relatively weak in COBOL, with its biggest weakness being a complete lack of functions.  COBOL versions before 1974 did not allow subprograms which contained parameters.

1964:  Beginnings of Timesharing and BASIC
By the mid-1960s, the electronic computer was becoming commonplace in many domains.  Although certainly not as commonplace as today, its proliferation into many areas which heretofore had not even considered electronic computing, was proceeding at an unbelievably fast rate.  Many researchers were beginning to envision the day when everyone would be able to program a computer to accomplish virtually any task imaginable.  To this end, research began in several different areas, one of which was the development of programming languages that were easy to understand for people who were not programmers by profession.   Computer manufacturers also began to realize that computers, as they got faster, bigger, and more reliable; could be utilized by more than one “user” at a time.  This was the rudimentary beginnings of what is now referred to as “timesharing”.

BASIC (Beginner’s All-purpose Symbolic Instruction Code) was developed at Dartmouth College (New Hampshire) by mathematicians John Kenney and Thomas Kurtz, both of whom had developed compilers for a variety of dialects of FORTRAN and ALGOL 60.  Dartmouth is a liberal arts school and during the spring of 1963 they decided to develop a new language that was especially suited to liberal arts students (not technically oriented) and this new language was to be used from terminals to access the computer rather than through punched cards.  The goals for the language (really a complete system) were:

· It must be easy for non-science students to learn and use.

· It must be pleasant and friendly.  (whatever that means!)

· It must provide fast turnaround for homework deadlines.

· It must allow free and private access.

· It must consider user time more important than computer time.

The last goal especially, was a revolutionary concept in that it implied that computers would become much cheaper in the future.  The combination of the second, third, and fourth goals led to the timeshared concept of BASIC, as only through the use of terminals by numerous simultaneous users could these goals be met in the mid-1960s.

In the summer of 1963, Kenney began to construct the compiler for the first version of BASIC, using remote access to a GE 225 computer.  The design and coding of the operating system for BASIC began in the fall of 1963 and at 4:00am (a good CS programmer’s time) on May 1, 1964, the first program using timeshared BASIC was typed in and run.  In June of 1964 the number of terminals on the system grew to 11 and by the fall of 1964 the number had grown to 20.

The original version of BASIC was very small, containing only 14 different statement types and a single data type, simply called a “number” (the developers felt that most students would not understand the differences between an integer and a floating-point type).  The first version of BASIC was not interactive, meaning there was no way to get data from the terminal into the program, rather the program was typed in , compiled, and run in a sort of batch mode of operation.

One of the most important features of the original BASIC was that it was the first widely used method of remote terminal access to a computer.  Terminals were quite new in the mid-1960s and before that time, all programs were either toggled in directly or stored on punched cards or paper tape (punched tape).  While the original design of BASIC was heavily influenced by both FORTRAN and ALGOL 60 (syntactically only and to a lesser extent than FORTRAN), the language expanded rapidly and mostly without supervision or direction and there was little effort to standardize the language.  In 1978, ANSI issued a Minimal BASIC standard, but it represented only the bare minimum of the language’s feature (it looked more like the original BASIC than any of the subsequent dialects that had been developed).

The original BASIC was a heavily maligned language that did not see widespread adoption in the field of computer science.  In part, this is due to the fact that it was applied to many applications for which it was inappropriate as a language.  The original intent of BASIC was not to build a language suitable for software systems development, yet it was often applied in this area.  It was never intended to be used for “serious” programming, yet it is in this area that it has received most of its criticism.  A subsequent, “beefed-up” version of BASIC called BASIC-PLUS was used by Digital Equipment Corporation (DEC) to write the operating system for their PDP-11 minicomputers of the 1970s. Current versions of BASIC, including QuickBASIC and Visual BASIC are much better suited to more complex applications and are extremely popular as they both run on PCs.  Visual BASIC is based heavily on Quick BASIC but is designed for developing software systems that have windowed user interfaces.

1965:   Further Attempts at the Universal Programming Language – PL/1
By the early 1960s, the users of computers in industrial applications had clearly divided into two very distinct groups, the scientific users and the business users.   IBM still very much controlled the computer manufacturing side of the market, although not quite as dominant yet as they were about to become.  Scientific users of IBM systems used either the large scale 7090 series or the smaller scale 1620 computers.  IBM perceived the scientific users as those who used floating-point data types and arrays extensively.  FORTRAN was their primary programming language, although some assembly language was also used (about 30%).  The scientific users had their own user group, SHARE (recall the ALGOL 60 conference), and had little contact with anyone who worked on business applications.

Business users of IBM systems used either the large scale 7080 series or the smaller 1401 series computers.  IBM felt that the business users needed decimal and character-string data types along with elaborate and efficient I/O facilities.  The language of choice was COBOL (although still about 50% of business applications were written in assembly language at this point in time).  The business users had their own user group, GUIDE, and they had little contact with scientific users.

In early 1963, market forecasters at IBM perceived the beginnings of a change in this clearly delineated situation.  The two widely diverse groups were beginning to move toward each other in a manner that began to deeply concern IBM.  Scientists were beginning to gather large files of data to be processed.  This data required more efficient I/O facilities.  Business users were beginning to use regression analysis techniques and to build management information systems that required floating-point data and arrays.  From IBM’s point of view this alarming trend indicated that very soon computing installations would require two separate computers that supported two very different programming languages.

IBM decided that it would simply be too costly to allow this trend to continue and to reverse this trend set about designing a single universal computer that would be capable of doing both floating-point and decimal arithmetic, and therefore be used by both scientific and business applications.  From this concern sprang the IBM System/360 line of computers described earlier.  Along with this idea came the idea of a programming language that could be used for both scientific as well as business applications.  Just to be complete (at the time), IBM also decided to add system-level applications and list-processing (AI was underway) to the application areas that this new “universal” language could be applied.  The idea was that this new high-level language would replace FORTRAN, COBOL, LISP, and the system-level work done in assembly language.

The design process of what would eventually become known as PL/1 in many ways paralleled the development of the languages ALGOL 60 and COBOL.  The design efforts began when IBM and SHARE formed the Advanced Language Development Committee of the SHARE FORTRAN Project in October 1963.  This new committee met almost immediately and formed a subcommittee called the 3 x 3 Committee, so named because it consisted of 3 members from IBM and 3 members from SHARE.  This subcommittee met for 3 or 4 days every other week to design the language.  The initial design, which was called FORTRAN VI, was supposed to be completed in 3 months, although it did not actually appear until late February of 1964 (about 5 months).    Initially, the designers of the new language thought that they could simply extend FORTRAN IV and maintain compatibility, hence the name, but this idea was quickly dropped along with the name.  Until 1965, the new language was known as NPL (New Programming Language).  The first published report on NPL was presented at the SHARE meeting in March 1964.  The version that would ultimately be implemented was published by IBM in December 1964 by the compiler group at the IBM Hursley Laboratory in England, where IBM had decided to the implementation.  This group formally changed the name of the language to PL/1 to avoid confusion with the National Physical Laboratory in England.  If IBM had chosen to develop the language outside of the U.K. it is likely that the name NPL would have been retained.

PL/1 was a big language, which ultimately combined the best features of ALGOL 60 (recursion and block structure), FORTRAN (separate compilation without communication through global data), and COBOL (data structures, I/O facilities, and report-generating facilities), along with a few new constructs, all blended together.

PL/1 was the first programming language to have the following features:

· Programs were allowed to create concurrently executing tasks. Although this was a good idea, it was rather poorly developed in PL/1.

· Procedures were allowed to be called recursively, but the capability could be disabled to allow for more efficient code for non-recursive procedures.

· Twenty-three different types of exceptions (run-time errors) could be detected and handled.  (Not terribly well implemented.)

· Pointers were included as a data type.  (Again not well done.)

· Cross sections of arrays could be referenced.  Thus a row of a matrix could be treated as a vector.

PL/1 was an ambitious effort to create a universal programming language in an era when high-level programming languages were quite new.  It is rather remarkable that the many features of PL/1 worked together as well as they did considering the lofty expectations of the design.  The basic premise behind the design of the language was that any construct that was useful and could be implemented should be included in the language with little concern given to how the various features would interact when put together.  Edsger Dijkstra, in his 1972 Turing Award Lecture, was rather critical of PL/1 when he stated “I absolutely fail to see how we can keep our growing programs firmly within our intellectual grip when by its sheer baroqueness the programming language – our basic tool, mind you! – already escapes our intellectual control.”

In terms of usage, PL/1  was at least a partial success.  In the 1970s it was in significant use in both scientific and business applications as well as being a fairly popular instructional language at many universities, although as an educational tool, the dialects of PL/C and PL/CS (both developed at Cornell University) were more popular.


Late 1960s:  The Beginnings of Data Abstraction
Norwegian researchers Kristen Nygaard and Ole-Johan Dahl developed the language SIMULA 1 between 1962 and 1964 at the Norwegian Computing Center (NCC) as a simulation language for operations research.  SIMULA 1 was first implemented in late 1964 on a UNIVAC 1107 computer.  Soon after completing SIMULA 1 they began to extend the language by adding new features and modifying existing constructs in order to make the new language more suitable for general purpose applications.  The language that resulted from this work was called SIMULA 67.

SIMULA 67 was derived from ALGOL 60, using both the block structure and the control statement structure of that language.  Simulation requires subprograms that are allowed to restart at the position (location in code) where they had previously stopped.  Subprograms with this ability are called coroutines because the caller and called subprogram have somewhat equal relationship with each other opposed to the more hierarchical nature of the relationship between a subprogram and its caller in most imperative languages.  To provide this support the concept of a class was developed in SIMULA 67, which is significant because much of our ideas of data abstraction in programming languages began with this concept in SIMULA 67.  

The basic idea of a class is that a data structure and the routines that manipulate that data structure are packaged together.  Furthermore, a class definition is only a template for a data structure and as such is distinct from a class instance, so a program can create and use any number of instances of a particular class.  They can also include code that is executed at creation time, which can initialize some data structure of the class instance.  (Does any of this sound familiar to you OO programmers?)

Paralleling the work of Nygaard and Dahl was the continued development and refinement of ALGOL which in the late 1960s was published as ALGOL 68.  ALGOL 68 was a much different language than its predecessors.  One of the primary design considerations for ALGOL 68 was orthogonality, which led to several interesting features of the language, one of which was user-defined data types.  The approach of ALGOL 68, as far as data structures were concerned, was to provide a few primitive types and structures and allow the user to combine these primitives into a large assortment of different structures.  This ability for the user to define new types based upon language primitive as been a part of every imperative language developed since ALGOL 68.  ALGOL 68 also further refined the implementation of dynamic arrays which we will study in more detail later in the semester.

Unfortunately, ALGOL 68 repeated some of the mistakes of the past which prevented it from gaining widespread acceptance.  Not learning from the mistake made with the (at the time) strange syntax of Backus and Naur in defining the original ALGOL, a new metalanguage known as van Wijngaarden grammars was used to define the syntax of ALGOL 68.  Van Wijngaarden grammars are quite difficult to comprehend and call for the use of unfamiliar terms, such as indicant (keyword) and trimming (substring extraction) and the process of procedure execution is called “a coercion of deproceduring , which might be firm, meek, or something else”!

When comparing ALGOL 68 and PL/1 the contrasting designs of the two languages become apparent.  ALGOL 68 achieved writability using the principle of orthogonality (a few primitive concepts and their use in unrestricted combinations).  PL/1 on the other hand achieved writability by including a large number of fixed constructs making it easy to construct any structure.  

In the end, PL/1 achieved far greater acceptance than ALGOL 68.  Much of this can, once again, be attributed to IBM.  Implementations of both languages were difficult but PL/1 had the resources of IBM behind it to ensure the development of a suitable compiler, while ALGOL 68 had no such industrial proponent as IBM by this point in time, had withdrawn all support of the ALGOL language.

The Descendants of ALGOL
The imperative languages, including the imperative/object-oriented languages such as C++ and Java, designed since 1960 owe some of their design to ALGOL 60 and/or ALGOL 68.  We’ll look briefly at some of the more well-known of these languages.

1971:  Pascal
Niklaus Wirth was a member of the International Federation of Information Processing (IFIP) Working Group 2.1, that was created to continue the development of ALGOL in the mid-1960s.  In August 1965, Wirth and C.A.R. Hoare contributed heavily to a proposal to this group for a set of additions and modifications to the ALGOL 60 language.  However, the majority of the group felt that this proposal was not nearly bold enough (it didn’t make enough changes to ALGOL 60 they felt).  So Wirth and Hoare (along with a few others) left this group and subsequently released their own updated version of ALGOL 60 called ALGOL-W.  It was implemented at Standford (Wirth’s university at the time) and a few other universities, primarily as a teaching tool.  This revised language incorporated case statements and introduced the value-result method for passing parameters to subprograms (an alternative to ALGOL’s pass-by-name technique).  After this effort, Wirth next set about developing another language, also based in ALGOL 60, which became the very successful language Pascal.  The first version of Pascal was reported by Wirth in 1971, but subsequent implementation issues warranted sufficient design changes that the defacto standard for Pascal was released in 1973.

Wirth originally designed Pascal as an instructional tool, and to this end Pascal was enormously successful.  In 1970, most university students who took a beginning programming course would have seen FORTRAN (although some universities did use PL/1, by the mid-1970s this would have changed to Pascal at most universities in the US and Europe.  It was not until the late 1990s that Pascal was no longer the most commonly used language for teaching programming in universities.  [At UCF, from the early 1980s to present the set of beginning languages that have been used (in order) are: PL/C, Pascal, Modula-2, and C.]

Pascal was never very popular in industrial applications as it lacked many features which are necessary to develop large-scale software projects, not the least of which was its inability to support separate compilation.  Many dialects of Pascal were developed over the years, which to some extent, only further isolated it from industrial application where portability is of greater concern than in teaching environments.

By the mid-1990s, the popularity of Pascal was on the decline, due in part to a lack of continued development of the language and the release of newer languages with more versatility.  Pascal is still quite popular in the Far East, although there too, it is beginning to lose favor.

1972:  C 

C was the ultimate language that resulted from the efforts of Dennis Ritchie at Bell Labs in 1972.  C was originally designed as a systems programming language, rather than a general purpose language.  Some of the ancestors of C include systems languages B, CPL, and BCPL, as well as ALGOL 68.  The B language was developed as the first high-level language to run under the UNIX environment (both were developed by Ken Thompson at Bell Labs in the late 1960s and early 1970s).  Neither B or its descendant BCPL are typed languages (an oddity among high-level languages), this means that all data is considered to be machine words.  Ritchie set about to develop a systems level language that would remove this problem, as well as several others, in the B language.  Ritchie originally called his new language NB (for New B) but later changed this to C.  The only “standard” for C during its first decade of existence was the book written by Kernighan and Ritchie in 1978.  During this decade the language slowly evolved to the point that an ANSI standard was established in 1989, which included most of the features that had been developed for C during the preceding decade.

The C language has many proponents and many detractors.  One of the fundamental reasons for this polarity is the lack of complete type checking in the language.  Proponents like the flexibility while the detractors find this unsafe.  C gained widespread use in the 1970s and 1980s as the popularity of the UNIX operating system grew, as C came along for the ride with a free compiler that ran on many different platforms.  The rise in popularity of UNIX can be directly attributed to the development of the minicomputer, and area in which Digital Equipment Corporation (read Bell Labs) lead the way.  IBM never completely endorsed the minicomputer revolution and continued to focus most of their developmental resources into mainframes.  However, things would change drastically when IBM released the PC in 1981.

1976:  Modula
After developing the language Pascal, Niklaus Wirth designed the language Modula, which resulted from his experimental work with concurrency.  No compiler for Modula was ever released and its development ended soon after its initial publication (some suggested that the graduate student doing the work graduated).  However, Wirth continued to develop a different version of the language that was to be the single language of a new computer system, later named Lilith.  While the computer was never a success, the new language, named Modula-2 was.  Modula-2 introduced the concept of modularity to modern programming.

Late 1980s:  Modula-3
Modula-3 was developed by the Systems Research Center of Digital Equipment Corporation and the Olivetti Research Center in the late 1980s.  Modula-3 is based heavily on Modula-2 (although Nikalaus Wirth was not involved in the project) and one of its dialects called Modula-2+.  Basically, Modula-3 is an object-oriented version of Modula-2 with additional support for exception handling, garbage collection, and concurrency control features.  Although still a supported language, its user-base, those with Modula-2 backgrounds, is disappearing quickly.

Mid 1990s:  Oberon
Oberon is Nikalaus Wirth’s latest programming language which is loosely based on Modula-2.  The latest version is called Oberon-2 (how original).  Wirth’s design of simple languages continues with Oberon, which although it is an object-oriented language, is much smaller than C++.  Many of the “advanced”  (read little-used) features of Modula-2 were removed from it to get the basis for Oberon.  Oberon does not have variant records, enumeration types, non-integer array indices, subrange types, a with statement, nor a for statement.

Mid 1990s:  Delphi
Delphi is a hybrid language and software development environment, based on Pascal with object-oriented extensions, produced by Borland (known for a time as Inprise). Its most popular use is the development of desktop and enterprise applications for Microsoft Windows.  It was one of the first of what came to be called RAD tools, for Rapid Application Development, when released in 1995.  Delphi 2, released a year later, supported 32-bit Windows environments, and a C++ version, C++Builder, followed a few years after. In 2001 a Linux version known as Kylix (a classical Greek urn) became available. The main components of Delphi and Kylix are the Object Pascal language, the VCL/CLX (Visual Component Library), and strong database connectivity, combined with a powerful IDE.  Delphi is distributed as various suites (each offering more functionality over the other): Personal, Professional, Enterprise, and Architect.  Unlike C++, Delphi does not allow user-defined operator overloading, generic subprograms, and parameterized classes.  

Logic Programming:  Prolog
The basis of logic programming is to use formal logic notation as a means to communicate computational processes to a computer.  First-order predicate calculus is used in virtually all current logic programming languages.  Logic programming differs substantially from imperative programming, primarily in the fact that logic programming is non-procedural whereas imperative programming is procedural.  Procedural languages require that the programmer specify how a result is to be generated through the exact sequence of operations that must be performed to produce that result.  Non-procedural languages simply require the programmer to specify what result (actually the form of the result rather than the specific result) is to be generated and not the sequence of operations that will produce this result.  Logic programming languages must provide a concise means of specifying the what (the relevant information necessary for the computation to proceed) and an inferencing process for computing the results.  Predicate calculus provides the concise method for specifying the what and the proof method known as resolution (developed by Robinson in 1965) provides the inferencing technique.

Prolog (Programming logic) was developed in the early 1970s by two AI research groups, one at the University of Aix-Marseille and one at University of Edinburgh.  Fundamental to Prolog is the method in which the predicate calculus is used to form propositions and a restricted form of resolution.  The first interpreter for Prolog was completed in 1972 in Marseille.

Prolog has only a very few different statements, which can be quite complex.  The most common use of Prolog is as an intelligent database (typically called a knowledge base) against which queries are posed and answers are returned.  A Prolog database consists of two types of statements: facts and rules.  Facts are truths about the “real-world” incorporated in the Prolog database, and rules are used by the inference engine to determine the validity of statements (queries) against the database.  Consider the following Prolog example using a knowledge based named progs:



//Some Prolog queries against the knowledge base.


?-  link(cpl, bcpl), link(bcpl, c).



yes

?- link(algol60, X), link(X, Y).



X = cpl



Y = bcpl

?- link(X, Y), link(Z, Y).   {query? are there two prog. lang. X and Z which

                         have links to the same prog. lang. Y?}

X=fortran

Y=algol60

Z=fortran

?- link(X, Y), link(Z, Y), not(X = Z).  {this is the same query but we have

  added the restriction that X and Z 

  cannot be the same language.}

X=c

Y=c++

Z=simula67  ;

X=simula67

Y=c++

Z=c   ;

no

There are those who believe that logic programming will replace imperative programming.  Proponents of logic programming believe that such languages will be necessary to produce the ever-growing demand for large-scale, reliable software.  So far, however, logic programming has not permeated the main-stream programming environment for two primary reasons.  First, logic programming has proven to be very inefficient and second, it has been shown to be an effective tool in only a small number of application areas, namely some areas of AI and certain types of database management systems.

Later in the term, you will have the opportunity to develop some Prolog programs and explore logic programming in more detail.

History’s Largest Design Effort (so far):  Ada
The Ada language was developed from the most extensive and costly programming language design effort ever undertaken.  Ada was developed for the U.S. Department of Defense (DoD), and as a result somewhat reflects the environment under, and for which, it was developed.  By 1974, over half of the applications of computers within the DoD were embedded systems.  (An embedded system is one in which the computer hardware is embedded within the device it controls or for which it provides services.  For example, your cell phone has between 2 and 6 embedded systems.)  Software development costs were beginning to increase at an alarming rate as the systems became more complex.  At the time, more than 450 different programming languages were in used on various DoD projects, none of which were standardized by the DoD.  Application software was rarely reused and thus no software development tools were created (since they are typically language dependent).  On top of all this, none of these languages was particularly suited for embedded systems.  In 1974, the Army, Navy, and Air Force each independently proposed the development of a high-level language for embedded systems.

This need for a suitable, standardized embedded systems language was recognized by the Director of Defense Research and Engineering, Malcolm Currie, who in January 1975, formed the High-Order Language Working Group (HOLWG), initially headed by the Air Force’s, Lt. Colonel William Whitaker.  The initial charter for this group consisted of the three following items:

1. Identify the requirement for a new DoD high-level language.

2. Evaluate existing languages to determine whether there was a viable candidate.

3. Recommend adoption or implementation of a minimal set of programming languages.

In April 1975, HOLWG produced the requirements document, known as the Strawman requirements, for the proposed new language which was distributed to military branches, federal agencies, selected industrial and university representatives and interested parties in Europe.  The Strawman document was followed in August 1975 by the Woodenman document, which in turn was followed in January 1976 by the Tinman document.  The Tinman document was considered a complete and final set of requirements for the new language.  While the number of participants in this process was quite large at more than 200 representatives, with more than 40 organizations outside the DoD, the principal author of these documents was David Fisher of the Institute for Defense Analysis.  In January 1977, the Tinman document was replaced with the Ironman requirements document and it was from this document in April 1977 that request for proposals was made public, thereby ensuring that Ada was the first language to be designed (implemented in reality) by competitive contract. In July 1977, four of the proposing contractors, Softech, SRI International, Cii Honywell/Bull, and Intermetrics, were chosen to produce, independently and in parallel, Phase 1 of the language design.  All four of the resulting design proposals were based on Pascal.

In February 1978, at the end of the six-month allotment for Phase 1, more than 400 volunteers in 80 different review teams around the world spent two months evaluating the proposed languages.  The two winners, Cii Honeywell/Bull and Intermetrics, were selected to move on into Phase 2 of the design.  

In June 1978, the requirements document was again revised and was now known as the Steelman document.

At the end of the Phase 2 design step, a similar two month evaluation process produced Cii Honeywell/Bull as the winner of the competition in May 1979.  The Cii Honeywell/Bull team was the only non-US competitor in the final four group; was based in France and led by Jean Ichbiah.

In the spring of 1979, Jack Cooper of the Navy Materiel Command recommended the name for the new language, Ada, which was subsequently adopted.  The name is associated with Augusta Ada Byron, Countess of Lovelace, who was a mathematician and the daughter of poet Lord Byron and is generally recognized as the world’s first programmer.  Augusta Lovelace worked with Charles Babbage on his mechanical computers, the Difference Engine and the Analytical Engine and wrote several programs for them for various numerical processes.

Phase 3 of the Ada design process began with the selection of the winning design.  A public test and evaluation conference was held in October 1979 in Boston with more than 10,000 representatives from over 100 organizations in attendance.  By November 1979, more than 500 reports had been filed from 15 different countries.  Most of these reports suggested small modifications to the language, although some suggested outright rejection of the language.  Based upon these reports a final set of requirements on the language was released in February 1980, known as the Stoneman document.

A revised version of the language was completed in July 1980 and was accepted as MIL-STD 1815, the standard Ada Language Reference Manual.  The number 1815 was chosen as it was the year of the birth of Augusta Lovelace.  The final version was presented in 1983 and standardized by ANSI.  The language design was then “frozen” for a least five years.

Ada is designed for embedded systems, safety-critical software, and large projects that require portability and maintainability. For example, over 99 percent of the aviation software in the Boeing 777 is in Ada. Not surprisingly, Ada is the first object-oriented design programming language to be accepted as an international standard.  (See Appendix 3 for a more recent application of Ada95.)

The Ada Information Clearinghouse has served a community of software engineers, managers, and programmers for over fifteen years. The Web site provides articles on Ada applications, databases of available compilers, current job offerings, and more.  The AdaIC is managed by the Ada Resource Association (ARA) (ARA), a group of software tool vendors that supports the use of Ada for excellence in software engineering.


Ada has kept its promise made over twenty years ago to save lifecycle costs from planning software to updating legacy systems. Easily reused and maintained, readable and user friendly, Ada code facilitates such massive software projects as the Space Station and the Paris Metro. It has proven to be extraordinarily robust in decades' worth of daily field tests under the most rigorous conditions in which millions of lives have been at stake. The language dominates air transport and subways and runs everything from video security systems to pollution monitoring devices.

Major Features of Ada
Packages are the technique used in Ada to provide encapsulation (information hiding technique).   Ada includes extensive facilities for exception handling.  Program units can be generic in Ada, this heavily favors code reuse.  Concurrency is also well-supported in Ada.

Ada embodies most of the concepts of software engineering and language design of the late 1970s and as a result suffers somewhat from the “everything for everybody” syndrome.  Compiler design for Ada was a very big task and many initial compilers were excessively large and slow, which did not help the new language’s popularity.  C.A.R. Hoare, went so far as to say, in 1981, that Ada should not be used for any application where reliability was critical, exactly the type of application for which it was intended.

The current version of Ada is known as Ada95 and is a very popular language.  Ada95 differs little from the previous version of Ada (commonly known as Ada83), but does provide enhanced type derivation capabilities and more sophisticated concurrency control mechanisms are now in place.  Strangely, the DoD no longer requires Ada to be used in military systems; some think that this may lead to the demise of Ada95, however, other factors seem to indicate that it will be around for some time to come.

Object-Oriented Programming

The essence of object-oriented programming lies in the solution of problems by identifying the real-world objects of the problem and the processing required on those objects.  Then the real-world objects are simulated along with their processes and the communication required between the processes to solve the problem.

Object-oriented programming has three fundamental characteristics: data abstraction, inheritance, and dynamic binding.  As was shown in the genealogy diagram on page 1 of this note set, object-oriented languages can trace most of their roots to SIMULA67.

The Beginning:  Smalltalk
Smalltalk was the first truly object-oriented programming language.  Smalltalk was developed by Alan Kay in the late 1960s at the University of Utah.  Kay envisioned a future in which desktop computers capable of executing millions of instructions per second and loaded with megabytes of memory would be the norm.  Given this environment, Kay reasoned that the computers would need powerful human interfacing capabilities, since most who used them would be non-programmers.  Kay further reasoned that such systems would be highly interactive and use sophisticated graphical interfaces.  Obviously, Kay was somewhat of a visionary, but one who was remarkably accurate.  Kay originally envisioned a system he called Dynabook, which was meant to be a general information processor.  This system was based, in part on the Flex language which Kay had helped develop earlier.  The Flex language was based on SIMULA67, hence the heritage of Smalltalk (but more on this later).  

Dynabook was modeled on a typical desktop on which there are frequently a number of papers, some partially covered.  The top sheet of paper is most often the focus of attention (since its on top), while the others are temporarily out of focus.  The display of Dynabook was to model this typical situation, using screen windows the user would interact with the display using and keyboard and/or their fingers by touching the screen.

Kay eventually (after completing his PhD) wound up at Xerox PARC (Xerox Palo Alto Research Center) where the Learning Research Group was formed which ultimately developed Smalltalk.  By 1980, the language and the hardware had developed to the point where it nearly matched the original vision of Kay.

The program units of Smalltalk are objects; everything is an object.  Objects in this environment are structures that encapsulate local data and a collection of operations called methods that are available to other objects.  A method specifies the reaction that an object will have when it receives a particular message which corresponds to that method.    Computing occurs in Smalltalk by sending a message to an object to invoke one of its methods.  A reply to a message is an object, which returns the requested information, or simply notifies the sender that the requested processing has been done.  [The difference between a message and a subprogram call is: a message is sent to a data object, which is then processed by code associated with the data object;  a subprogram call usually sends the data to be processed to a subprogram code unit.

Smalltalk is a simulation of a collection of computers (objects) that communicated with each other (via messages).  Each object is an abstraction of a computer in the sense that it stores data and provides processing capability for manipulating that data.  In addition, objects can send and receive messages.  These represent the same fundamental capabilities of computers: to store and manipulate data and to communicate.  Hence the evolution of Smalltalk from SIMULA 67.

Smalltalk is rather more than a programming language as it has evolved into a complete software development environment with a highly graphical interface.  The windowing system which is now the norm for user interfaces grew out of Smalltalk.  While object-oriented programming languages can trace their beginnings back to SIMULA 67, it is in Smalltalk that OO reached maturation.

Combining Imperative and Object-Oriented Features:  C++
C++ grew out of the original C programming language with a desire to improve the features of the imperative language C and add the support for object-oriented programming.  Bjarne Stroustrup at Bell Labs (now the Endowed Chair in Computer Science at Texas A&M University starting July 2002) began this work in 1980 by adding the support for classes, in a language known as C with Classes which was completed in 1983.  Further extensions to this language culminated in 1984 in a language known as C++.  Between 1985 and 1989, C++ continued to evolve, based primarily on the reactions of users to the first distributed version.  The current version of C++ is either referred to as Version 3 or C++2000 depending on who is talking.  If and when there is a new standard for C++, Stroustrup says that it won’t be before 2004.

C++ rapidly became a very popular programming language and remains so today.  One of the reasons for this is the availability of good and inexpensive compilers.  Another important reason is the almost complete backward compatibility with C, which allows C programs to be compiled as if they were C++ programs.   Object-oriented programming rapidly gained popularity throughout the 1990s and C++ was a widely available language which many programmers learned as their first OO language.  On the negative side, like PL/1 before it, C++ is a large and complex language and suffers the normal problems associated with such languages as we have already studied.

Everyone’s OO Language:  Java
In 1991 Sun Microsystems was on the rise as a producer of UNIX workstations. The company was in the vanguard of developing "open systems" for Companies who wanted easy network access. To maintain their business momentum, SUN executives decided to diversify into a number of alternate technology arenas, including the consumer electronics market.

A project, code-named Green, was formed to explore the use of inexpensive, programmable microprocessors in a variety of consumer electronic devices, including PDAs, Interactive TV Boxes and household appliances. 

C++ was initially experimented with, but proved unworkable across the vast array of equipment designs. James Gosling, as part of the team, began developed a new programming language for this demanding environment. Initially named Oak, because of the tree outside of gosling's office window, this little language was quickly promoted by Sun management.

It was hastily renamed Java, because of Trademark conflicts with an existing "Oak" product.

Needless to say, the Sun consumer electronics initiative failed; none of the products for which Java was initially designed and used were ever marketed.  For a more detailed version of how Java developed see: 

http://java.sun.com/features/1998/05/birthday.html. 

By 1994 a new phenomenon began. Netscape had just formed, and the new Netscape browser was turning the Web and the Internet into THE "killer" technology.

Java, although designed for a different purpose, was well suited to web-based applications. It had the multi-platform, secure, simple and robust features needed on the Web.

With the advent of the World Wide Web, distributed, secure programming was in demand and Java found a new lease on life.

Features of Java
Java does not have pointers like C++, rather Java has references.  While it may seem that pointers and references are very similar, there are important semantic differences.  Pointers point to memory locations, references point to objects.  This is why arithmetic on references is not allowed – it doesn’t make any sense!  The distinction between a pointer’s value and the value to which it points is the responsibility of the programmer in many languages (C and C++ for instance), in which the pointer must be explicitly dereferenced.  References are always implicitly dereferenced, when necessary, so they act more like normal scalar variables.

One significant difference between Java and languages such as C++ or Ada 95 is that it is not possible to write stand-alone subprograms in Java.  All Java subprograms are methods and are defined in classes.  There is no construct in Java that is called a function or a subprogram.  Furthermore, methods can only be called through a class or object.

C++ supports multiple inheritance directly in its class definitions.  Java supports only single inheritance.

Java uses implicit storage deallocation for its objects (garbage collection), while C++ uses explicitly storage deallocation.  Implicit storage deallocation can prevent memory leakage (we’ll see this concept later).

Java uses implicit type conversions on assignment, called coercions only if they are widening.  In other words from a “smaller” type to a “larger” type.  Thus, int to float coercions are done, but float to int coercions are not.

Evaluation of Java
While it is true that Java is smaller than C++ and thus meets one of its original design criteria, it is none the less a very large and complex language.  Many of the “unsafe” features found in C++ are absent in Java (such as many coercions in C++ and array index range checking) making the language inherently safer.

Some programmers find the lack of support for multiple inheritance a problem with Java which, while it can be overcome within the language, is cumbersome to do.

Java’s portability, in its intermediate form, is one of the highly desirable features of the language, which many people incorrectly attribute to the design of the language.  This, of course, is not true as any language could be translated into an intermediate form and then executed on any platform that contained a virtual machine for that intermediate form.  Historically, this did not occur very often due to the high cost (in terms of time) of interpreting this intermediate code compared to machine code (historically about an order of magnitude slower than machine code).  The initial versions of the JVM (Java Virtual Machine) were about 10 times slower than equivalent C programs.  Since the early days of Java, much improvement has occurred in this technology and Java programs are now competitive with those of compiled languages like C++.

The use of Java has increased faster than that of any other programming language in history.  

Appendix 1   Grace Murray Hopper


 

Rear Admiral Dr. Grace Murray Hopper was a remarkable woman who grandly rose to the challenges of programming the first computers. During her lifetime as a leader in the field of software development concepts, she contributed to the transition from primitive programming techniques to the use of sophisticated compilers. She believed that "we've always done it that way" was not necessarily a good reason to continue to do so. 

Grace Brewster Murray was born on December 9, 1906 in New York City. In 1928 she graduated from Vassar College with a BA in mathematics and physics and joined the Vassar faculty. While an instructor at Vassar, she continued her studies in mathematics at Yale University, where she earned an MA in 1930 and a PhD in 1934. She was one of four women in a doctoral program of ten students, and her doctorate in mathematics was a rare accomplishment in its day. In 1930 Grace Murray married Vincent Foster Hopper. (He died in 1945 during World War II, and they had no children.) She remained at Vassar as an associate professor until 1943, when she joined the United States Naval Reserve to assist her country in its wartime challenges. After USNR Midshipman's School-W, she was assigned to the Bureau of Ordnance Computation Project at Harvard University, where she worked at Harvard's Cruft Laboratories on the Mark series of computers. In 1946 Admiral Hopper resigned her leave of absence from Vassar to become a research fellow in engineering and applied physics at Harvard's Computation Laboratory. In 1949 she joined the Eckert-Mauchly Computer Corporation as a Senior Mathematician. This group was purchased by Remington Rand in 1950, which in turn merged into the Sperry Corporation in 1955. Admiral Hopper took military leave from the Sperry Corporation from 1967 until her retirement in 1971. 

Throughout her years in academia and industry, Admiral Hopper was a consultant and lecturer for the United States Naval Reserve. After a seven-month retirement, she returned to active duty in the Navy in 1967 as a leader in the Naval Data Automation Command. Upon her retirement from the Navy in 1986 with the rank of Rear Admiral, she immediately became a senior consultant to Digital Equipment Corporation, and remained there several years, working well into her eighties. She died in her sleep in Arlington, Virginia on January 1, 1992. 

During her academic, industry, and military tenure, Admiral Hopper's numerous talents were apparent. She had outstanding technical skills, was a whiz at marketing, repeatedly demonstrated her business and political acumen, and never gave up on her good ideas. 

Programming the First Computers

Perseverance was on of the personality traits that made Grace Murray Hopper a great leader. On her arrival at Cruft Laboratory she immediately encountered the Mark I computer. For her it was an attractive gadget, similar to the alarm clocks of her youth; she could hardly wait to disassemble it and figure it out. Admiral Hopper became the third person to program the Mark I. She received the Naval Ordnance Development Award for her pioneering applications programming success on the Mark I, Mark II, and Mark III computers. 

A true visionary, Admiral Hopper conceptualized how a much wider audience could use the computer if there were tools that were both programmer-friendly and application-friendly. In pursuit of her vision she risked her career in 1949 to join the Eckert-Mauchly Computer Corporation and provide businesses with computers. There she began yet another pioneering effort of UNIVAC I, the first large-scale electronic digital computer. To ease their task, Admiral Hopper encouraged programmers to collect and share common portions of programs. Even though these early shared libraries of code had to be copied by hand, they reduced errors, tedium, and duplication of effort. 

By 1949 programs contained mnemonics that were transformed into binary code instructions executable by the computer. Admiral Hopper and her team extended this improvement on binary code with the development of her first compiler, the A-O. The A-O series of compilers translated symbolic mathematical code into machine code, and allowed the specification of call numbers assigned to the collected programming routines stored on magnetic tape. One could then simply specify the call numbers of the desired routines and the computer would "find them on the tape, bring them over and do the additions. This was the first compiler," she declared. 

Admiral Hopper believed that the major obstacle to computers in non-scientific and business applications was the dearth of programmers for these far from user-friendly new machines. The key to opening up new worlds to computing, she knew, was the development and refinement of programming languages - languages that could be understood and used by people who were neither mathematicians nor computer experts. It took several years for her to demonstrate that this idea was feasible. 

Early Compilers and Validation

Pursuing her belief that computer programs could be written in English, Admiral hopper moved forward with the development for Univac of the B-O compiler, later known as FLOW-MATIC. It was designed to translate a language that could be used for typical business tasks like automatic billing and payroll calculation. Using FLOW-MATIC, Admiral Hopper and her staff were able to make the UNIVAC I and II "understand" twenty statements in English. When she recommended that an entire programming language be developed using English words, however, she "was told very quickly that [she] couldn't do this because computers didn't understand English." It was three years before her idea was finally accepted; she published her first compiler paper in 1952. 

Admiral Hopper actively participated in the first meetings to formulate specifications for a common business language. She was one of the two technical advisers to the resulting CODASYL Executive Committee, and several of her staff were members of the CODASYL Short Range Committee to define the basic COBOL language design. The design was greatly influenced by FLOW-MATIC. As one member of the Short Range Committee stated, "[FLOW-MATIC] was the only business-oriented programming language in use at the time COBOL development started... Without FLOW-MATIC we probably never would have had a COBOL." The first COBOL specifications appeared in 1959. 

Admiral Hopper devoted much time to convincing business managers that English language compilers such as FLOW-MATIC and COBOL were feasible. She participated in a public demonstration by Sperry Corporation and RCA of COBOL compilers and the machine independence they provided. After her brief retirement from the Navy, Admiral Hopper led an effort to standardize COBOL and to persuade the entire Navy to use this high-level computer language. With her technical skills, she lead her team to develop useful COBOL manuals and tools. With her speaking skills, she convinced managers that they should learn to use them. 

Another major effort in Admiral Hopper's life was the standardization of compilers. Under her direction, the Navy developed a set of programs and procedures for validating COBOL compilers. This concept of validation has had widespread impact on other programming languages and organizations; it eventually led to national and international standards and validation facilities for most programming languages. 

Recognition

Admiral Grace Murray Hopper received many awards and commendations for her accomplishments. In 1969, she was awarded the first ever Computer Science Man-of-the-Year Award from the Data Processing Management Association. In 1971, the Sperry Corporation initiated an annual award in her name to honor young computer professionals for their significant contributions to computer science. In 1973, she became the first person from the United States and the first woman of any nationality to be made a Distinguished Fellow of the British Computer Society. 

After four decades of pioneering work, Admiral Hopper felt her greatest contribution had been "all the young people I've trained." She was an inspirational professor and a much sought-after speaker, in some years she addressed more than 200 audiences. In her speeches Admiral Hopper often used analogies and examples that have become legendary. Once she presented a piece of wire about a foot long, and explained that it represented a nanosecond, since it was the maximum distance electricity could travel in wire in one-billionth of a second. She often contrasted this nanosecond with a microsecond - a coil of wire nearly a thousand feet long - as she encouraged programmers not to waste even a microsecond. 

When Admiral Grace Murray Hopper died, the world lost an inspiration to women and scientists everywhere. Her outstanding contributions to computer science benefited academia, industry, and the military. Her work spanned programming languages, software development concepts, compiler verification, and data processing. Her early recognition of the potential for commercial applications of computers, and her leadership and perseverance in making this vision a reality, paved the way for modern data processing. 

Appendix 2  COBOL and the Y2K Problem
(reprinted from an article which originally appeared in USA Today (I think) some time ago.)

You know that little year 2000 problem? Well, it all began 40 years ago. On May 28, 1959, the Conference of Data Systems Languages (Codasyl) met for the first time, with the idea of developing a universal language for building business applications. That language was Cobol, short for "common business-oriented language." And it's Cobol's dramatic success that's at the heart of the millennium bug. 

Influenced by Fortran, a programming language for the scientific community, and FlowMatic, an English-language compiler for business data processing built by Grace Hopper, the group recognized the growing needs of the business community. 

"We thought, If the scientific programmers are going to get a single language, we could do the same for business," says Bob Bemer, who at the time was completing work on Fortran at IBM. With Hopper, Bemer served as an adviser to Codasyl. He is responsible for coining the term Cobol. 

By April 1959, that undercurrent swelled into action. At an informal meeting at the University of Pennsylvania in Philadelphia, a small group of computer manufacturers, large users and academics asked the Department of Defense (DOD) to head the effort. 

The next month, the DOD called the first meeting of Codasyl, which consisted of eight computer manufacturers and a few large users. The DOD broke Codasyl into several committees, and by June, the nine-member "short-range committee" was asked to undertake a six-month investigation into developing the language. 

"We worked almost full time doing the language specification, even though we were all employed by different employers," says Howard Bromberg, who was a Codasyl member and an employee at RCA Corp. In addition to machine- independence, one of the most important requirements of the language was simplicity. The committee wanted the language to be readable by laypeople, which led to the idea of using English. 

But just because Cobol was designed to be easy to learn doesn't mean it was easy to build. "In business, there are no scientific laws and no algebra, but there are different laws for the 50 states, different fiscal years and different reporting requirements," Bemer says. In addition, computer manufacturers were trying to develop their commercial Cobol compilers while Cobol's specifications were being defined. All decisions had to be approved by Charlie Phillips, the DOD representative who directed Codasyl. 

"I used to get frustrated -- I had a group of people sitting there trying to build a Cobol compiler," Bromberg says. 

That led to the famous "tombstone incident." Bromberg sent a granite tombstone to Phillips with the word Cobol inscribed on it. He figured it would get his point across about the fate of Cobol if things continued to move so slowly. 

A complete specification was finished in just six months. That was in December 1959. By the following year, Cobol was commercially ready, and for the next 20 years, more programs were written in Cobol than any other language. 

Unfortunately, it was the resulting tidal wave of Cobol programming that now has us anxiously checking our watches as they tick away toward 2000. 

Although the Cobol creators played their part in the problem -- specifying two-digit year fields for capturing and manipulating system dates -- the blame falls just as squarely on the programmers, who could have used four-digit year fields, says Jerome Garfunkle, a year 2000 consultant who served on the American National Standards Institute's Cobol Committee for 20 years. 

In 1974, Cobol officially changed to four-digit date fields, but that change obviously didn't catch on right away. 

Appendix 3   A Current Application of Ada
Santa Barbara, CA. August 1, 2002 -- Green Hills Software today announced that Rockwell Collins has integrated the INTEGRITY-178B™ real-time operating system (RTOS) into the Sikorsky S-92 helicopter's new highly-integrated avionics package. INTEGRITY-178B, along with Green Hills Software's GSTART Ada run-time environment, is being used in Rockwell Collins new Avionics Management and Display System, which incorporates the most advanced avionics technology available today for rotorcraft. Rockwell Collins successfully completed its first S-92 test flight of the system on October 5, 2001 and has accumulated over 300 hours of company flight tests to date. The new S-92 cockpit is designed for outstanding visibility and is equipped with a highly-integrated avionics package which provides the core of an open architecture avionics suite for processing aircraft system information. Flight data is shown on four Collins multi-function displays, with a fifth display offered as an option.

Green Hills also announced that Rockwell Collins is using Green Hills Software's AdaMULTI® Integrated Development Environment (IDE) to develop the flight software for the new S-92 cockpit.

The S-92 is Sikorsky's newest medium-lift helicopter and is designed to meet both civil and military requirements. Featuring a passenger capacity of 19-22, the versatile new helicopter will serve a variety of commercial and international utility needs, including passenger, cargo, aeromedical, search and rescue and resource development support. 

A Motorola PowerPC running INTEGRITY-178B and the GSTART Ada run-time environment provides the backbone for the Sikorsky helicopter's new Collins Avionics Management and Display system. The system provides the display and integrated management of primary flight data, presentation and management of navigation information for the S-92. The system also provides flight management data, a digital map, weather radar, terrain information and engine instrument caution and advisory system processing and display. Rockwell Collins will use INTEGRITY-178B and GSTART to achieve DO-178B Level A certification of the Avionics Management and Display system.

"INTEGRITY-178B is the RTOS of choice for safety-critical applications like the S-92 helicopter, where the overwhelming emphasis is on safety, security and high integrity software development," said John Carbone, vice president of marketing for Green Hills Software. "INTEGRITY-178B's robustly partitioned architecture, real-time deterministic performance, and overall ease-of-use of the AdaMULTI tool chain gives it a clear advantage over general purpose RTOSes like VxWorks."

INTEGRITY-178B is an ARINC-653 compliant, hard real-time RTOS optimized for safety-critical and mission-critical applications that require the utmost security and fast, predictable response. Utilizing hardware memory protection, and an advanced two-level partition scheduler, INTEGRITY-178B provides complete time, space, and resource partitioning between applications operating on the same hardware platform. This partitioning effectively builds a firewall between applications and the kernel, preventing errors in one application from corrupting other applications or the kernel. INTEGRITY-178B also provides protection and guaranteed resource availability in both the time and space domains, thereby enabling applications that have been assigned different DO-178B safety levels to run concurrently on the same processor (i.e. supports "robust partitioning," as defined in ARINC-653. INTEGRITY-178B's ARINC-653 APplication/EXecutive (APEX) interface provides a recognized standard interface between the operating system of an avionics computer resource (ACR) and the application software. 

INTEGRITY-178B includes an RTOS simulator (ISIM) that enables programmers to develop and test their code on a PC or workstation without the need for target hardware. INTEGRITY-178B also features a real-time event analyzer (EventAnalyzer™) that enables viewing of system and user events in a graphical display.

INTEGRITY-178B is tightly integrated with Green Hills Software's AdaMULTI® 2000 IDE. Together with the Green Hills family of optimizing Ada 95, C, and C++ compilers, AdaMULTI automates all aspects of embedded software development, including editing, source-level debugging, program building, run-time error checking, version control, and code/performance optimization. AdaMULTI also features an advanced code coverage tool (GCOVER™) that automates structural coverage analysis for application software, including the analysis of DO-178B Table A-7, Objectives 5, 6, and 7 (statement, decision, and MCDC coverage achievement).

About Green Hills Software, Inc.
Founded in 1982, Green Hills Software Inc. is the technology leader for real-time operating systems and software development tools for 32- and 64-bit embedded systems. Green Hills Software's royalty-free INTEGRITY™ and ThreadX® real-time operating systems, fully integrated with its market leading compilers and MULTI® Integrated Development Environment, provide a total development and run-time solution that addresses both deeply embedded and maximum reliability applications. 

Green Hills Software is headquartered in Santa Barbara, CA, with European headquarters in the United Kingdom. For more information on Green Hills Software products, call 805-965-6044, email sales@ghs.com or visit us on the web at www.ghs.com. 
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link(fortran, algol).


link(algol60, cpl).


link(cpl, bcpl).


link(bcpl, c).


link(c, c++).


link(algol60, simula67).


link(simula67, smalltalk80).





path(X, X).


path(X, Z) :- link(X, Y), path(Y, Z).








Prolog Knowledge Base:  progs





Early Dynamic Languages





Paralleling the development of languages such as COBOL and PL/1 was the development of languages which were inherently different.  Remember that at this point in the history of programming languages that there was much research in the area of high-level languages and some researchers had different visions of what a programming language should contain and how it should be implemented.   Two languages in particular were developed in this period of time, which although they did not contribute significantly to the development of other languages, exhibited features that were in stark contrast to other languages that were being developed in the same time period.  These languages are APL (A Programming Language) and SNOBOL (StriNg Oriented symBOlic Language).   Both of these languages exhibit dynamic typing and dynamic storage allocation, although they were designed for very different purposes.  APL was designed in the early 1960s by Kenneth Iverson at IBM and was originally intended to be a language to describe computer architecture.  APL contained many very powerful operators, such as a complete set of operators that allowed arrays to be manipulated as if they were scalar variables. (In APL you can transpose a matrix with a single operator!)  The biggest problem that APL had was the very specialized symbols that required a special type ball in a printing terminal to use.  APL became synonymous with “throw-away programming”.  APL is still around and has actually undergone very little change over the years.





SNOBOL was designed at Bell Labs specifically for text processing applications.  The heart of SNOBOL is a set of powerful operations for string pattern matching.  One of the most successful uses of SNOBOL was to write text editors.  In recent years, its popularity has faded as newer and more efficient languages such as Awk and Perl have made string manipulation by means of regular expressions popular.  SNOBOL 4 (the final version that was developed) is now a special interest language used mainly by enthusiasts.
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